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Abstract
3D novelty detection plays a crucial role in various real-world ap-
plications, especially in safety-critical fields such as autonomous
driving and intelligent surveillance systems. However, existing 3D
novelty detection methods are constrained by the scarcity of 3D
data, which may impede the model’s ability to learn adequate rep-
resentations, thereby impacting detection accuracy. To address this
challenge, we propose a Unified Learning Framework (UniL) for
facilitating novelty detection. During the pretraining phase, UniL
assists the point cloud encoder in learning information from other
modalities, aligning visual, textual, and 3D features within the same
feature space. Additionally, we introduce a novel Multimodal Super-
vised Contrastive Loss (MSC Loss) to improve the model’s ability to
cluster samples from the same category in feature space by leverag-
ing label information during pretraining. Furthermore, we propose
a straightforward yet powerful scoring method, Depth Map Error
(DME), which assesses the discrepancy between projected depth
maps before and after point cloud reconstruction during novelty
detection. Extensive experiments conducted on 3DOS have demon-
strated the effectiveness of our approach, significantly enhancing
the performance of the unsupervised VAE method in 3D novelty de-
tection. Codes are avaliable at https://github.com/EugeneWon9/UniL.

CCS Concepts
• Computing methodologies → 3D imaging; Anomaly detec-
tion.
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1 Introduction
Novelty detection, also known as "novel class detection"[33, 34],
primarily focuses on identifying semantic shifts. It aims to detect
any test samples that do not fall into any training category, as
the term "novel" generally refers to the unknown, new, and some-
thing interesting[63]. Distributional shifts compared to the training
data can significantly impact model performance, posing poten-
tial threats or risks. For instance, in safety-critical applications
such as autonomous driving systems[25, 65], the model’s ability
to detect and reject unknown samples becomes crucial, as it must
return control to the driver. In the realm of 2D analysis, the field
of novelty detection has reached a relatively advanced stage. How-
ever, within the 3D domain, despite significant advancements in
visual understanding[13, 16, 22, 26, 30, 31, 57], novelty detection
remains nascent and has received little attention from researchers.
Antonio et al.[3] present the first benchmark for 3D Open Set learn-
ing (3DOS), which includes various tasks of increasing difficulties
regarding semantic shifts and encompasses both in-domain and
cross-domain scenarios. Building on this foundation, the authors
of 3DOS conducted an extensive survey of methods for out-of-
distribution (OOD) detection and Open Set recognition across 2D
and 3D domains, evaluating them on the proposed benchmark.

However, we observed a significant limitation in those meth-
ods: the scarcity of available 3D data. Compared to 2D data, ac-
quiring and annotating 3D data is typically more expensive and
time-consuming, resulting in a limited availability of annotated
datasets. This limitation can lead to inadequately trained models
that may struggle to represent all possible scenarios and variations.
Moreover, the increased complexity of feature extraction from 3D
data may cause suboptimal representation, thus further impacting
the model’s performance in novelty detection.

To address this challenge, we opted to integrate information from
other modalities of point cloud data, transferring knowledge from
pre-trained multimodal models. Among the methods evaluated on
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Figure 1: The visualization of UniL. To address the issue of
insufficient data in 3D novelty detection tasks, UniL adopts a
pretraining approach to allow the 3D encoder to learn more
information. By aligning point cloud, depth map, and text
features simultaneously, the 3D encoder can achieve better
performance in subsequent novelty detection task.

3DOS[3], only VAE[35] is unsupervised, making it our chosen base-
line. Specifically, our approach consists of three phases: pretraining
the 3D encoder, training the VAE, and performing novelty detection.
These phases are illustrated in Fig. 1, which outlines the workflow
of our approach. Firstly, to tackle the challenge of limited 3D data,
we incorporate information from both text and image domains,
constructing a Unified Learning Framework that facilitates the 3D
encoder in assimilating knowledge from these modalities, called
UniL. To further enhance the alignment accuracy in the feature
space, we designed the Multimodal Supervised Contrastive Loss
(MSC Loss), which fully utilizes the label information of point cloud
data. This enables the 3D encoder to focus more on the similarity
among samples from the same category, forming tighter clusters
in the feature space. Secondly, during the VAE training phase, we
employ the pre-trained encoder and utilize its encoded features to
fit the mean and variance. After reparameterization sampling, the
features are input into the decoder to reconstruct the input point
cloud. Finally, to uncover underlying novel patterns, we integrate
information from the 2D domain and introduce the Depth Map
Error (DME). The computation of DME involves projecting the
reconstructed point cloud onto a depth map and calculating the
error between it and the original depth map. By comparing the
depth maps before and after reconstruction, we can quantify the
quality of the point cloud reconstruction and extract potential novel
patterns. This approach not only compensates for the shortcomings
of limited 3D data but also fully utilizes the correlations between
different modalities, thereby improves the robustness and accuracy
of novelty detection. After thorough evaluation on the benchmark
introduced in 3DOS[3], the effectiveness of our approach has been
demonstrated. Specifically, our method achieved top-1 performance
on SN1 (hard), with a notable improvement of 2.0% in AUROC and
a reduction of 5.5% in FPR95. On SR1 (easy), we observed a reduc-
tion in FPR95 of 0.9%, while on SR1 (hard), we achieved a notable
improvement in AUROC of 1.9%.

Our main contributions are summarized as follows:

• To address the issue of insufficient 3D data, we constructed a
Unified Learning Framework (UniL) to assist the 3D encoder
in learning knowledge from other modalities.

• We proposed Multimodal Supervised Contrastive Loss (MSC
Loss), which utilizes label information to further enhance the
alignment accuracy of features across different modalities.

• In order to incorporate information from different modali-
ties for novelty detection, we introduced Depth Map Error
(DME), a simple yet efficient approach that detects potential
novelties by evaluating the projection error of depth maps
both before and after point cloud reconstruction.

2 Related Work
2.1 3D Point Cloud Learning
There are mainly two streams for learning from point cloud. One
is projecting point clouds into voxels[36, 49] or images[24, 66] and
then using 2D/3D convolutions for feature extraction, given the
irregular and unordered nature of point cloud structures. The other
one is directly processing point cloud data, with PointNet[41] being
the first neural network to adopt this method. It can effectively
learn and extract features from unordered point sets, which signifi-
cantly influences point-based 3D networks. DGCNN[59] proposed
a dynamic graph structure for performing convolution operations
on unordered point sets. PointMLP[32] is a simple feed-forward
residual MLP network that hierarchically aggregates the local fea-
tures extracted by MLPs while eliminating the need for intricate
local geometric extractors.

Moreover, recent work has adopted self-supervised pretrain-
ing methods for 3D understanding. Point-BERT[67] encodes point
cloud data into text sequences and applies self-attention mechanism
to learn the semantic relationships and representations between
points. Point-MAE[39] directly processes the point cloud by mask-
ing out 3D patches and then predicting them back using L2 loss.
PointGPT[7] applies the principles of GPT[44] to the generation of
point cloud data, acquiring robust 3D representations through pre-
training on autoregressive generation tasks. While these methods
have shown effectiveness, their full potential remains unrealized
due to the limited availability of 3D data.

2.2 Multimodal Pre-Training
Multimodal pretraining aims to learn universal representations by
simultaneously processing multiple types of data, such as images,
text, speech, etc. This paradigm helps models understand the se-
mantic correlations between different modalities, thereby achieving
better performance in various downstream tasks.

CLIP[43] trains the model by contrastive learning between im-
ages and text, allowing natural language to understand visual con-
cepts. As the first successful multimodal learning model, CLIP holds
significant importance in advancing research on multimodal learn-
ing and understanding the semantic relationships between images
and text. Inspired by CLIP-based adaption methods[12, 28, 68],
PointCLIP V2[69] and CLIP2Point[18] convert point clouds into 2D
forms through projection and rendering, and then apply the pow-
erful generalization capability of CLIP to zero-shot classification.
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Figure 2: The framework of our method. During the pretraining phase (Top) of the 3D encoder using the Unified Learning
Framework (UniL), depth maps of point clouds and textual information are input into the frozen CLIP. The Multimodal
Supervised Contrastive Loss (MSC Loss) utilizes the label information of point clouds to enhance the compactness of 3D
representations from the same category in the feature space. Subsequently, in the VAE training phase (Bottom Left), the
pretrained 3D encoder is loaded and fine-tuned. Finally, Depth Map Error (DME) is employed during novelty detection (Bottom
Right) to compare depth maps of point clouds before and after reconstruction, enabling the identification of hidden novel
patterns.

ULIP[61] aims to directly adapt the paradigm of CLIP to learn a
unified representation space for point clouds, language, and images.

Drawing inspiration from ULIP, we aimed to incorporate the
information of point cloud in other modalities, enhancing the rep-
resentation capabilities of the 3D encoder. Unlike ULIP, which ne-
glects the semantic similarity of point cloud data in the language
modality, we introduce theMultimodal Supervised Contrastive Loss
(MSC Loss) to refine feature alignment accuracy.

2.3 Novelty Detection
Currently, novelty detection methods primarily focus on density-
based, classification-based, distance-based, and reconstruction-based
approaches. Among these, density-based methods[1, 9, 23, 40, 48,

70] identify novel samples by measuring the density around the
data points, since novel samples typically reside in sparse regions.
Classification methods[45, 47, 52, 58] attempt to assign test samples
to predefined categories, while samples that cannot be classified
can be considered as novel samples. As novelties are assumed to be
distant from the training data, distance-based methods[37, 51, 53]
assess novelty by computing the distance between a test sample
and the training samples. In reconstruction-based methods[4, 8,
21, 38, 54, 62], the model’s ability to reconstruct known patterns
is leveraged to detect data points that significantly differ from the
training data. However, these methods are primarily designed for
traditional 2D data, and therefore perform poorly when transferred
to the 3D domain.
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[35] marks the pioneering attempt to address anomaly detection
in 3D point clouds of general objects, introduces an framework
built upon a variational autoencoder.Following the work of [35],
[2] proposed a novel unsupervised approach for detecting novelty
in 3D point cloud, utilizing a general feature extractor for point
clouds and a one-class classifier.

Considering that these methods rely solely on 3D data for detec-
tion, we propose the Depth Map Error (DME) to assess the novelty
of point clouds in the 2D domain.

3 Method
In this section, we will provide a detailed exposition of our method.
Firstly, we pretrain the 3D encoder within the UniL framework,
enhancing feature alignment accuracy through MSC Loss. Follow-
ing this, we load the pretrained 3D encoder and train the VAE to
reconstruct input point cloud samples. Lastly, during the novelty
detection phase, we introduce additional 2D visual information and
employ DME to measure the disparity between the projected depth
maps of point clouds before and after reconstruction. The overall
framework is illustrated in Fig. 2.

3.1 Pre-training with UniL
Limited data may impose constraints on the model’s ability to learn
meaningful and accurate feature representations, thereby impact-
ing its performance and generalization capability. To address this
issue, we adopt a multimodal pretraining approach. UniL leverages
rich information from data in various modalities and transfers it to
3D encoder by aligning multimodal features within a unified fea-
ture space, enhances the encoder’s learning capacity and improves
feature representation.

3.1.1 Data Preparation. To obtain a unified semantic space inte-
grating point clouds, vision, and language, we followed ULIP and
created a dataset consisting of point clouds, images, and textual
descriptions. For each CAD model indexed as 𝑖 , we constructed
a triplet sample 𝑇𝑖 consisting of a point cloud 𝑃𝑖 , a depth map
collection {𝐷𝑖𝑣}

𝑁
𝑣=1, and a text description set 𝑆𝑖 . After uniformly

sampling 𝑁 points from the original point cloud of CAD model,
we applied standard point cloud data augmentation techniques,
including random point drop, scaling, shifting, and rotation.

Next, we choose the Realistic Projection proposed in [69] instead
of the rendering to obtain depth maps of point clouds, as depth
maps can more accurately reflect the geometric shapes and spatial
structures of objects. Specifically, 3D voxel grid 𝐺 ∈ R𝐻×𝑊 ×𝐷 is
assigned different depth values to represent the depth information
of the point cloud 𝑃𝑖 = (𝑥,𝑦, 𝑧) by utilizing:

𝐺 (⌈𝑠𝐻𝑥⌉, ⌈𝑠𝑊𝑦⌉, ⌈𝐷𝑧⌉) = 𝑧, (1)

where𝐻 ,𝑊 , 𝐷 denote the spatial resolutions of G and 𝑠 ∈ (0, 1] is a
scale factor. Following this, local minimum pooling operations are
applied to densify the grid, and the depth values are reassigned to
occupy previously sparse voxels. Next, a non-parametric Gaussian
kernel is employed for the purposes of smoothing and filtering,
compressing the depth dimension to produce the final projected
depth map.We project each point cloud fromN different viewpoints
to generate a collection of depth maps denoted as {𝐷𝑖𝑣}

𝑁
𝑣=1 for point

cloud 𝑝𝑖 .

Finally, following ULIP’s work, we utilize the category name of
each point cloud during pretraining, using 63 prompts such as "an
image of [category]" and an additional prompt "a point cloud model
of [category]" to accommodate the 3D modality. At the pretraining
stage, a set of textual descriptions 𝑆𝑖 is generated by applying 64
templates to the category name of each point cloud.

3.1.2 Feature Extraction. In pretraining, acquiring high-quality
representations from other modalities is crucial, as it necessitates
aligning the features of the 3D modality with these representations
to gain knowledge from othermodalities.We choose CLIP[43] as the
teacher for our 3D encoder and freeze the parameters of its visual
and textual encoders. By leveraging CLIP’s reliable representations,
we bridge the gap between the limited availability of 3D data and
the rich multimodal knowledge encapsulated in CLIP.

For the visual modality, we input each depthmap of {𝐷𝑖𝑣} into the
visual encoder 𝐸𝑖 (·) of CLIP, and obtain the depth feature collection
for sample i as follows:

{𝐹 𝑖𝑣}
𝑁

𝑣=1 = 𝐸𝑖 ({𝐷𝑖𝑣}
𝑁

𝑣=1). (2)

Drawing from the insights of [18], we furthur employ the proposed
Adapter to dynamically fuse the depth feature set {𝐹 𝑖𝑣}

𝑁
𝑣=1 across

multiple views. Subsequently, the image-domain feature 𝑓 𝐼
𝑖
for

sample 𝑖 can be obtained via the following formulation:

𝑓 𝐼𝑖 = 𝑓2 (𝑅𝑒𝐿𝑈 (𝑓1 (
𝑁∑︁
𝑣=1

𝛼𝑣 · 𝐹 𝑖𝑣))), (3)

where 𝑓1 and 𝑓2 represent two-layer MLP networks, and 𝛼𝑣 denotes
the dynamic fusion coefficients for the 𝑣-th view.

For the linguistic modality, we employ CLIP’s text encoder 𝐸𝑖 (·)
to process the descriptions 𝑆𝑖 , generating a set of text representa-
tions. Following this, we employ average pooling on the resulting
set, yielding the text-domain feature representation 𝑓 𝑇

𝑖
for each

sample 𝑖 , expressed as:

𝑓 𝑇𝑖 = 𝐴𝑉𝐺 (𝐸𝑡 (𝑆𝑖 )), (4)

where the 𝐴𝑉𝐺 (·) denotes the average pooling operation.
Within the VAE framework, the decoder receives features that

have been re-parameterized. Recognizing that aligning features
across different training paradigms may lead to unstable training
and potential information loss, we choose to directly utilize the
global features obtained from the encoder. To convert the encoded
3D feature into a multimodal embedding space, we incorporate a
projection network after the 3D encoder 𝐸𝑝 (·). This allows us to
formulate the final 3D features 𝑓 𝑃

𝑖
as follows:

𝑓 𝑃𝑖 = 𝑃𝑟𝑜 𝑗 (𝐸𝑝 (𝑃𝑖 )), (5)

where 𝑃𝑖 is the augmented point cloud, and 𝑃𝑟𝑜 𝑗 (·) is a single-layer
MLP.

3.1.3 Multimodal RepresentationAlignment. The objective of
pretraining is training the 3D point cloud encoder 𝐸𝑝 (·) to align the
3D features of sample 𝑖 with its image and text features. Thus, ULIP
investigates the feasibility of transferring 2D contrastive learning
to 3D domain by adopting a contrastive loss similar to CLIP to
achieve alignment between 3D and image features:

L𝑃2𝐼 = − 1
2
(
∑︁
𝑖

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑓 𝑃

𝑖
𝑓 𝐼
𝑖
/𝜏 )∑

𝑗 𝑒𝑥𝑝 (𝑓 𝑃𝑖 𝑓 𝐼𝑗 /𝜏 )
+
∑︁
𝑖

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑓 𝑃

𝑖
𝑓 𝐼
𝑖
/𝜏 )∑

𝑗 𝑒𝑥𝑝 (𝑓 𝑃𝑗 𝑓 𝐼𝑖 /𝜏 )
), (6)
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where 𝑖 and 𝑗 are indices of samples, and 𝜏 is a learnable tem-
perature parameter. Similarly, the alignment between 3D and text
features is formulated as:

L𝑃2𝑇 = − 1
2
(
∑︁
𝑖

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑓 𝑃

𝑖
𝑓 𝑇
𝑖
/𝜏 )∑

𝑗 𝑒𝑥𝑝 (𝑓 𝑃𝑖 𝑓 𝑇𝑗 /𝜏 )
+
∑︁
𝑖

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑓 𝑃

𝑖
𝑓 𝑇
𝑖
/𝜏 )∑

𝑗 𝑒𝑥𝑝 (𝑓 𝑃𝑗 𝑓 𝑇𝑖 /𝜏 )
) . (7)

Although the contrastive loss used in ULIP is relatively effective
in aligning feature representations from different modalities, sim-
ply maximizing the logits on the main diagonal of the similar-
ity matrix between 3D and text is not sufficiently accurate. This
is because point clouds from the same category share identical
prompts, and these prompts, after being encoded by the frozen
CLIP, yield identical textual features. Hence, inspired by the su-
pervised contrastive learning[19], we propose a novel Multimodal
Supervised Contrastive Loss (MSC Loss), which modifies the origi-
nal self-supervised 3D-to-text loss to:

L𝑠𝑢𝑝

𝑃2𝑇 = − 1
2
(∑︁

𝑖

∑︁
𝑗

1𝑦𝑖=𝑦 𝑗
· log

exp(𝑓 𝑃
𝑖
𝑓 𝑇
𝑗
/𝜏 )∑

𝑘 exp(𝑓 𝑃
𝑖
𝑓 𝑇
𝑘
/𝜏 )

+

∑︁
𝑗

∑︁
𝑖

1𝑦 𝑗=𝑦𝑖
· log

exp(𝑓 𝑃
𝑖
𝑓 𝑇
𝑗
/𝜏 )∑

𝑘 exp(𝑓 𝑃
𝑘
𝑓 𝑇
𝑗
/𝜏 )

) (8)

where 𝑖 , 𝑗 , 𝑘 are indices of the samples, 𝑦 represents the label infor-
mation of the samples, and 𝜏 is a learnable temperature parameter.
This loss function indicates that 3D features belonging to the same
class are brought closer together in the embedding space, while
simultaneously pushing apart 3D features from different classes.
Therefore, the ultimate training objective is to train the 3D encoder
𝐸𝑝 (·), minimizing the MSC Loss:

L𝑀𝑆𝐶 = L𝑃2𝐼 + L𝑠𝑢𝑝
𝑃2𝑇 . (9)

Through Multimodal Supervised Contrastive learning, the 3D en-
coder can acquire more discriminative feature representations, lead-
ing to samples from same category being closer while scattering
those of different categories further apart.

3.2 Training VAE
During the training of the VAE, known categories of point clouds
are provided as inputs. By minimizing the disparity between the
original data and the reconstructed data, the VAE can discern pat-
terns and structures in normal data. Consequently, when confronted
with unseen samples, their reconstruction error tends to be notably
higher compared to that of normal samples.

3.2.1 Point Cloud Reconstruction. Following the setup of [3],
we first randomly sample 𝑁 points from the original point cloud,
and then apply 3D data augmentation techniques such as random
rotation, jitter, translation, and scaling. Prior to training, we load
the pretrained point cloud encoder aforementioned and fine-tune
it during the subsequent training process. Each sample 𝑃𝑖 is then
passed through the point cloud encoder 𝐸𝑝 , yielding the global
feature 𝑓

𝑔𝑙𝑜𝑏𝑎𝑙

𝑖
of the point cloud, from which we estimate the

mean 𝜇𝑖 and variance 𝜎𝑖 as follows:

𝑓
𝑔𝑙𝑜𝑏𝑎𝑙

𝑖
= 𝐸𝑝 (𝑝𝑖 ), (10)

𝜇𝑖 = 𝑓1 (𝑓 𝑔𝑙𝑜𝑏𝑎𝑙𝑖
), (11)

𝜎𝑖 = 𝑓2 (𝑓 𝑔𝑙𝑜𝑏𝑎𝑙𝑖
), (12)

where 𝑓1 and 𝑓2 are single-layer FC layers. Next, we sample from
the distribution N(𝜇𝑖 , 𝜎𝑖2) to obtain the reparameterized feature
𝑍𝑖 :

𝑍𝑖 = 𝜇𝑖 + 𝜀 · 𝜎𝑖 , (13)

where 𝜀 is sampled from N(0, 1). Finally, 𝑍𝑖 is fed into the decoder
𝐷𝑝 inspired by [64], to obtain the reconstructed point cloud 𝑝𝑖 :

𝑝𝑖 = 𝐷𝑝 (𝑍𝑖 ) . (14)

3.2.2 Training Objective. Existing literature has introduced two
permutation-invariant metrics for comparing unordered point sets:
Chamfer Distance and Earth Mover’s Distance[11, 46]. Following
the setup of [35], we utilize CD to compute the reconstruction error
𝐿𝑟𝑒𝑐 for point cloud sample 𝑃𝑖 . This choice is motivated by the
faster convergence and lower computational cost of CD compared
to EMD. 𝐿𝑟𝑒𝑐 is calculated as follows:

𝐿𝑟𝑒𝑐 =
∑︁
𝑖

(
∑︁
𝑥∈𝑃𝑖

min
𝑥∈𝑃𝑖

| |𝑥 − 𝑥 | |2 +
∑︁
𝑥∈𝑃𝑖

min
𝑥∈𝑃𝑖

| |𝑥 − 𝑥 | |2) (15)

Following the traditional VAE[20] approach, the KL divergence is
utilized as the fitting loss to minimize the discrepancy between
the Gaussian distribution N(0, 1) and N(𝜇, 𝜎2) derived from the
original point cloud 𝑃𝑖 . The KL divergence is defined as:

𝐷𝐾𝐿 𝑜𝑟𝑖 = 𝐷𝐾𝐿 (N (𝜇, 𝜎2) | |N (0, 1)) . (16)

Additionally, [35] employ a second KL divergence to measure the
difference between the Gaussian distribution N(0, 1) and N(𝜇, �̂�2)
obtained by inputting the reconstructed point cloud 𝑃𝑖 into the
network:

𝐷𝐾𝐿 𝑟𝑒𝑐 = 𝐷𝐾𝐿 (N (𝜇, �̂�2) | |N (0, 1)). (17)

Therefore, the overall training objective is defined as:

L = 𝐿𝑟𝑒𝑐 + 𝐷𝐾𝐿 𝑜𝑟𝑖 + 𝐷𝐾𝐿 𝑟𝑒𝑐 . (18)

3.3 Novelty Detection
To assess whether a sample is novelty, [35] adapt the reconstruction
error calculated using Chamfer Distance as its anomaly score. How-
ever, VAE is a versatile generative model that samples from a latent
space to generate data. Since the latent space is continuous, even if
the input data is unseen, the model might find similar points in the
latent space and decode them to generate reconstructions similar to
the input data, resulting in a relatively small reconstruction error.

To tackle this challenge, we introduce the Depth Map Error
(DME) as a score to incorporate information from other modalities
of the point cloud. DME quantifies the disparity in depth maps
between the original and reconstructed point clouds. This approach
aims to mitigate the aforementioned challenge, providing a more
effective measure to capture novelties. Therefore, the score used
for novelty detection can be formalized as:

𝑆𝑐𝑜𝑟𝑒 = 𝑤 ·𝐶𝐷 (𝑃𝑖 , 𝑃𝑖 ) + (1 −𝑤) · 𝐷𝑀𝐸 ({𝐷𝑖𝑣}𝑁𝑣=1, {�̂�
𝑖
𝑣}𝑁𝑣=1), (19)

where𝐷𝑀𝐸 (·) represents the function computing themean squared
error between pixels of two depth maps, and𝑤 is the scoring coef-
ficient.
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Table 1: Results on the Synthetic Benchmark track. Each column title indicates the chosen known class set, the other two
sets serve as unknown. "DGC" refers to the backbone network DGCNN[59], while "PN2" denotes the backbone network
PointNet++[42].

Synthetic Benchmark

Method
SN1(hard) SN2(med) SN3(easy) Avg

Method
SN1(hard) SN2(med) SN3(easy) Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
DGC+MSP[14] 74.0 83.9 88.6 62.4 92.9 43.2 85.2 63.2 PN2+MSP[14] 74.3 82.8 80.0 78.1 89.7 52.2 81.3 71.0
DGC+MLS[56] 75.1 77.7 91.1 42.6 92.4 35.2 86.2 51.8 PN2+MLS[56] 72.0 80.8 83.9 64.1 89.8 40.5 81.9 61.8
DGC+ODIN[27] 75.4 76.5 91.1 42.9 92.5 34.4 86.3 51.3 PN2+ODIN[27] 74.2 79.4 79.4 71.7 87.8 41.8 80.5 64.3
DGC+Energy[29] 75.2 77.0 91.2 41.6 92.3 36.4 86.2 51.7 PN2+Energy[29] 72.1 81.2 84.0 64.7 89.8 39.4 82.0 61.8
DGC+GradNorm[17] 66.2 88.1 80.9 64.0 71.6 77.7 72.9 76.6 PN2+GradNorm[17] 72.1 81.8 57.7 88.9 57.8 79.0 62.6 83.3
DGC+ReAct[50] 76.4 74.6 92.5 37.9 96.4 19.3 88.4 43.9 PN2+ReAct[50] 73.7 79.4 89.6 52.1 95.0 27.2 86.1 52.9
DGC+OE+mixup[15] 73.7 78.9 90.4 44.7 91.4 46.0 85.2 56.5 PN2+OE+mixup[15] 72.7 78.9 80.3 68.8 87.3 62.2 80.1 69.9
DGC+ARPL+CS[6] 72.9 84.2 90.7 47.1 89.5 89.5 84.4 73.6 PN2+ARPL+CS[6] 74.8 80.3 80.7 72.4 85.4 50.8 80.3 67.8
DGC+Cosine Proto 84.3 59.1 88.8 39.7 86.4 48.0 86.5 48.9 PN2+Cosine Proto 80.3 68.3 88.7 60.8 91.9 38.0 86.9 55.7
DGC+CE(L2) 80.4 75.5 90.1 40.9 96.7 14.4 89.1 43.6 PN2+CE(L2) 83.4 66.8 89.5 37.7 92.9 28.1 88.6 44.2
DGC+SupCon[19] 80.3 75.7 84.6 73.6 87.9 44.3 84.3 64.5 PN2+SupCon[19] 80.9 75.5 83.5 68.2 85.1 45.1 83.2 62.9
DGC+SubArcFace[10] 81.2 73.4 91.9 44.0 94.9 26.5 89.3 48.0 PN2+SubArcFace[10] 79.0 81.2 82.9 60.3 89.1 32.8 83.7 58.1
DGC+NF 82.0 74.8 86.1 53.8 97.4 11.5 88.5 46.7 PN2+NF 81.5 72.5 71.1 78.0 91.0 49.6 81.2 66.7
VAE[35] 67.2 76.9 69.5 83.4 94.3 32.4 77.0 64.2 VAE(Ours) 86.3 53.6 80.9 77.4 96.5 20.6 87.9 50.5

Table 2: Results on the Synthetic to Real Benchmark track. Each column title indicates the chosen known class set, the other
two sets serve as unknown. "DGC" refers to the backbone network DGCNN[59], while "PN2" denotes the backbone network
PointNet++[42].

Synth to Real Benchmark

method
SR1(easy) SR2(hard) Avg

method
SR1(easy) SR2(hard) Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
DGC+MSP[14] 72.2 91.0 61.2 90.3 66.7 90.6 PN2+MSP[14] 81.0 79.6 70.3 86.7 75.6 83.2
DGC+MLS[56] 69.0 92.2 62.4 88.9 65.7 90.5 PN2+MLS[56] 82.1 76.6 67.6 86.8 74.8 81.7
DGC+ODIN[27] 69.0 92.2 62.4 89.0 65.7 90.6 PN2+ODIN[27] 81.7 77.3 70.2 84.4 76.0 80.8
DGC+Energy[29] 68.8 92.7 62.4 88.9 65.6 90.8 PN2+Energy[29] 81.9 77.5 67.7 87.3 74.8 82.4
DGC+GradNorm[17] 67.0 93.5 59.8 89.4 63.4 91.5 PN2+GradNorm[17] 77.6 80.1 68.4 86.3 73.0 83.2
DGC+ReAct[50] 68.4 92.1 62.8 88.8 65.6 90.5 PN2+ReAct[50] 81.7 75.6 67.6 87.2 74.6 81.4
DGC+OE+mixup[15] 71.1 89.6 59.5 92.0 65.3 90.8 PN2+OE+mixup[15] 71.2 89.7 60.3 93.5 65.7 91.6
DGC+ARPL+CS[6] 71.5 90.2 62.8 89.5 67.1 89.8 PN2+ARPL+CS[6] 82.8 74.9 68.0 89.3 75.4 82.1
DGC+Cosine Proto 58.6 90.6 57.3 91.3 57.9 91.0 PN2+Cosine Proto 79.9 74.5 76.5 77.8 78.2 76.1
DGC+CE(L2) 67.5 87.4 64.6 91.0 66.1 89.2 PN2+CE(L2) 79.7 84.5 75.7 80.2 77.7 82.3
DGC+SubArcFace[10] 74.5 86.7 68.7 86.6 71.6 86.7 PN2+SubArcFace[10] 78.7 84.3 75.1 83.4 76.9 83.8
DGC+NF 72.5 81.6 70.2 83.0 71.3 82.3 PN2+NF 78.0 84.4 74.7 84.2 76.4 84.3
VAE[35] 68.6 77.0 57.9 92.3 63.3 84.6 VAE(Ours) 72.2 73.6 62.6 92.1 67.4 82.9

Table 3: Results on the Real to Real Benchmark track. Each column title indicates the chosen unknown class set, the other
two sets serve as known. "DGC" refers to the backbone network DGCNN[59], while "PN2" denotes the backbone network
PointNet++[42].

Real to Real Benchmark

Method
SR3(easy) SR2(med) SR1(hard) Avg

Method
SR3(easy) SR2(med) SR1(hard) Avg

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
DGC+MSP[14] 83.0 69.4 72.0 88.7 57.5 90.3 70.8 82.8 PN2+MSP[14] 88.1 67.3 80.6 84.0 73.7 80.3 80.8 77.2
DGC+MLS[56] 84.9 58.2 79.0 81.0 54.0 92.8 72.6 77.3 PN2+MLS[56] 89.4 53.8 83.4 73.1 76.4 75.3 83.0 67.4
DGC+ODIN[27] 84.9 58.2 79.0 80.9 54.0 92.8 72.6 77.3 PN2+ODIN[27] 90.2 47.9 83.3 71.7 76.3 76.8 83.3 65.5
DGC+Energy[29] 84.8 59.7 79.1 81.4 53.8 93.2 72.6 78.1 PN2+Energy[29] 89.5 50.6 81.6 75.8 76.6 75.5 82.6 67.3
DGC+GradNorm[17] 77.5 73.3 73.3 87.4 51.0 92.9 67.2 84.5 PN2+GradNorm[17] 88.5 50.7 77.4 75.3 75.2 76.8 80.4 67.6
DGC+ReAct[50] 87.6 54.0 79.0 78.6 58.9 93.1 75.1 75.3 PN2+ReAct[50] 90.3 48.9 82.4 75.8 75.4 77.6 82.7 67.4
DGC+OE+mixup[15] 76.8 77.8 74.9 87.2 57.6 89.9 69.8 85.0 PN2+OE+mixup[15] 72.6 83.5 72.0 88.5 62.5 87.8 69.0 86.6
DGC+Cosine Proto 90.0 43.7 78.5 75.3 65.5 85.7 78.0 68.2 PN2+Cosine Proto 91.0 41.0 82.1 78.2 77.6 75.6 83.6 64.9
DGC+CE(L2) 83.1 59.3 74.5 77.2 67.1 86.8 74.9 74.4 PN2+CE(L2) 85.1 64.4 78.9 83.9 73.2 79.1 79.1 75.8
DGC+SubArcFace[10] 86.7 58.5 78.4 76.1 65.0 84.0 76.7 72.9 PN2+SubArcFace[10] 87.1 61.3 78.9 76.9 73.7 81.4 79.9 73.2
DGC+NF 76.9 77.3 71.7 82.7 61.8 86.2 70.2 82.1 PN2+NF 88.0 47.7 80.6 68.2 75.6 81.4 81.4 65.8
VAE[35] 56.4 88.8 55.8 90.6 52.3 99.1 54.8 92.8 VAE(Ours) 90.1 63.8 72.2 78.1 79.5 97.4 80.6 79.8

4 Experiment
To illustrate the advantages of utilizing the pretrained 3D encoder
through UniL, we conducted experiments on 3DOS. First, we outline
the experimental settings, including datasets and implementation
details. Following this, we present the quantitative results of 3D
novelty detection on three benchmarks. Finally, we conduct an
analysis and demonstration of the proposed components, validating
their effectiveness.

4.1 Datasets
We use the following dataset employed for building the benchmark
proposed in 3DOS[3]:

ShapeNetCore [5] contains of 51,127 CAD models from 55 com-
mon object categories. In 3DOS, ShapeNetCore v2 is used with the
official training (70%), validation (10%), and testing (20%) splits. All
point clouds are uniformly sampled from mesh surfaces, normal-
ized to fit within a unit cube centered at the origin and consistently
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aligned. In the benchmark setting, similar semantic categories, like
cellphone and telephone, are merged to obtain 54 classes.

ModelNet40 [60] comprises 12,311 CAD models from 40 cate-
gories. 3DOS adopts the dataset partitioning of [42], which consists
of 9,843 training samples and 2,468 testing samples. Each point
cloud is uniformly sampled from the surfaces of synthetic CAD
models and scaled to fit within a unit cube centered at the origin.

ScanObjectNN [55] is a dataset of scanned 3D objects from the
real world, unlike ShapeNetCore and ModelNet40, consists of 2,902
samples from 15 categories. These samples can be divided into two
categories based on the presence of background: OBJ_ONLY and
OBJ_BG. In 3DOS, the original OBJ_BG split is considered, wherein
3D scans are impacted by acquisition artifacts. These samples are
already in the form of point clouds, with each containing 2048
points, representing both foreground and background objects along
with other interacting elements.

4.2 Implementation Details
4.2.1 Pre-training with UniL. We uniformly sample 2048 points
from each sample and generate projected depth maps and textual
descriptions. CLIP is utilized to acquire multimodal embedding,
while both the image and text encoder in our experiment remain
frozen, akin to ULIP. During pretraining, only the parameters in
the 3D encoder and projection network are trainable. We train Unil
for 150 epochs with a batch size of 64 and a learning rate of 1e-4.
The optimizer used is AdamW, with a weight decay of 0.1.

4.2.2 Training VAE. During VAE training, we used publicly avail-
able code provided by [35], a practice also adopted by 3DOS[3].
Specifically, we randomly sampled 2048 points from each point
cloud and applied data augmentation techniques including scaling,
translation transformations, and random rotation around the up-
axis. The Adam optimizer was employed with a weight decay of
1e-6, and the learning rate was set to 1e-3. Training was conducted
with a batch size of 100 for 300 epochs.

In the Synthetic Benchmark, due to the relatively abundant data
of ShapeNetCore, we fine-tuned the entire 3D encoder. However,
in the Synth to Real Benchmark, where the source domain data
distribution differs from that of the target domain, updating the
encoder was found to lead to catastrophic forgetting. Hence, we
opted to freeze the entire encoder. For the Real to Real Benchmark,
due to the limited data of ScanObjectNN and to prevent overfitting,
we froze the low-level semantic layers of the encoder and only
updated the high-level semantic layers.

4.3 Novelty Detection
4.3.1 Benchmarks. 3DOS assesses the capability to detect un-
known samples in test data using the AUROC and FPR95 metrics.
It includes three benchmarks: the Synthetic Benchmark is designed
for scenarios involving only semantic shift; the more challenging
Synth to Real Benchmark encompasses both semantic and domain
shift, using train and test samples from synthetic data (ModelNet40)
and real-world data (ScanObjectNN) respectively; the Real to Real
Benchmark presents an intermediate scenario involving semantic
shift between training and test data, accompanied by noisy samples
from ScanObjectNN in both sets. Considering tasks with varying
difficulty levels, the merged ShapeNetCore is divided into three

Table 4: The ablation study of MSC Loss and DME on Syn-
thetic Benchmark.

ULIP Loss MSC Loss DME SN1(hard) SN2(med) SN3(easy) Avg
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

✗ ✗ ✗ 67.2 76.9 69.5 83.4 94.3 32.4 77.0 64.2
✓ ✗ ✗ 70.8 77.6 73.6 81.5 95.1 23.1 79.8 60.7
✗ ✓ ✗ 68.7 76.1 76.4 76.3 96.3 15.3 80.5 55.9
✓ ✗ ✓ 86.6 52.2 78.5 84.8 95.8 22.4 87.0 53.1
✗ ✓ ✓ 86.3 53.6 80.9 77.4 96.5 20.6 87.9 50.5

Table 5: The ablation study of MSC Loss and DME on Synth
to Real Benchmark.

ULIP Loss MSC Loss DME SR1(easy) SR2(hard) Avg
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

✗ ✗ ✗ 68.6 77.0 57.9 92.3 63.3 84.6
✓ ✗ ✗ 66.2 83.4 59.4 92.7 62.8 88.1
✗ ✓ ✗ 68.1 77.9 61.5 92.1 64.8 85.0
✓ ✗ ✓ 66.6 82.6 60.8 92.5 63.7 87.6
✗ ✓ ✓ 72.2 73.6 62.6 92.1 67.4 82.9

Table 6: The ablation study of MSC Loss and DME on Real to
Real Benchmark.

ULIP Loss MSC Loss DME SR3(easy) SR2(med) SR1(hard) Avg
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

✗ ✗ ✗ 56.4 88.8 55.8 90.6 52.3 99.1 54.8 92.8
✓ ✗ ✗ 56.4 89.8 56.8 89.9 51.9 98.3 55.0 92.7
✗ ✓ ✗ 58.1 88.7 58.2 89.9 55.9 99.8 57.4 92.8
✓ ✗ ✓ 77.8 79.8 70.2 83.1 71.0 98.3 73.0 87.1
✗ ✓ ✓ 90.1 63.8 72.2 78.1 79.5 97.4 80.6 79.8

sets: SN1, SN2, and SN3. The ten categories of ModelNet40 corre-
sponding to ScanObjectNN are divided into SR1 and SR2, while the
remaining five categories in ScanObjectNN form SR3.

4.3.2 Experiment Results. When conducting novelty detection
across the three benchmarks, we set the scoring coefficients w to
0.35, 0.3, and 0.15 respectively. Tab. 1 presents the results of the
Synthetic benchmark, where our approach outperforms all other
methods on SN1(hard), achieving top-1 performance. In detail, our
approach demonstrates a 2.0% increase in AUROC and a reduction
of 5.5% in FPR95 compared to DGCNN + cosine proto. In SN2(med)
and SN3(easy), although not reaching the top-1, our method enables
the only unsupervised method VAE to show competitive results.
The results of our method on the Synth to Real benchmark are pro-
vided in Tab. 2. Due to the domain shift, performance degradation
was observed in all methods. However, despite this challenge, we
managed to further reduce FPR95 by 0.9% on SR1 (easy). In the
Real to Real benchmark, the authors of 3DOS did not evaluate VAE.
Hence, we supplemented this result and included our method in
Tab. 3 for comprehensive comparison. Notably, our method achieves
a 1.9% increase in AUROC on SR1 (hard) compared to the previous
state-of-the-art method PointNet++ + cosine proto. These perfor-
mance improvements are attributed to the rich information brought
by pretraining as well as the capability of DME to uncover hidden
novel patterns. Regarding other tasks, our method fell short of
achieving the SOTA. This is because VAE[35] is the only method
trained without the use of labels, unlike other methods evaluated
in 3DOS[3]. Despite utilizing label information during pretraining,
aligning multimodal features alone did not provide the 3D encoder
with discriminative power comparable to methods trained through
classification. Although our method did not achieve the state-of-
the-art in every task, it significantly improved the performance of
the original VAE across all tasks.
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Figure 3: The T-SNE visualization of ULIP Loss and MSC Loss. As illustrated, the MSC Loss enables samples from the same
category to form denser clusters in the feature space.

Original Point Cloud

Reconstructed Point Cloud

Figure 4: The comparison of novel point cloud sample before and after reconstruction. Despite the chamfer distance indicating
that it is a normal sample, the difference between its depth maps reveals its novel nature.

4.4 Ablation Study
In order to investigate the exact contributions of MSC Loss on
the pretraining phase and DME on novelty detection, independent
ablation studies of the two modules are conducted in our approach.
With the aim of evaluating model performance in novelty detection,
AUROC and FPR95 metrics are utilized as quantitative evaluation
criteria across three benchmarks. The comparison results across
the three benchmarks are respectively illustrated in Tab. 4, Tab. 5,
and Tab. 6.

4.4.1 ULIP Loss vs. MSC Loss. First, we conducted an ablation
study to explore the impact of using different loss functions during
pretraining. Our findings suggest that performing coarse-grained
feature alignment during the pretraining stage can enhance the
model’s performance in subsequent novelty detection tasks. How-
ever, with the incorporation of MSC Loss, the model exhibited fur-
ther improvements across different tasks on the three benchmarks,
achieving average increases of 0.7%, 2.0%, and 2.4% in AUROC,
respectively. This is attributed to MSC Loss leveraging label infor-
mation to more effectively cluster data of the same category in
the feature space, thereby enhancing the discriminative capability
of the 3D encoder. As illustrated in Fig. 3, this approach enables
data from the same category to acquire more similar features, thus
facilitating the formation of denser clusters.

4.4.2 non-DME vs. DME. After demonstrating the effectiveness
of MSC Loss, we show the role of DME. By applying DME in the
novelty detection task, the performance across different tasks on
the three benchmarks significantly improved based on models pre-
trained with MSC Loss. On average, the AUROC increased by 7.4%,
2.6%, and a remarkable 23.2%, respectively. DME utilizes the infor-
mation provided by the depth maps of projected point clouds to
effectively identify unseen samples with smaller reconstruction er-
rors. As illustrated in Fig. 4, despite the reconstructed point clouds
having smaller Chamfer Distance, their depth maps exhibit notice-
able disparities. Through this simple yet effective metric, we can
uncover latent novel samples and detect them, thereby significantly
improving the performance of novelty detection.

5 Conclusion
In this paper, we introduce UniL, a multimodal pretraining frame-
work tailored for 3D novelty detection. During pretraining, we
propose the MSC Loss to better assist the 3D encoder in feature
representation by leveraging label information. In the novelty detec-
tion phase, we utilize DME to measure the disparity between depth
maps projected before and after reconstruction of point clouds, thus
further enhancing the performance of unsupervised VAE. Through
extensive experiments on the benchmark proposed in 3DOS[3], we
validate the efficacy of our approach in 3D novelty detection tasks
and provide valuable insights for future research.
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