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A ADDITIONAL STUDIES

A.1 Hyper-parameter Tuning:

The number of prototypes is the key hyper-parameters
for our model. We tune the number of prototypes in
{2, 3, 4, 5, 6} and set 3 for vCPUs and 4 for airplane tickets
respectively with the optimal search value. The detailed
results are shown in Table 1.

Table 1. Hyper-parameter tuning.

# options
vCPU Oversub. Flight Tickets

Hot Node Core Cost Profit

2 0.26% 8067 0.32M 12.59M
3 0% 8161 0.27M 13.10M
4 0% 8092 0.14M 13.65M
5 0.05% 8154 0.22M 13.15M
6 0.07% 8150 0.16M 12.64M

There are 2 primary hyperparameters in the KITL module;
the uncertainty thresholds Up,Ua. While they do not di-
rectly affect the loss surface, they control query generation.
Extremely conservative (high) uncertainty thresholds lead to
extremely focused queries and reduce the number of queries.
However, it often leads to missing out on prototypes that
really do need feedback, since the final query is an intersec-
tion with top-N prototype embeddings. On the other hand,
the relaxed (lower) thresholds lead to too many queries. An-
other minor hyperparameter is ‘N’, the cardinality of top-N
choices of in the case of pd. All results are reported with
N = 5. However, we did perform a grid search over all 3
hyperparameters and observed that for thresholds a range
of (0.5, 0.75) was mostly appropriate, with 0.55 being the
value used for reported results. For N higher values make
no sense since pd intersects with pµ anyway. Values of N
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lower than 3 resulted in pµ ∩ pd = ∅.

A.2 Pressure Test:

Our experiments are based on real-world datasets. It is
impractical to conduct pressure tests from two aspects: a)
we cannot do endless vCPU oversubscription if there is no
stranded memory available to place additional VMs. b)
the real-world CPU utilization distribution would rarely
make many hot nodes as their CPU utilization will not peak
simultaneously. Nevertheless, we also experimented on the
high-pressure test by manually reducing the hot ratio (which
is much smaller than the real-world value), the results are
shown as follows, where PROTORAIL also achieves the
best performance on both metrics compared with the best
two baselines.

Table 2. Pressure Test
Method Hot Node Remain Core

Behavior Cloning 92.61% 28
Dagger 90.74% 23

ProtoHAIL 86.25% 34

B APPLICATION IN PRACTICE

The vCPU oversubscription policy has been successfully im-
plemented in several scenarios within cloud services. This
policy determines the appropriate oversubscription rate for
each vCPU request made by users. By effectively managing
oversubscription, we can reduce resource wastage and en-
sure that user requirements are met. Our proposed adaptive
oversubscription policy improves vCPU utilization by 9.4%
and maintains a 0% hot node rate in the cloud system. We
also provide a case study to demonstrate the effectiveness
of our approach in real-world environments.

B.1 More details on Case Study

In this section, we compare the performance of our pro-
posed method with the strongest baseline, behavior cloning.
The data was collected from one of Cloud services over a
two-week period. This service has been deployed in approx-
imately 300 clusters.
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Figure 1. A/B test Results

0 50 100 150 200 250 300 350
Time Step

0

20

40

60

80

CP
U 

Us
ag

e 
Ra

te

p50
p90

Figure 2. Cpu Usage Rate

Figure 2 shows the CPU usage rate for this service, with
each time step representing one hour. The p50 and p90
values indicate the 50th and 90th quantiles of the CPU
usage rates among all VMs. The shaded area represents
the standard deviation, and the solid line indicates the mean
value. We can see that the mean of p90 is around 60%,
indicating that there is significant potential capacity that
can be leveraged to serve more users. This motivated us to
implement an oversubscription policy to save computational
resources and serve more requests.

The results are shown in Figure 1. The y-axis shows the
cumulative number of hot nodes during the test time at dif-
ferent hot thresholds (45%, 55%, 65%, and 75%). Density is
the average node density, calculated as usedCPU

totalCPU , which cor-
responds to the remaining core capacity. A smaller number
of hot nodes and a larger density indicate a more effective
oversubscription policy.

We observe that (1) our method results in fewer hot nodes
and a larger node density. This is because we use human-in-
the-loop imitation learning to accurately predict long-term
user usage rates, allowing us to optimize the current over-
subscription rate for more efficient results. Additionally,
the risk-aware mechanism helps to quickly adjust the policy
when hot nodes are detected. (2) we see that a larger node

density does not necessarily mean more hot nodes. With
the right oversubscription rate and risk-aware mechanism,
we can effectively coordinate VMs over the long term. This
indicates significant potential for optimizing the oversub-
scription policy. In fact, there are no hot nodes when the
threshold is set to 85%, and less than 10% of clusters have
a usage rate above 75%.

a transparent and better understanding of the learned policy.

B.2 Domains (Datasets)

Virtual CPU oversubscription. A Virtual Machine (VM) is
a virtualized instance of a computer that runs on a physical
server and accesses computing resources to perform func-
tions (Li et al., 2010). Users purchase VMs from cloud plat-
form providers to host applications and services. The cloud
platform contains many of physical servers, i.e., Nodes, and
each node hosts a certain number of VMs.

CPU bottlenecks are more severe and common than memory
and network in cloud (Mahapatra & Venkatrao, 1999). As
shown in Figure 1 in main paper, three VMs are placed in
the same node, and the CPU dimension is fully packed with
unused memory, i.e., stranded memory displayed as the grey
box. If oversubscribing actual physical CPU size, additional
VMs can be allocated on this node reducing stranded mem-
ory. Also, virtual CPU (vCPU) represents a portion or share
of the underlying physical CPU that is assigned to a VM.
Thus vCPU is the sellable billing unit in cloud platforms.
So, we focus on vCPU oversubscription.

We collect real data from cloud platform for internal users,
i.e., responsible owners of M company services and applica-
tions. Such internal users host their services on VMs whose
vCPU usage demonstrates patterns. For example, services
like emails and work-related software demonstrate diurnal
and weekly patterns in regions with similar time zones.

corresponding to work and social activities, resulting in the
most requests and traffic income on daytime and weekdays.
Thus the vCPU usage is high during these time periods
while low at nighttime and weekends. On the other hand,
services providing social media and gaming applications
show different vCPU usage patterns when peak/hot usage
happens in spare time. Moreover, other non-user-facing
services running regularly, like monitoring and maintenance
services, do not show daily or weekly patterns but display
patterns caused by underlying configurations from service
teams. The diverse vCPU usage patterns of services mo-
tivate us to adaptively oversubscribe vCPUs of VMs from
each service. For example, oversubscribe services with low
vCPU usage, given the context.

We collect two-week data of VM features, including the
usage of vCPU, memory, and network, that belong to 30
randomly sampled services. As the vCPU usage has a lot
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of fine-grained variances, we take the peak usage in the
one-hour bucket as the representative data point, making
oversubscription conservative. Note that in Figure 1, VMs
are allocated onto nodes, and VMs from different services
can be collocated in the same node. Then, we propose
a simplified allocation simulator that allocates VMs via
Best-Fit allocation policy (Hadary et al., 2020). VMs are
allocated after vCPU oversubscription.

Other domains - Airline ticket overbooking: As noted
earlier to highlight how our approach can seamlessly work
on any domain to optimize adaptive oversubscription, based
on utilization patterns we present Airline ticket overbook-
ing scenario. Flight overbooking, i.e., selling more tickets
than the available seats, is a common practice that allows
airline companies to improve their load factors and increase
revenues (Nazifi et al., 2021). Yet, the difficulty in estimat-
ing ticket demands and no-shows results in inappropriate
overbooking strategies, such that users with tickets cannot
onboard, i.e., offloaded. In general, flight ticket demands
show quarter patterns that peak tourist seasons have higher
flight demands (Suryani et al., 2010; Banerjee et al., 2020).
This motivates adaptive oversubscription of flight tickets.

We collect airline passengers’ data from the overbooking
reports of the U.S. Department of Transportation (DOT).
The dataset covers overbooking information of 32 airline
companies in the U.S. from 1998 to 2021 1, reported quar-
terly. Each quarter’s data includes offloaded number of
passengers (voluntary/involuntary) and the onboard number
of passengers. As the overbooking rate of each airline com-
pany and the actual demands are not reported, we generate
synthetic overbooking rate and flight demands to create a
semi-synthetic dataset. We sample the overbooking rate
within a range on 3%-5%, as per common industry practice.
With the popularity of electronic tickets, no-shows are less
compared to the paper-ticket period, we assume no-show
rate to decay with years. Then the demand is the aggregation
of bumped, no-shows, and onboard passengers. We devel-
oped a simulator trained with GBDT on the semi-synthetic
data that outputs the overbooking rate of the next quarter
given current quarter features.

B.3 Experiment Configurations

All experiments are performed on Ubuntu 20.04 LTS sys-
tem with Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
CPU, 112 Gigabyte memory and single NVIDIA Tesla P100
accelerator. Detailed settings are listed below.

B.3.1 Base Learner:

We implemented our method by extending on top of Behav-
ior Cloning as the base imitation learner in our experimental

1https://www.bts.gov/denied-confirmed-space

version. As explained later, we also use Behavior Cloning
as one of the baselines. We set the learning rate as 1e− 2,
MLP unites is 64, batch size is 128, optimizer is Adam. We
tune the number of prototypes in {2, 3, 4, 5, 6} and set 3
for vCPUs and 4 for airplane tickets respectively with the
optimal search value. We tune the weights of different loss
components within [0.1, 0.2, 0.3, ..., 1.0] via grid-search. Fi-
nally, we obtained the best value on w1 = 0.8, w2 = 0.1,
w3 = 0.1, w4 = 1.0.
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