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Abstract

We consider the problem of finding a saddle point for the convex-concave objective
minxmaxy f(x) + 〈Ax, y〉 − g∗(y), where f is a convex function with locally
Lipschitz gradient and g is convex and possibly non-smooth. We propose an
adaptive version of the Condat-Vũ algorithm, which alternates between primal
gradient steps and dual proximal steps. The method achieves stepsize adaptivity
through a simple rule involving ‖A‖ and the norm of recently computed gradients
of f . Under standard assumptions, we prove an O(k−1) ergodic convergence rate.
Furthermore, when f is also locally strongly convex and A has full row rank we
show that our method converges with a linear rate. Numerical experiments are
provided for illustrating the practical performance of the algorithm.

1 Introduction

In this paper we study a particular instance of the composite minimization problem

min
x∈X

f(x) + g(Ax), (1)

where f and g are convex, proper and lower-semicontinuous (l.s.c.), and A is a linear operator.

Problems of the form (1) have been studied in the literature under various assumptions on f and g.
For the particular instances where g ◦ A is proximal-friendly and f is L-smooth, the objective is
suitable for applying forward-backward splitting algorithms like the Proximal Gradient algorithm
and its accelerated counterpart [Nesterov, 2013, Beck and Teboulle, 2009]. In general, however,
the proximal operator of g ◦A is not easily computable and in such cases a popular approach is to
decouple A and g by reformulating problem (1) as a convex-concave saddle-point problem:

min
x∈X

max
y∈Y
〈Ax, y〉+ f(x)− g∗(y), (2)

where g∗ denotes the Fenchel conjugate of g. Objective (2) is typically addressed by primal-dual
splitting algorithms which, under strong duality, can recover the solution to the original problem (1).
In the particular case when f and g are proximal-friendly and possibly non-smooth, a very popular
method is the Primal-Dual Hybrid Gradient proposed in [Chambolle and Pock, 2011], which was
further extended to handle an additional L-smooth component with the Condat-Vũ algorithm [Condat,
2013, Vũ, 2013]. Convergence rates for the latter are studied in [Chambolle and Pock, 2016a].

Together, these classes of algorithms cover a broad range of problems in diverse fields such as signal
processing, machine learning, inverse problems, telecommunications and many others. As a result,
a great amount of research effort has gone into addressing practical concerns such as robustness
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to inexact oracles, acceleration and automation of stepsize selection. For a comprehensive list of
examples and theoretical details we refer the reader to review papers [Combettes and Pesquet, 2011,
Parikh and Boyd, 2014, Komodakis and Pesquet, 2015, Chambolle and Pock, 2016b]. In this work,
we focus on the line of investigation studying stepsize regime automation for primal-dual algorithms
targeting problem (2).

In their basic form, primal-dual methods require as input stepsize parameters belonging to a designated
interval of stability, which depends on problem specific constants like the global smoothness parameter
L and ‖A ‖. Dependence on such constants is undesirable because they may be costly to compute and
oftentimes one can only access upper-bound estimates, thus leading to overly-conservative stepsizes
and slower convergence. Moreover, the need to know L for setting the stepsizes prevents these
methods from being applied to functions which are not globally smooth.

Consequently, recent efforts have gone towards devising methods with adaptive stepsizes [Goldstein
et al., 2013, 2015, Malitsky and Pock, 2018, Pedregosa and Gidel, 2018]. These approaches resort to
linesearch for finding good stepsizes at every iteration, and exhibit improved practical performance.
It thus appears that better convergence comes at the cost of an indeterminate number of extra steps
spent in subprocedures aimed at finding appropriate stepsizes.

In this work, we study problem (2) under the assumption that∇f is locally Lipschitz continuous and
g is proximal-friendly. To illustrate the motivation of our framework, we take a prototypical example
in image processing:

min
x

1

2
‖Kx− b ‖2 + λ ‖Dx ‖2,1 , K ∈ Rm×d, D ∈ R2d×d,

where x is an image, K is a problem-specific measurement operator, b is the vector of (possibly
noisy) observations and D is the discrete gradient operator and the regularization term represents the
isotropic TV norm. In order to apply any of the aforementioned primal-dual algorithms, one needs to
first choose how to decouple the linear operators. There are three options: decoupling with respect to
K leaves us with having to compute the proximal operator of the TV norm for the primal step, which
is an iterative procedure [Chambolle, 2004]. Decoupling D implies performing gradient steps on f ,
since in general its proximal operator is not efficient. Finally, decoupling with respect to both implies
increasing the dimensionality of the dual variable to m+ 2d, which is problematic for large d and m.
The sensible choice is the second one (i.e., decoupling D), and the question we seek to answer with
this work is:

Does there exist a method for solving (2) that adapts to the local problem geometry
without resorting to linesearch?

Our contribution is to propose a first-order primal-dual scheme that answers this question in the
affirmative and is accompanied by theoretical convergence guarantees. Using standard analysis
techniques we show an ergodic convergence of O(k−1) when ∇f is locally Lipschitz and g is
proximal-friendly, and a linear convergence rate for the case when f is in addition locally strongly
convex and A has full row rank. We provide numerical experiments for sparse logistic regression
and image inpainting, as well as use our method as a heuristic for TV-regularized nonconvex phase
retrieval.

The rest of the paper is structured as follows: Section 2 provides details about related work; Section 3
introduces notation, along with technical preliminaries and assumptions to be used in our analysis;
Section 4 reports the main theoretical results alongside partial proofs; finally, partial numerical results
are provided in Section 5 with the rest being deferred to the appendix due to lack of space.

2 Related Work

Adaptive Gradient Descent (GD) methods. Arguably the most widespread of optimization meth-
ods, GD presents similar shortcomings for setting the stepsize as those described in the previous
section. In particular, much research effort has gone in devising variants of the algorithm that remove
the need to estimate the global smoothness constant L. In a recent work, Malitsky and Mishchenko
[2020] propose an extremely simple and effective alternative for setting the stepsize τk adaptively at
every iteration, as follows:

τk = min

{
τk−1

√
1 +

τk−1

τk−2
,

‖xk − xk−1 ‖
2 ‖∇f(xk)−∇f(xk−1) ‖

}
. (3)
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Adaptivity essentially comes ‘for free’ in (3), as it involves solely quantities which have already been
computed. Moreover, the method requires only the weaker assumption of local smoothness, thus
extending the reach of provably-convergent GD to a wider class of differentiable functions while
maintaining the standard O(k−1) convergence rate.

In this work we show that the above technique can be extended to the analysis of primal-dual methods,
where it gives rise to an algorithm whose stepsizes adapt to the local geometry of the objective’s
(locally) smooth component f .

Adaptive monotone variational inequality (VI) methods. Malitsky [2020] proposes an algorithm
for solving monotone VIs with a stepsize that adapts to local smoothness similarly to (3). This method
solves the very general formulation of finding u∗ such that 〈F (u∗), u−u∗〉+h(u)−h(u∗) ≥ 0, ∀u
for a given monotone operator F which is locally Lipschitz continuous. Our template (2) can be
recovered from theirs by setting u = (x, y), with

F (u) = F (x, y) =

[
∇f(x) +AT y
−Ax

]
,

and h(u) = g∗(y). The advantages of this approach are the relaxed requirement of local Lipschitz
continuity for F and the fact that knowledge of ‖A‖ is not required. However, since the VI framework
is very general and does not take advantage of the problem structure (e.g. the fact that 〈Ax, y〉 is
a bilinear term), the method comes with worse convergence bounds than algorithms specifically
designed to solve (2). In addition, the algorithm requires as input an upper bound on the stepsizes,
despite them being set in accordance to the estimated local smoothness.

First order primal dual algorithms and adaptive versions. A popular method for solving (2)
when f is L-smooth is the Condat-Vũ algorithm (CVA) [Condat, 2013, Vũ, 2013]. The method’s
convergence is subject to a global stepsize validity condition given by

(
1
τ − L

)
1
σ ≥ ‖A ‖

2, where τ
and σ are the primal and dual stepsizes, respectively.

Another approach to solving problem (2) is via the Primal–Dual Fixed-Point algorithm based on
the Proximity Operator (PDFP2O) or the Proximal Alternating Predictor–Corrector (PAPC) meth-
ods [Loris and Verhoeven, 2011, Chen et al., 2013, Drori et al., 2015]. This approach comes with less
restrictive stepsize conditions than CVA owing to a different iteration style, but which nevertheless
depend on the global smoothness constant L and ‖A ‖ and have to be carefully chosen.

In order to alleviate the burden of choosing the stepsize parameters in CVA, Malitsky and Pock [2018]
propose a linesearch procedure involving only dual variable updates and which, for certain problems
such as regularized least squares, does not require any additional matrix-vector multiplications. A
characteristic of this algorithm is that it maintains a constant ratio between primal and dual stepsizes
through a hyperparameter β — a setup which we also use in this work.

3 Preliminaries

Consider problem (2) and let X ,Y be finite dimensional real vector spaces equipped with the standard
inner product 〈·, ·〉 and the associated Euclidean norm ‖ · ‖ =

√
〈·, ·〉. We denote by g∗ the Fenchel

conjugate of g in (1) defined as g∗(y) = supx{〈x, y〉− g(x)}. In order to not overload the ∗ notation,
we use AT to denote the adjoint operator of A.

One can easily see that (2) is a primal-dual formulation of the following primal and dual optimization
problems, of which the former is the same as (1):

min
x∈X

f(x) + g(Ax), max
y∈Y
−(f∗(−AT y) + g∗(y)).

A saddle-point (x∗, y∗) ∈ X × Y of problem (2) satisfies the following optimality conditions:

−AT y∗ = ∇f(x∗), Ax∗ ∈ ∂g∗(y∗). (4)

For (x′, y′) ∈ X × Y we define the following quantities:

Px′,y′(x) := f(x)− f(x′) + 〈x− x′, AT y′〉,
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Dx′,y′(y) := g∗(y)− g∗(y′)− 〈Ax′, y − y′〉,
Gx′,y′(x, y) := Px′,y′(x) +Dx′,y′(y).

These functions are convex for fixed (x′, y′) and whenever (x′, y′) = (x∗, y∗), it holds that
Px∗,y∗(x) ≥ 0, Dx∗,y∗(x) ≥ 0 and Gx∗,y∗(x, y) ≥ 0, with the latter quantity representing the
primal-dual gap. We also define the gap restricted to a bounded subset B1 ×B2 ⊂ X × Y as:

GB1×B2
(x, y) := sup

(x′,y′)∈B1×B2

Px′,y′(x) +Dx′,y′(y),

and note that it is non-negative whenever B1 ×B2 contains a saddle-point.

Given a function f : X → R and L > 0, we say that f is L-smooth if its gradient ∇f is Lipschitz
continuous: ‖∇f(x) − ∇f(y)‖ ≤ L‖x− y‖,∀x, y. Furthermore, f is locally smooth if ∇f is
Lipschitz continuous on any compact subset C: ∀C ⊂ X , ∃LC > 0 such that ‖∇f(x)−∇f(y)‖ ≤
LC‖x− y‖,∀x, y ∈ C.

We also say that f is µ-strongly convex if f(y) ≥ f(x) + 〈∇f(x), y − x〉 + µ
2 ‖x− y ‖

2
,∀x, y.

Similarly, f is locally strongly convex if it is strongly convex on any compact subset C: ∀C ⊂
X , ∃µC > 0 such that f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µC

2 ‖x− y ‖
2
,∀x, y ∈ C.

We define the proximal operator of a convex function g : X → R ∪ {∞} as proxg(x) =

argminz

{
g(z) + 1

2 ‖x− z ‖
2
}

, and say that g is ‘proximal-friendly’ if proxg(x) has a closed
form solution or can be efficiently computed to high accuracy.

Finally, the following two blanket assumptions will hold throughout the paper:
Assumption 3.1. Function f is convex and locally smooth, while g convex, l.s.c., and proximal-
friendly.
Assumption 3.2. A saddle-point exists for problem (2) and thus strong duality holds.

We note that Assumption 3.2 is standard in the literature (see e.g., [Chambolle and Pock, 2011]).
Assumption 3.1, on the other hand, is weaker than the usual global L-smoothness premise and thus
enlarges the category of admissible functions f with instances such as x 7→ exp(x). To illustrate,
consider the aforementioned function defined on the reals: the global smoothness assumption clearly
does not hold, however for any fixed interval [a, b] ⊂ R the smoothness constant can be chosen as
exp(b).

For showing linear convergence of our method, we will add the following assumption:
Assumption 3.3. Function f is locally strongly convex and operator A has full row-rank.

4 Algorithm and convergence

The primal-dual method proposed for solving problem (2) under assumptions 3.1 and 3.2, is provided
in Algorithm 1 under the abbreviation APDA, which we use from here onwards. APDA follows the
same structure as the basic CVA [Chambolle and Pock, 2016a] for the given assumptions. Notice
that if we restrict Assumption 3.1 to L-smooth functions f , we can in fact recover CVA by setting
θk = θ = 1 and τk = τ , σk = σ fixed such that

(
1
τ − L

)
1
σ ≥ ‖A ‖

2.

Algorithm 1 Adaptive Primal Dual Algorithm (APDA)
Input: x0 ∈ X , y0 ∈ Y, τinit > 0, τ0 =∞, θ0 = 1, β > 0, c ∈ (0, 1)

x1 = x0 − τinit(∇f(x0) +AT y0)

for k = 1, 2, . . . do

Set τk = min

{
1

2
√
L2

k+(β/(1−c))‖A ‖2
, τk−1

√
1 + θk−1

}
, σk = βτk, θk = τk

τk−1

x̃k = xk + θk(xk − xk−1)

yk+1 = proxσkg∗
(yk + σkAx̃k)

xk+1 = xk − τk(∇f(xk) +AT yk+1)

end for
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4.1 High level ideas

We can rephrase the global stepsize condition of CVA by introducing a free parameter β > 0 which
represents the ratio between the fixed dual and primal stepsizes: β = σ

τ . With this change of variables,

the stepsize validity condition becomes τ ∈
(
0, 2

L+
√
L2+4β‖A ‖2

)
.

Our algorithm disposes of CVA’s global condition and relies instead on a very similar but local

criterion given by τk ∈
(
0, 1

Lk+
√
L2

k+2β‖A ‖2

)
, where Lk := ‖∇f(xk)−∇f(xk−1) ‖

‖ xk−xk−1 ‖ provides an

estimate of the local smoothness constant and β = σk

τk
. In particular, this requirement is satisfied by

the first part of the expression defining τk in APDA:

τk = min

 1

2
√
L2
k + (β/(1− c)) ‖A ‖2

, τk−1

√
1 + θk−1

 (5)

where c ∈ (0, 1). Intuitively, this rule demands that τk does not overstep a constant related to the
local curvature, thus allowing for larger stepsizes in flatter regions and correspondingly smaller ones
otherwise.

By itself, the first term of (5) does not ensure convergence, since overly-aggressive and possibly
destabilizing stepsizes might occur in near-linear regions. This issue is addressed by the second part
of the expression (5) which, informally, prevents the stepsize from increasing ‘too fast’ in consecutive
iterations. Specifically, the increase factor is at most

√
1 + θk−1, where θk = τk−1

τk−2
.

Under these two local stepsize conditions we are able to show APDA’s convergence using the weaker
assumption of local smoothness of f , thus conveniently removing the need of estimating a global
smoothness constant L.
Remark 4.1. While τk does not adapt to ‖A ‖, for many practical problems this fact is not a big
hindrance. Function f typically represents the data fidelity term, whose smoothness constant L
(should it exist) can far exceed ‖A ‖ – the linear operator enforcing structured regularization on x.
A specific example are TV-regularized imaging problems, where A is the discrete gradient operator
whose norm is bounded by

√
8 [Chambolle, 2004], while the data fidelity term may involve a very

large number of measurements and a larger norm, consequently.
Remark 4.2. APDA takes an additional primal step prior to the for-loop, which is controlled
by τinit given as input. This is needed for estimating L1 in the first iteration. In practice we set
τinit = 1e-9, a sufficiently small value to ensure that x1 does not depart too far from x0 and yield
a good estimate of L1. Furthermore, the setting of τ0 = ∞ simply ensures that in the first step,
τ1 = 1

2
√
L2

1+(β/(1−c))‖A ‖2
and has no impact on further steps. Finally, in our experiments we set

c = 1e-15 – this is a parameter introduced for theoretical purposes as explained in the following
section.

4.2 Analysis – the base case

In short, the main steps of our analysis are: first, we establish the inequality that characterizes the
dynamics of APDA given in Lemma 4.1 below. Based on it, we are able to prove the boundedness
of sequences {xk} and {yk} in Theorem 4.1. In turn, sequence boundedness alongside the local
smoothness property of f allows us to conclude that there exists a constant L > 0 such that f
is L-smooth on the compact set Conv({x∗, x0, x1, . . .}) – the closed convex hull generated by
{x∗, x0, x1, . . .}. Finally, we leverage this information to show that (xk, yk) converges to a saddle
point of (2) and derive the associated ergodic convergence rates presented in Theorem 4.1.
Lemma 4.1. Consider APDA along with Assumptions 3.1 and 3.2 and (x, y) ∈ X ×Y . Then, for all

k and ηk ∈
(
βτk‖A ‖

1−c , 1−2τkLk

2τk‖A ‖

)
,

‖xk+1 − x ‖2 +
1

β
‖ yk+1 − y ‖2 + (1− ηkτk ‖A ‖ − τkLk) ‖xk+1 − xk ‖2

+
ηk − τkβ ‖A ‖

βηk
‖ yk+1 − yk ‖2 + 2τk(1 + θk)Px,y(xk) + 2τkDx,y(yk+1)
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≤ ‖xk − x ‖2 +
1

β
‖ yk − y ‖2 + τkLk ‖xk − xk−1 ‖2 + 2τkθkPx,y(xk−1).

Moreover, it holds that:

1) τkLk < 1
2 < 1− ηkτk ‖A ‖ − τkLk,

2) 1
β −

τk‖A ‖
ηk

> c
β > 0.

Proof sketch. The full proof is deferred to the appendix. We use algebraic manipulations, APDA’s
update rules, the Cauchy-Schwarz and Young inequalities and properties of the prox operator to get
the recurrence:

‖xk+1 − x ‖2 +
1

β
‖ yk+1 − y ‖2 + (1− τk ‖A ‖ ηk − τkLk) ‖xk+1 − xk ‖2

+

(
1

β
− τk ‖A ‖

ηk

)
‖ yk+1 − yk ‖2 + 2τk(1 + θk)Px,y(xk) + 2τkDx,y(yk+1)

≤ ‖xk − x ‖2 +
1

β
‖ yk − y ‖2 + τkLk ‖xk − xk−1 ‖2 + 2τkθkPx,y(xk−1), (6)

where ηk > 0 is a free iteration-dependent constant involved in Young’s inequality.

In order to obtain anything worthwhile we would like to set ηk such that, when unrolling (6) over
the iterations, the terms containing ‖xk+1 − xk ‖2 and ‖ yk+1 − yk ‖2 accumulate on the LHS with
positive coefficients. More precisely, we ask that:{

1
β −

τk‖A ‖
ηk

> c
β ,

1− τk ‖A ‖ ηk − τkLk > 1
2 ,

(7)

where c ∈ (0, 1). We note that the RHS of the first inequality could have been chosen as 0, however,
we made it strictly positive due to technical reasons related to controlling the sequence ‖ yk+1 − yk ‖2.
In practice, we choose c to be as small as possible.

A similar remark holds for the second inequality, where it would have been sufficient to set its RHS
to τk+1Lk+1. Since this would considerably complicate the analysis, we make the observation that
τkLk <

1
2 , ∀k and use this simpler uniform upper-bound instead.

The inequalities (7) are equivalent to asking that ηk ∈
(
τkβ‖A ‖

1−c , 1−2τkLk

2τk‖A ‖

)
and what is left to show

is that this is a valid interval i.e., that the left endpoint is strictly smaller than its right counterpart.
This condition amounts to solving a quadratic inequality in τk, whose solutions lie in the interval(
0, 1

Lk+
√
L2

k+2(β/(1−c))‖A ‖2

)
. The proof is concluded by showing that our choice of τk indeed

satisfies this constraint.

We are now ready to state the main convergence result in Theorem 4.1 below, whose full proof is
given in the appendix.

Theorem 4.1. Consider APDA along with Assumptions 3.1 and 3.2, and let (x∗, y∗) ∈ X × Y be a
saddle point of problem (2). Then, for all k

1) Boundedness. The sequence {(xk, yk)} is bounded. Specifically, for all k,

‖xk − x∗ ‖2 + ‖ yk − y∗ ‖2 ≤M,

where M := ‖x1 − x∗ ‖2 + 1
β ‖ y1 − y∗ ‖2 + 1

2 ‖x1 − x0 ‖2 <∞.

2) Convergence to a saddle point. The sequence {(xk, yk)} converges to a saddle point of (2).
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3) Ergodic convergence. Let Sk :=

k∑
i=1

τi, Xk :=
1

Sk

(
τk(1 + θk)xk +

k−1∑
i=1

(τi(1 + θi)− τi+1θi+1)xi

)
and Yk :=

1

Sk

k∑
i=1

τiyi+1. Then, for any bounded

B1 ×B2 ∈ X × Y and for all k,

GB1×B2
(Xk, Yk) ≤

M(B1, B2)

√
L2 + (β/(1− c)) ‖A ‖2

k
,

where L is the Lipschitz constant of ∇f over the compact set Conv({x∗, x0, x1, . . .}) and
M(B1, B2) = sup(x,y)∈B1×B2

‖x1 − x ‖2 + 1
β ‖ y1 − x ‖2 + 1

2 ‖x1 − x0 ‖2.

The boundedness result of Theorem 4.1 point 1) implies that the closed set C =
Conv({x∗, x0, x1, . . .}) is also bounded and hence compact. The local smoothness assumption
on f then ensures that there exists L > 0 such that f is L-smooth over C. Note that such an L exists
for any x0, y0 since the boundedness result itself holds for any initial conditions (though the value of
such L cannot be generally known, as it is path-dependent). Using this fact, we can show a uniform

lower-bound on the primal stepsize: τk ≥
1

2

(
L2 + (β/(1− c)) ‖A ‖2

)−1/2

> 0, ∀k, which is
instrumental in deriving the subsequent convergence results, as well as Theorem 4.2. We emphasize
that the appearance of constant L in the provided rates is a consequence of iterate boundedness,
whose proof does not require its knowledge. Finally, we note that our rate is comparable to that of
CVA in terms of constants.

4.3 Analysis under the additional Assumption 3.3

We now study APDA under the additional assumption of locally strongly convex f and full row rank
A. Before proving the result of Theorem 4.2, a few remarks are in order. First, the boundedness
result of Theorem 4.1 point 1) also holds for constant c = 0, since this constant was required only for
proving convergence to a saddle point in point 2) of the theorem. Second, taking a smaller stepsize
than the originally defined τk will not change the validity of Lemma 4.1 or the boundedness result of
Theorem 4.1, as it remains within the required interval mentioned in section 4.1.

Consequently, for studying APDA under the additional Assumption 3.3 we can simplify the stepsize
expression by taking c = 0, because now we are able to show iterate convergence directly by using
the strong convexity and full row-rank assumptions. Specifically, we consider the stepsize:

τk = min

 1

2
√
4L2

k + β ‖A ‖2
, τk−1

√
1 + θk−1/2

 , (8)

which is smaller than the one originally considered and, due to the aforementioned remarks it ensures
that APDA produces a bounded sequence. It follows that, under the local smoothness and local strong
convexity assumptions, there exist constants L and µ such that f is L-smooth and µ-strongly convex
over Conv({x∗, x0, x1, . . .}).
The existence of these constants along with A being full row rank, in turn, allows us to derive a
strengthened version of the inequality in Lemma 4.1 for (x, y) = (x∗, y∗):

‖xk+1 − x∗ ‖2 +
(
1

β
+ q1

)
‖ yk+1 − y∗ ‖2 +

(
1

2
+ q2

)
‖xk − xk+1 ‖2 + q3 ‖ yk+1 − yk ‖2

+ 2τk(1 + θk)Px∗,y∗(xk) + 2τkDx∗,y∗(yk+1)

≤ (1− q4) ‖xk − x∗ ‖2 +
1

β
‖ yk − y∗ ‖2 +

(
1

2
− q5

)
‖xk − xk−1 ‖2 + 2τkθkPx∗,y∗(xk−1),

where q1, q2, q3, q4, q5 > 0 are constants given in the appendix. This new inequality represents in
fact a contraction, which guarantees the linear convergence rate stated in Theorem 4.2.
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Theorem 4.2. Consider APDA along with Assumptions 3.1, 3.2 and 3.3. Let (x∗, y∗) ∈ X × Y be a

saddle point of problem (2). Furthermore, let τk be defined by (8) and let s :=
√
4L2 + β ‖A ‖2

and t :=
√
4µ2 + β ‖A ‖2, where µ, L are the strong convexity and smoothness constants of f over

the compact set Conv({x∗, x0, x1, . . .}).

Then, for all k:

‖xk − x∗ ‖2 +
1

β
‖ yk − y∗ ‖2 ≤ (1−min {p, q, r})kM,

where the rate constants are given by:

p =
1

2
, q =

µ

4s
, r =

βσ2
min(A)µ

βσ2
min(A)µ+ 8s2t+ 4L2s

,

and M = ‖x2 − x∗ ‖2 +
(

1
β + T

)
‖ y2 − y∗ ‖2 + 1

2 ‖x2 − x1 ‖2 + 2τ1Px∗,y∗(x1), T =

σ2
min(A)µ

8s2t+ 4L2s
, with σmin(A) representing the smallest singular value of A.

A few remarks are in order: first, as a sanity check, we observe that when A = 0 we recover the
contraction factor of [Malitsky and Mishchenko, 2020] which is equal to q.

Second, we make some notes on how our rate compares with existing ones. To our knowledge, there
are no explicit results regarding the linear convergence of CVA under assumptions similar to ours
(linear rates are usually shown for the 3-component objective without assumptions on A — see e.g.,
[Chambolle and Pock, 2016a]). However, in the case of L-smooth and µ-strongly-convex f and full
row-rank A, Chen et al. [2013] show the linear convergence of PDFP2O with rate:

‖xk − x∗‖2 ≤
(
‖x1 − x0‖2 +

1

σmax(A)
‖y1 − y0‖2

)(
1−min

{
σ2

min(A)

σ2
max(A)

,
µ

L

})k−1

,

The rate presented in Theorem 4.2 has a comparatively worse contraction factor. The reason is that
our iteration is set up in the style of CVA, where we essentially have a single stepsize to compute
using the rephrasing from Section 4.1. Therefore, τk needs to obey the problem structure with respect
to both L and ‖A‖, resulting in the ‘mixed’ term appearing in the denominator.

Keeping the above in mind, the interested reader may find in the appendix that constants q and r
come from a product between τk and other condition number-related quantities, which is tightly liked
to the structure of the main inequality used in the paper. This makes the nice separation of condition
numbers achieved in PDFP2O’s rate not possible in our case and, it seems, the analysis necessary
to achieve this kind of adaptivity comes at the cost of worse constants (the same remark holds for
[Malitsky and Mishchenko, 2020]).

PDFP2O, on the other hand, achieves a clean bound by having a different iteration style than CVA,
as well as a fundamentally different kind of analysis where the iteration is expressed in fixed-point
form to show convergence. In this context the stability conditions on the stepsizes are also relaxed
— specifically, 0 < λ ≤ 1/σ2

max(A) and 0 < γ < 2L in [Chen et al., 2013]. A drawback of this
approach, however, is that the algorithm has no rate guarantees when f is only smooth and not
strongly convex and only asymptotic convergence is shown. Also, PDFP2O requires 3 matrix-vector
multiplications per iteration whereas we only require 2.

5 Experiments

We now present some numerical experiments conducted for APDA1. Additional problems and results
are included the appendix. The experiments were implemented in Python 3.9 and executed on a
MacBook Pro with 32 GB RAM and a 2,9 GHz 6-Core Intel Core i9 processor.

1See https://github.com/mvladarean/adaptive_pda.
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The baseline we compare against in this section as well as the appendix is CVA, for which we use
Algorithm 1 in [Chambolle and Pock, 2016a] (using g ≡ 0). In the particular case of sparse logistic
regression we also compare against FISTA [Beck and Teboulle, 2009]. For obtaining x∗ we ran one
of the algorithms for a large number of iterations.

5.1 Sparse binary logistic regression
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Figure 1: The first column shows algorithm convergence. The second column shows a comparison of
primal stepsizes between APDA and CVA. The third column shows a comparison of dual stepsizes
between APDA and CVA. Each subfigure represents a different dataset: (a) ijcnn; (b) mushrooms;
(c) a9a; (d)covtype.

We consider the problem of sparse binary Logistic Regression on 4 LIBSVM datasets [Chang and
Lin, 2011] and show that adaptivity provides faster convergence in 3 of these cases. The objective we

9



consider is:

min
x∈Rd

F (x) :=

m∑
i=1

log(1 + exp(−bi〈qi, x〉))︸ ︷︷ ︸
f

+λ ‖x ‖1︸ ︷︷ ︸
g

, (9)

where (qi, bi) ∈ Rd × {−1, 1} and λ is the regularization parameter. APDA and CVA can be applied
to this problem by setting A = I in formulation (2). Primal-dual algorithms are not the typical choice
for solving (9), which is usually addressed by methods such as Proximal Gradient or FISTA [Beck and
Teboulle, 2009]. However, we note that the computational costs of APDA and FISTA are comparable
since the matrix-vector multiplication cost of the former is removed due to a A = I .

We choose λ = 0.005
∥∥QT b∥∥∞, where QT =

[
qT1 , . . . q

T
m

]T
. For APDA we perform a parameter

sweep over β ∈ [1e-3, 1e6] for each dataset and settle for: β = 2.68e3 for ijcnn; β = 5.18e4
for a9a; β = 3.16e1 for mushrooms; β = 3.73e-1 for covtype.

For CVA we sweep p ∈ [1e-3, 1e6] and set τ = 1
‖A ‖/p+L and σ = 1

p‖A ‖ — by construction, these
stepsizes satisfy the validity condition and are as large as possible since the condition is satisfied
with equality. We do an additional tuning procedure where we choose constants τ ∈ [1e-10, 1e2]
and ξ ∈ [1e-5, 1e2] and set σ = τξ, which are subject to verifying the stepsize validity condition of
CVA. Finally we select the best stepsizes across the two tuning phases to be (truncated to 3 decimals):
τ = 9.869e-4, σ = 1.125e1 for ijcnn; τ = 2.655e-4, σ = 7.896e1 for a9a; τ = 9.936e-4,
σ = 5.878e0 for mushrooms; τ = 7.728e-06, σ = 1e-06 for covtype.

Note that the Hessian of f is given by ∇2f(x) = QTD(x)Q, where D(x) is a diagonal matrix such
thatDi,i(x) = σi(x)(1−σi(x)), where σi(x) = 1

1+exp(−bi〈qi,x〉) ∈ (0, 1). Clearly, over any compact
set in C ⊂ X there exist Dmin := mini,x∈C Di,i(x) ∈ (0, 1) such that DminQ

TQ � QTD(x)Q. As
a result, a sufficient condition for local strong convexity is that the minimum eigenvalue of QTQ be
greater than 0.

The convergence results along with stepsize comparison plots are presented in Figure 1. For dataset
ijcnn we run APDA with the modified τk used in Theorem 4.2, since λmin(Q

TQ) = 75.13 and A
has full rank. In the latter case, the legend identifier is APDA-strcnv. For the remaining datasets we
use only the basic setting for τk, as λmin(Q

TQ) ≤ 1e-13.

While APDA outperforms FISTA and CVA on ijcnn, a9a and mushrooms, it shows a relatively
poor performance on covtype. We hypothesize that this is related to the condition number of QTQ,
which is almost three orders of magnitude larger in the latter case: 9.2e22 versus 5.3e1, 2e20 and
2e17 for ijcnn, mushrooms and a9a, respectively. A similar behavior is seen in Figure 1.(c) of
[Malitsky and Mishchenko, 2020].

Finally, the adaptive property of APDA’s stepsizes is visible in the stepsize comparison plots where
they are shown to oscillate within at least one order of magnitude throughout the optimization process.

6 Limitations of APDA

The experiments presented in this paper (Section 5 and Appendix A) have the common trait of not
imposing hard constraints on the primal variables. As a consequence, we are able to take plain
gradient steps in the primal domain. However, for instances such as Poisson linear inverse problems
[Bertero et al., 2009], the iterates xk need to reside in Rn+ because the primal objective contains log
functions. APDA cannot handle such cases, as any constraints imposed on the primal variables will
only be satisfied asymptotically. We consider such scenarios as a future research direction.
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Appendix

A Additional experiments

A.1 Nonconvex phase retrieval
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Figure 2: (a) Convergence rate. (b) Primal stepsize comparison. (c) Primal stepsize comparison. (d)
APDA reconstruction, PSNR = 21.34, SSIM = 0.76. (e) CVA reconstruction, PSNR = 20.56, SSIM =
0.70.

In this section we provide the results for applying our algorithm, heuristically, on the nonconvex least
squares formulation of the phase retrieval (PR) problem. The phase-retrieval problem has attracted
intense interest recently, due to its application is domains such as optical imaging [Walther, 1963],
astronomy [Fienup and Dainty, 1987] and many others. Here, we consider the real counterpart of the
original complex PR formulation for square images, where given {(Ai, bi) ∈ Rn×n ×R} we want to
recover X ∈ Rn×n up to its sign, such that bi = Tr(ATi x)

2. To this end, we consider the following
optimization objective:

min
X∈Rn×n

F (X) :=
1

4m

m∑
i=1

(
bi − Tr(ATi X)2

)2
︸ ︷︷ ︸

f(X)

+λ‖DX‖2,1︸ ︷︷ ︸
g(X)≡‖·‖TV

. (10)

We note a few things: first, objective (10) is nonconvex with f being only locally smooth. Sec-
ondly, Sun et al. [2018] have recently shown that given m i.i.d Gaussian measurements, the global
geometry of F (X) is ‘benign’ for m > Cd log(d)3, where d is the problem dimension. By benign,
the authors specifically mean ‘(1) there are no spurious local minimizers, and all global minimizers
are equal to the target signal x up to a global phase; and (2) the objective function has a negative
directional curvature around each saddle point’. It is posed that in such cases iterative algorithms
should, with high probability, find the minimizer without requiring special initialization as is needed
for current state of the art solvers.

For our experiments we use 84× 84-sized images and choose a smaller number of measurements
than suggested above: m = d log(d) ≈ 27, 155. We generate m sparse matrices Ai ∈ Rn×n with
30% non-zero entries sampled i.i.d from the standard normal distribution, and corrupt a random
subset containing 10% of elements in bi by setting them to 0. We perform parameter sweep for
λ ∈ [1e-4, 1e4], β ∈ [1e-3, 1e4] and settle for λ = 1e2 and β = 2.78e2 . Without guidelines
for setting τ , σ for CVA since f is not L-smooth, we search for the best τ ∈ [1e-4, 1e4] and
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p ∈ [1e-2, 1e2] such that σ = 1
pτ‖A ‖ and settle for τ = 1e-4, p = 1.02. We note that CVA

diverged for 32/40 grid points, whereas our method converged for all instances. Finally, the initial
points x0 and y0 are sampled from the standard normal distribution.

The results are depicted in Figure 2, which contains the reconstructions and convergence plots. For
each reconstruction we report the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity
Index Measure (SSIM). We tested several random seeds and obtained similar results. We also tried
running CVA with the stepsize values used by APDA in its last iteration (notice how in Figure 2
(d) τk essentially stabilizes in a very narrow band just above 1e-3 after the first 250 iterations) —
however, CVA diverged in this setting as well.

A.2 Image inpainting
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Figure 3: (a) Original image downloaded from http://www.cs.tut.fi/~foi/GCF-BM3D/. (b)
APDA reconstruction, PSNR = 25.63, SSIM = 0.91. (c) CVA reconstruction, PSNR = 25.63, SSIM =
0.91. (d) Convergence rate. (e) Primal stepsize comparison. (f) Dual stepsize comparison.

Image inpainting consists in reconstructing the missing parts of a subsampled image b = PΩ(X
\),

where PΩ : Rm×n → Rm×n is an operator that selects a subset of q pixels from the original image
X\ ∈ Rm×n, where q � mn. This problem can be formulated as a regularized optimization
objective:

min
X∈Rm×n

F (X) :=
1

2
‖b− PΩ(X)‖22︸ ︷︷ ︸

f(X)

+λ‖DX‖2,1︸ ︷︷ ︸
g(X)≡‖·‖TV

, (11)

where D : Rm×n → Rm×n×2 represents the discrete gradient operator, and ‖DX‖2,1 =
m,n∑
i,j=1

√
(DX)2i,j,1 + (DX)2i,j,2. The regularization term represents the isotropic TV norm, which is

known to help in recovering sharp images by preserving discontinuities and reducing noise [Cham-
bolle et al., 2010, Condat, 2017].

For our experiments, we vectorize the images of size 256× 256 and transform D accordingly. We
represent PΩ as a matrix built by removing rows uniformly at random from I and which removes
60% of pixels from the original image (sampling ratio 0.4). We perform parameter sweep for
λ ∈ [1e-4, 1e], and settle for λ = 1e-2. We also sweep β ∈ [1e-5, 1e] and settle for β =
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1.291e-2. Finally, we perform a similar two-phase tuning for CVA as that described in Section 5
with p ∈ [1e-5, 1e3] for the first phase and τ ∈ [1e-5, 1e2], ξ ∈ [1e-5, 1e1] for the second phase.
We settle for stepsizes τ = 8.722e-1 and σ = 1.831e-2.

Experiment results are presented in Figure 3, where we show the reconstructions, alongside the
convergence plot and a comparison of the fixed stepsizes of CVA with those of APDA. The two
algorithms are comparable both in terms of reconstruction quality and convergence speed, with
APDA being marginally better for the latter criterion. The convergence plot also shows an instance of
CVA whose stepsizes were set to the values of those used by APDA in the final iteration of these
experiments. Finally, subfigures (e) and (f) show APDA’s stepsizes oscillating within close range of
CVA’s.

B Missing proofs

B.1 Proof of Lemma 4.1

Lemma 4.1. Consider APDA along with Assumptions 3.1 and 3.2 and (x, y) ∈ X ×Y . Then, for all

k and ηk ∈
(
βτk‖A ‖

1−c , 1−2τkLk

2τk‖A ‖

)
,

‖xk+1 − x ‖2 +
1

β
‖ yk+1 − y ‖2 + (1− ηkτk ‖A ‖ − τkLk) ‖xk+1 − xk ‖2

+
ηk − τkβ ‖A ‖

βηk
‖ yk+1 − yk ‖2 + 2τk(1 + θk)Px,y(xk) + 2τkDx,y(yk+1)

≤ ‖xk − x ‖2 +
1

β
‖ yk − y ‖2 + τkLk ‖xk − xk−1 ‖2 + 2τkθkPx,y(xk−1).

Moreover, it holds that:

1) τkLk < 1
2 < 1− ηkτk ‖A ‖ − τkLk,

2) 1
β −

τk‖A ‖
ηk

> c
β > 0.

Proof. Using the primal update rule, we have

‖xk+1 − x ‖2 = ‖xk − x ‖2 + ‖xk+1 − xk ‖2 − 2τk〈∇f(xk) +AT yk+1, xk − x〉. (12)

We address each term in the RHS separately. Using the convexity of f we bound the last term of
(12):

−2τk〈∇f(xk) +AT yk+1, xk − x〉 ≤ 2τk (f(x)− f(xk)) + 2τk〈A(x− xk), yk+1〉. (13)

For the second term of (12) we use an expansion similar to the analysis in [Malitsky and Mishchenko,
2020] along with the primal update rule:

‖xk+1 − xk ‖2 = 2 ‖xk+1 − xk ‖2 − ‖xk+1 − xk ‖2

= 2τk〈∇f(xk) +AT yk+1, xk − xk+1〉 − ‖xk+1 − xk ‖2

= 2τk〈∇f(xk)−∇f(xk−1), xk − xk+1〉+ 2τk〈AT yk+1 −AT yk, xk − xk+1〉
+ 2τk〈∇f(xk−1) +AT yk, xk − xk+1〉 − ‖xk+1 − xk ‖2 . (14)

Notice that the first term in (14) gives us the opportunity to insert a dependence on the local Lipschitz
constant Lk. Using Cauchy-Schwarz, the definition of Lk and Young’s inequality, we indeed take
this opportunity and get:

〈∇f(xk)−∇f(xk−1), xk − xk+1〉 ≤ Lk ‖xk − xk−1 ‖ ‖xk+1 − xk ‖

≤ Lk
2

(
‖xk − xk−1 ‖2 + ‖xk+1 − xk ‖2

)
. (15)
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Similarly, we bound the second term in (14) and obtain:

〈AT yk+1 −AT yk, xk − xk+1〉 ≤
‖A ‖ η

2
‖xk+1 − xk ‖2 +

‖A ‖
2η
‖ yk+1 − yk ‖2 , (16)

where η > 0 is a free parameter coming from Young’s inequality.

Finally, for the third term in (14) we use the update rule and the convexity of f :

〈∇f(xk−1) +AT yk, xk − xk+1〉 = 〈
1

τk−1
(xk−1 − xk), τk(∇f(xk) +AT yk+1)〉

≤ θk (f(xk−1)− f(xk)) + θk〈A(xk−1 − xk), yk+1〉. (17)

Replacing (15), (16) and (17) into (14), we get

‖xk+1 − xk ‖2 ≤ τkLk ‖xk − xk−1 ‖2 + (τk ‖A ‖ η + τkLk − 1) ‖xk+1 − xk ‖2

+
τk ‖A ‖

η
‖ yk+1 − yk ‖2 + 2τkθk (f(xk−1)− f(xk))

+ 2τkθk〈A(xk−1 − xk), yk+1〉. (18)

Finally, replacing (18) and (13) back into (12) and using the fact that θk〈A(xk−1 − xk), yk+1〉 +
〈A(x− xk), yk+1〉 = −〈A(x̃k − x), yk+1〉, we obtain the inequality for the primal iterate sequence:

‖xk+1 − x ‖2 ≤ ‖xk − x ‖2 + τkLk ‖xk − xk−1 ‖2 + (τk ‖A ‖ η + τkLk − 1) ‖xk+1 − xk ‖2

+
τk ‖A ‖

η
‖ yk+1 − yk ‖2 + 2τkθk (f(xk−1)− f(xk)) + 2τk (f(x)− f(xk))

− 2τk〈A(x̃k − x), yk+1〉. (19)

We now seek a similar result for the dual sequence. For this, we use the following characterization of
the proximal operator:

u = proxg∗(x) ⇐⇒ 〈u− x, z − u〉 ≥ g∗(u)− g∗(z) ∀z. (20)

Thus, letting u = yk+1, x = yk and z = y in (20), we obtain:

g∗(y) ≥ g∗(yk+1) + 〈
1

σk
(yk − yk+1), y − yk+1〉+ 〈Ax̃k, y − yk+1〉.

Using the cosine rule for the second term, the fact that σk = βτk and multiplying both sides by
2τk > 0, we obtain:

1

β
‖ yk+1 − y ‖2 ≤

1

β
‖ yk − y ‖2 −

1

β
‖ yk+1 − yk ‖2 + 2τk(g

∗(y)− g∗(yk+1))

+ 2τk〈Ax̃k, yk+1 − y〉. (21)

Summing (21) with (19) we obtain the following recurrence:

‖xk+1 − x ‖2 +
1

β
‖ yk+1 − y ‖2

≤ ‖xk − x ‖2 +
1

β
‖ yk − y ‖2 + τkLk ‖xk − xk−1 ‖2

+ (τk ‖A ‖ η + τkLk − 1) ‖xk+1 − xk ‖2 +
(
τk ‖A ‖

η
− 1

β

)
‖ yk+1 − yk ‖2

+ 2τk (θk (f(xk−1)− f(xk)) + f(x)− f(xk) + g∗(y)− g∗(yk+1)

+ 2τk〈Ax, yk+1〉 − 2τk〈Ax̃k, y〉. (22)

We further process the terms involving fand g∗ on the right-hand side in order to form the Px,y(·)
and Dx,y(·):

f(x)− f(xk) = −Px,y(xk) + 〈A(xk − x), y〉,
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θk(f(xk−1)− f(xk)) = θkPx,y(xk−1)− θkPx,y(xk) + 〈θkA(xk − xk−1), y〉,

g∗(y)− g∗(yk+1) = −Dx,y(yk+1)− 〈Ax, yk+1 − y〉.

Replacing the above expressions into (22) and noting that 〈A(x̃k − x), y〉 − 〈Ax, yk+1 − y〉 +
〈Ax, yk+1〉 − 〈Ax̃k, y〉 = 0, we obtain:

‖xk+1 − x ‖2 +
1

β
‖ yk+1 − y ‖2 + (1− τk ‖A ‖ η − τkLk) ‖xk+1 − xk ‖2

+

(
1

β
− τk ‖A ‖

η

)
‖ yk+1 − yk ‖2 + 2τk(1 + θk)Px,y(xk) + 2τkDx,y(yk+1)

≤ ‖xk − x ‖2 +
1

β
‖ yk − y ‖2 + τkLk ‖xk − xk−1 ‖2 + 2τkθkPx,y(xk−1). (23)

What is left to do for obtaining the stated result is to choose η, possibly depending on k, such that the
corresponding terms are positive. First, note that τkLk ‖xk − xk−1 ‖2 < 1

2 ‖xk − xk−1 ‖2 because
z 7→ z

2
√
z2+a

, a > 0 is an increasing function whose limit at∞ is 1
2 and we have:

τkLk ≤
Lk

2
√
L2
k + (β/(1− c)) ‖A ‖2

<
1

2
. (24)

Next we need to choose η = ηk (iteration-dependent) to satisfy:{
1
β −

τk‖A ‖
ηk

> 0,

1− τk ‖A ‖ ηk − τkLk > 1
2 .

However, for theoretical purposes related to controlling the sequence ‖ yk+1 − yk ‖2, we strengthen

the first inequality to
1

β
− τk ‖A ‖

ηk
>
c

β
, c ∈ (0, 1). In practice, this constant is chosen as small as

possible. The new conditions to be satisfied are:{
1
β −

τk‖A ‖
ηk

> c
β ,

1− τk ‖A ‖ ηk − τkLk > 1
2 ,

⇐⇒

ηk >
βτk‖A ‖

1−c ,

ηk <
1−2τkLk

2τk‖A ‖ .
(25)

The question we need to answer therefore is: given the expression of τk, is the interval always valid

for choosing ηk ∈
(
βτk ‖A ‖
1− c ,

1− 2τkLk
2τk ‖A ‖

)
?

To answer, we form the corresponding quadratic inequality in τk:

βτk ‖A ‖
1− c − 1− 2τkLk

2τk ‖A ‖
< 0 ⇐⇒ 2βτ2

k ‖A ‖
2

1− c + 2τkLk − 1 < 0, (26)

whose 2 real roots are given by:
τk,1 = 1

Lk−
√
L2

k+2(β/(1−c))‖A ‖2
< 0,

τk,2 = 1

Lk+
√
L2

k+2(β/(1−c))‖A ‖2
> 0.

For inequality (26) to be satisfied, we need:

τk ∈ (0, τk,2) =

0,
1

Lk +
√
L2
k + 2(β/(1− c)) ‖A ‖2

 , ∀k. (27)
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The lower bound for τk trivially holds, and for the upper bound we make the following observation:

Lk +

√
L2
k + 2(β/(1− c)) ‖A ‖2 =

2

[√
L2
k +

√
L2
k + 2(β/(1− c)) ‖A ‖2

]
2

Jensen
< 2

√
2L2

k + 2(β/(1− c)) ‖A ‖2
2

= 2

√
L2
k + (β/(1− c)) ‖A ‖2.

Here Jensen’s inequality holds strictly because function
√· is strictly concave and L2

k 6= L2
k +

2 ‖A ‖2 β. Thus, we obtain:

0 < τk ≤
1

2
√
L2
k + ‖A ‖

2
β
<

1

Lk +
√
L2
k + 2β ‖A ‖2

= τk,2 ∀k.

It follows that we can find an ηk ∈
(
βτk ‖A ‖
1− c ,

1− 2τkLk
2τk ‖A ‖

)
, ∀k, which implies that condi-

tions (25) can always be satisfied. This concludes the proof.

B.2 Proof of Theorem 4.1

Theorem 4.1. Consider APDA along with Assumptions 3.1 and 3.2, and let (x∗, y∗) ∈ X × Y be a
saddle point of problem (2). Then, for all k

1) Boundedness. The sequence {(xk, yk)} is bounded. Specifically, for all k,

‖xk − x∗ ‖2 + ‖ yk − y∗ ‖2 ≤M,

where M := ‖x1 − x∗ ‖2 + 1
β ‖ y1 − y∗ ‖2 + 1

2 ‖x1 − x0 ‖2 <∞.

2) Convergence to a saddle point. The sequence {(xk, yk)} converges to a saddle point of (2).

3) Ergodic convergence. Let Sk :=

k∑
i=1

τi, Xk :=
1

Sk

(
τk(1 + θk)xk +

k−1∑
i=1

(τi(1 + θi)− τi+1θi+1)xi

)
and Yk :=

1

Sk

k∑
i=1

τiyi+1. Then, for any bounded

B1 ×B2 ∈ X × Y and for all k,

GB1×B2
(Xk, Yk) ≤

M(B1, B2)

√
L2 + (β/(1− c)) ‖A ‖2

k
,

where L is the Lipschitz constant of ∇f over the compact set Conv({x∗, x0, x1, . . .}) and
M(B1, B2) = sup(x,y)∈B1×B2

‖x1 − x ‖2 + 1
β ‖ y1 − x ‖2 + 1

2 ‖x1 − x0 ‖2.

Proof. 1) Sequence boundedness. Using the inequality of Lemma (4.1) with (x, y) = (x∗, y∗) and
the fact that τkLk < 1

2 , ∀k, unrolling it over the iterations and rearranging the terms we obtain:

‖xk+1 − x∗ ‖2 +
1

β
‖ yk+1 − y∗ ‖2 + (1− ηkτk ‖A ‖ − τkLk) ‖xk+1 − xk ‖2

+

k−1∑
i=1

(
1

2
− ηiτi ‖A ‖ − τiLi

)
‖xi+1 − xi ‖2 +

c

β

k∑
i=1

‖ yi+1 − yi ‖2 + 2τk(1 + θk)Px∗,y∗(xk)

+ 2

k−1∑
i=2

(τi(1 + θi)− τi+1θi+1)Px∗,y∗(xi) + 2

k∑
i=1

τiDx∗,y∗(yi+1)
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≤ ‖x1 − x∗ ‖2 +
1

β
‖ y1 − y∗ ‖2 +

1

2
‖x1 − x0 ‖2 + 2τ1θ1Px∗,y∗(x0). (28)

All the terms on the left hand-side of (28) are non-negative:

1

β
− τk ‖A ‖

ηi
>
c

β
> 0, ∀i,

1

2
− ηiτi ‖A ‖ − τiLi > 0, ∀i,

τi+1θi+1 ≤ τi
√
1 + θi θi+1 ≤ τi(1 + θi),

Px∗,y∗(x) ≥ 0, Dx∗,y∗(y) ≥ 0 ∀x, y.

(by Lemma 4.1)

(by Lemma 4.1)

(by stepsize update rule)

(by the saddle point property)

Also, by our parameter setup we have that θ1 = 0. Consequently, it holds that:

‖xk+1 − x∗ ‖2 +
1

β
‖ yk+1 − y∗ ‖2 ≤M <∞ ∀k,

where M := ‖x1 − x∗ ‖2 + 1
β ‖ y1 − y∗ ‖2 + 1

2 ‖x1 − x0 ‖2, which implies that the sequence is
bounded.

We make the following remarks which will be useful for the remainder of the theorem’s proof:

• Boundedness of {xk} together with the local Lipschitz continuity of ∇f from Assump-
tion 3.1 implies that there exists L > 0 such that f is L-smooth over Conv({x∗, x0, x1, . . .}).
Furthermore, L ≥ Lk ∀k.

• A consequence of the prior point is that τk has a uniform and positive lower-bound. By the
definition of APDA it holds that:

τ1 =
1

2
√
L2

1 + (β/(1− c)) ‖A ‖2
≥ 1

2

√
L2 + (β/(1− c)) ‖A ‖2

and, from the definition of τk it is straightforward to see that at every iteration we either
explicitly increase τk relative to τk−1 or otherwise set it to an expression dictated by the
local smoothness constant Lk. Thus it holds that:

τk ≥
1

2

√
L2 + (β/(1− c)) ‖A ‖2

, ∀k. (29)

• Furthermore, the existence of L guarantees that τkLk can have a tighter upper bound than
the 1/2 shown before, as follows:

τkLk ≤
Lk

2
√
L2
k + (β/(1− c)) ‖A ‖2

≤ L

2

√
L2 + (β/(1− c)) ‖A ‖2

, . (30)

where we used the fact that z 7→ z
2
√
z2+a

, a > 0 is an increasing function.

• Finally, due to the point above, we can uniformly lower bound the coefficients of terms
‖xk+1 − xk ‖2 on the LHS of (28), and thus obtain:

1

2

1− L√
L2 + (β/(1− c)) ‖A ‖2

 k−1∑
i=1

‖xi − xi+1 ‖2 +
c

β

k∑
i=1

‖ yi+1 − yi ‖2 ≤M,

which conveniently ensures that: lim
k→∞

‖xk − xk−1 ‖2 = 0,

lim
k→∞

‖ yk − yk−1 ‖2 = 0.
(31)
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2) Convergence to a saddle point. Let (x̂, ŷ) be an arbitrary cluster point of the sequence {(xk, yk)}.
Since we have shown that the sequence is bounded, then there must exist a subsequence {(xki , yki)},
such that limi→∞(xki , yki) = (x̂, ŷ). We wish to prove that (x̂, ŷ) is a saddle point of (2).

More precisely, we wish to prove that Px̂,ŷ(x) ≥ 0 and Dx̂,ŷ(y) ≥ 0 for ∀x, y, respectively. For
convenience, we remind the reader the definitions of these two quantities:

Px̂,ŷ(x) = f(x)− f(x̂) + 〈A(x− x̂), ŷ〉,
Dx̂,ŷ(y) = g∗(y)− g∗(ŷ)− 〈Ax̂, y − ŷ〉.

We start with Px̂,ŷ(x):

Px̂,ŷ(x) = f(x)− f(x̂) + 〈A(x− x̂), ŷ〉
= lim
i→∞

f(x)− f(xki) + 〈A(x− xki), yki〉 (Continuity of f )

≥ lim
i→∞
〈∇f(xki) +A∗yki+1, x− xki〉+ 〈A∗(yki − yki+1), x− xki〉 (Convexity of f )

= lim
i→∞
〈xki+1 − xki

τki
, x− xki〉+ 〈A∗(yki − yki+1), x− xki〉 (Primal update rule)

= 0. (By (29), (31))

Showing the analogous result forDx̂,ŷ(y) relies on similar arguments, with the additional requirement
that θk is uniformly upper bounded. From the update rule of τk we have:

θk =
τk
τk−1

≤
√
1 + θk−1 =⇒ θk ≤

√
1 + . . .+

√
1 + θ2 ≤

√
1 + . . .+

√
1 + 1︸ ︷︷ ︸

k−2 times

≤ 2, (32)

where the second to last inequality comes from the way APDA’s first two iterations are set up.

Therefore, we have that ∀y ∈ Y:

Dx̂,ŷ(y) = g∗(y)− g∗(ŷ)− 〈Ax̂, y − ŷ〉
≥ g∗(y)− lim inf

i→∞
g∗(yki)− 〈A lim inf

i→∞
xki , y − lim inf

i→∞
yki〉 (l.s.c. of g∗)

= lim sup
i→∞

g∗(y)− g∗(yki)− 〈Axki , y − yki〉

≥ lim sup
i→∞

〈yki−1 − yki
σki−1

, y − yki〉+ 〈A(x̃ki−1 − xki), y − yki〉 (Poperty (20))

= lim sup
i→∞

〈yki−1 − yki
βτki−1

, y − yki〉+ 〈A [xki−1 − xki + θki−1(xki−1 − xki−2)] , y − yki〉

= 0. (By (29), (31), (32))

3) Gap rate. Unrolling the inequality of Lemma 4.1 for some (x, y) ∈ B1 ×B2, we obtain:

‖xk+1 − x ‖2 +
1

β
‖ yk+1 − x ‖2 + (1− ηkτk ‖A ‖ − τkLk) ‖xk+1 − xk ‖2

+

k−1∑
i=1

(
1

2
− ηiτi ‖A ‖ − τiLi

)
‖xi+1 − xi ‖2 +

c

β

k∑
i=1

‖ yi+1 − yi ‖2 + 2τk(1 + θk)Px,y(xk)

+ 2

k−1∑
i=2

(τi(1 + θi)− τi+1θi+1)Px,y(xi) + 2

k∑
i=1

τiDx,y(yi+1)

≤ ‖x1 − x ‖2 +
1

β
‖ y1 − y ‖2 +

1

2
‖x1 − x0 ‖2 . (33)

First, note that due to θ1 = 0, the following holds:

τk(1 + θk) +

k−1∑
i=1

(τi(1 + θi)− τi+1θi+1) =

k∑
i=1

τi =: Sk.
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Second, since all the terms on the LHS of (33) except those involving Px,y(·) and Dx,y(·) are
non-negative and, for fixed (x, y) ∈ X × Y the functions Px,y(·) and Dx,y(·) are convex, we have:

2Sk (Px,y(Xk) +Dx,y(Yk))

≤ 2τk(1 + θk)Px,y(xk) + 2

k−1∑
i=2

(τi(1 + θi)− τi+1θi+1)Px,y(xi) + 2

k∑
i=1

τiDx,y(yi+1)

≤ ‖x1 − x ‖2 +
1

β
‖ y1 − y ‖2 +

1

2
‖x1 − x0 ‖2 . (34)

Lastly, since τk ≥ 1

2
√
L2+(β/(1−c))‖A ‖2

, ∀k, we have that Sk ≥ k

2
√
L2+(β/(1−c))‖A ‖2

and the rate

for the restricted gap is:

GB1×B2
(Xk, Yk)

= sup
(x,y)∈B1×B2

Px,y(Xk) +Dx,y(Yk)

≤ sup
(x,y)∈B1×B2

(
‖x1 − x ‖2 + 1

β ‖ y1 − y ‖2 + 1
2 ‖x1 − x0 ‖2

)√
L2 + (β/(1− c)) ‖A ‖2

k

=
M(B1, B2)

√
L2 + (β/(1− c)) ‖A ‖2

k
,

which concludes the proof of the theorem.

B.3 Proof of Theorem 4.2

Before proving the result of Theorem 4.2, a few remarks are in order. First, the boundedness result of
Theorem 4.1 point 1) also holds for constant c = 0, since this constant was required only for proving
convergence to a saddle point in point 2) of the theorem. Second, taking a stepsize smaller than
the originally considered τk will not change the validity of Lemma 4.1 or the boundedness result of
Theorem 4.1, as it remains within the interval given in (27).

Consequently, for studying APDA under the additional Assumption 3.3 we can simplify the stepsize
expression by taking c = 0, since now we will prove convergence of the iterates directly by using
the strong convexity and full row-rank assumptions. Specifically, we consider τk as defined in (8),
which is smaller than the one originally considered and, due to the above remarks it ensures that
APDA produces a bounded sequence. It follows that, under the local smoothness and local strong
convexity assumptions, there exist constant L and µ such that f is L-smooth and µ-strongly convex
over Conv({x∗, x0, x1, . . .}). This observation suffices to show linear convergence in Theorem 4.2.

Theorem 4.2. Consider APDA along with Assumptions 3.1, 3.2 and 3.3. Let (x∗, y∗) ∈ X × Y be a

saddle point of problem (2). Furthermore, let τk be defined by (8) and let s :=
√
4L2 + β ‖A ‖2

and t :=
√
4µ2 + β ‖A ‖2, where µ, L are the strong convexity and smoothness constants of f over

the compact set Conv({x∗, x0, x1, . . .}).

Then, for all k:

‖xk − x∗ ‖2 +
1

β
‖ yk − y∗ ‖2 ≤ (1−min {p, q, r})kM,

where the rate constants are given by:

p =
1

2
, q =

µ

4s
, r =

βσ2
min(A)µ

βσ2
min(A)µ+ 8s2t+ 4L2s

,
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and M = ‖x2 − x∗ ‖2 +
(

1
β + T

)
‖ y2 − y∗ ‖2 + 1

2 ‖x2 − x1 ‖2 + 2τ1Px∗,y∗(x1), T =

σ2
min(A)µ

8s2t+ 4L2s
, with σmin(A) representing the smallest singular value of A.

Proof. The outline of the proof is first arriving at a strengthened version of the inequality in
Lemma 4.1, and then showing that the inequality expresses a contraction.

Since this new stepsize still ensures the boundedness result of Theorem 4.1, there exist µ and L such
that f is µ-strongly convex and L-Lipschitz smooth over the compact set Conv({x∗, x0, x1, . . .}).
From these properties it follows that, for all k:

2τk〈∇f(xk), x∗ − xk〉 ≤ 2τk (f(x
∗)− f(xk))− µτk ‖xk − x∗ ‖2 ,

2τk〈∇f(xk), x∗ − xk〉 ≤ 2τk (f(x
∗)− f(xk))−

τk
L
‖∇f(xk)−∇f(x∗) ‖2 .

Summing these two inequalities and dividing by 2, we obtain a stronger version of equation (13):

−2τk〈∇f(xk) +AT yk+1, xk − x∗〉 ≤ 2τk (f(x
∗)− f(xk))−

τkµ

2
‖xk − x∗ ‖2

− τk
2L
‖∇f(xk)−∇f(x∗) ‖2 + 2τk〈A(x∗ − xk), yk+1〉. (35)

We further bound the term ‖∇f(xk)−∇f(x∗) ‖2 in (40):

‖∇f(x∗)−∇f(xk) ‖2 =

∥∥∥∥AT (yk+1 − y∗)−
xk − xk+1

τk

∥∥∥∥2

(36)

≥
∥∥AT (yk+1 − y∗)

∥∥2
+

1

τ2
k

‖xk+1 − xk ‖2

− 2

τk

∥∥AT (yk+1 − y∗)
∥∥ ‖xk+1 − xk ‖ (37)

≥
∥∥AT (yk+1 − y∗)

∥∥2
+

1

τ2
k

‖xk+1 − xk ‖2

−
(

1

ξ + 1

∥∥AT (yk+1 − y∗)
∥∥2

+
ξ + 1

τ2
k

‖xk+1 − xk ‖2
)

(38)

≥ ξσ2
min(A)

ξ + 1
‖ yk+1 − y∗ ‖2 −

ξ

τ2
k

‖xk+1 − xk ‖2 , (39)

where line (36) comes from the primal iterate update rule and the optimality condition (4); line (37)
comes from developing the square and applying Cauchy-Schwarz; line (38) comes from applying
Young’s inequality with constant 1 + ξ, where ξ > 0; line (39) comes from the assumption of A
having full-row rank, which implies that

∥∥AT (yk+1 − y∗)
∥∥2 ≥ σ2

min(A) ‖ yk+1 − y∗ ‖2.

Finally, setting ξ = 2τ2
kLkL we obtain that:

−2τk〈∇f(xk) +AT yk+1, xk − x∗〉 ≤ 2τk (f(x
∗)− f(xk))−

τkµ

2
‖xk − x∗ ‖2

− τ3
kLkσ

2
min(A)

1 + 2τ2
kLkL

‖ yk+1 − y∗ ‖2 + τkLk ‖xk+1 − xk ‖2

+ 2τk〈A(x∗ − xk), yk+1〉. (40)

Replacing inequality (13) with inequality (40) in the proof of Lemma 4.1 and keeping everything
else identical, we obtain the a strengthened version of Lemma’s 4.1 result:

‖xk+1 − x∗ ‖2 +
(
1

β
+
τ3
kLkσ

2
min(A)

1 + 2τ2
kLkL

)
‖ yk+1 − y∗ ‖2 +

(
1− ηkτk ‖A ‖ − 2τkLk

)

‖xk+1 − xk ‖2 +
ηk − τkβ ‖A ‖

βηk
‖ yk+1 − yk ‖2 + 2τk(1 + θk)Px∗,y∗(xk) + 2τkDx∗,y∗(yk+1)
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≤
(
1− µτk

2

)
‖xk − x∗ ‖2 +

1

β
‖ yk − y∗ ‖2 + τkLk ‖xk − xk−1 ‖2 + 2τkθkPx∗,y∗(xk−1). (41)

In order to show that this is in fact a contraction, we note a few properties of the terms in (41):

a) It holds that 1− ηkτk ‖A ‖ − 2τkLk > 1/2 and ηk−τkβ‖A ‖
βηk

> 0 since:1− ηkτk ‖A ‖ − 2τkLk > 1/2

ηk−τkβ‖A ‖
βηk

> 0
⇐⇒

{
ηk <

1
2τk‖A ‖ −

2Lk

‖A ‖

ηk > τkβ ‖A ‖

⇐⇒ 2β ‖A ‖2 τ2
k + 4Lkτk − 1 < 0,

which holds for any τk ∈

0,
1

2Lk +
√
4L2

k + 2β ‖A ‖2

. Our choice of τk belongs to

this interval, and therefore ensures the stated properties;

b) It holds that τkLk < 1/4, by the same observation as that in (24) but with a different limit
constant given by the new stepsize;

c) It holds that τkθk ≤ τk−1

√
1 + θk−1/2 θk ≤ τk−1(1 + θk−1/2), by the definitions of τk

and θk;

d) It holds that:
1

2

√
4L2 + β ‖A ‖2

≤ τk ≤
1

2

√
4µ2 + β ‖A ‖2

, (42)

by the existence of µ and L over Conv({x∗, x0, x1, . . .}) and a similar argument to that
in (29), plus the fact that under strong convexity ‖∇f(x)−∇f(y) ‖ ≥ µ ‖x− y ‖;

e) It holds that:
µ

2

√
4µ2 + β ‖A ‖2

≤ τkLk ≤
L

2

√
4L2 + β ‖A ‖2

, (43)

by a similar argument to that in (30).

Using properties a), b), c) in the list above and ignoring the positive terms on the LHS that do not
have a correspondent on the RHS of (41), the main inequality becomes:

‖xk+1 − x∗ ‖2 +
(
1

β
+ T

)
‖ yk+1 − y∗ ‖2 +

1

2
‖xk+1 − xk ‖2 + 2τk(1 + θk)Px∗,y∗(xk)

≤
(
1− µτk

2

)
‖xk − x∗ ‖2 +

1

β
‖ yk − y∗ ‖2 +

1

2

(
1− 1

2

)
‖xk − xk−1 ‖2

+ 2τk−1(1 + θk−1/2)Px∗,y∗(xk−1), (44)

where T is given by:

T :=
σ2

min(A)µ

8s2t+ 4L2s

=
σ2

min(A)µ

8(4L2 + β ‖A ‖2)
√

4µ2 + β ‖A ‖2 + 4L2

√
4L2 + β ‖A ‖2

≤ τ3
kLkσ

2
min(A)

1 + 2τ2
kLkL

, (by d) and e) above)

where we used the definitions of s =

√
4L2 + β ‖A ‖2 and t =

√
4µ2 + β ‖A ‖2 to simplify

notations.

We thus have the following contractions in (44):
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• For 1
2 ‖xk+1 − xk ‖2 it is: 1− 1

2︸︷︷︸
=:p

;

• For
(

1
β + T

)
‖ yk+1 − y∗ ‖2 it is:

1 +
1

1 + Tβ
= 1− Tβ

1 + Tβ

= 1− βσ2
min(A)µ

σ2
min(A)µ+ 8s2t+ 4L2s︸ ︷︷ ︸

=:r

• For ‖xk+1 − x∗ ‖2 it is:

1− µτk
2
≤ 1− µ

4s︸︷︷︸
=:q

• For 2τk(1 + θk)Px∗,y∗(xk) it is:

1 + θk−1/2

1 + θk−1
= 1− θk−1

2(1 + θk−1)

≤ 1− t

s
(By def. of θk−1 and property 5.)

Note that for the latter two contractions above, it always holds that µ/(4s) < t/s so in the final
bound we can ignore the latter. Finally, denoting the LHS of inequality (44) as Ek+1, we have that:

Ek+1 ≤ (1−min {p, q, r})k+1
M.

where M = E2 and we used the fact that θ1 = 0.
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