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A MATHEMATICAL NOTATIONS

Notation Meaning
X ∈ X Input example
Y ∈ Y The ground-truth label
f The soft classifier
C Number of classes
Z = (X ,Y) Joint space of input-output pairs
PX,Y Data distribution of Z
Dtr Training data
Dcal Calibration data
Dtest Test data
ϵc The top-k error for class c
rf (x, y) The rank of y in prediction f(x)

Ĉ(X) Prediction set for input X
V ((X,Y ) ∈ Z) Non-conformity scoring function
α Target mis-coverage rate

Table 2: Key notations used in this paper.

B TECHNICAL PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 1

Proposition 2. (Proposition 1 restated, class-conditional over- and under-coverage of MCP) Given
α, assume |Rob(α)| < |Y|. If there exist ξ, ξ′ > 0 such that for y ∈ Rob(α), y′ /∈ Rob(α):

P{V (X,Y ) ≤ Qclass
1−α(Y )|Y = y ∈ Rob(α)} − P{V (X,Y ) ≤ QMCP

1−α|Y = y ∈ Rob(α)} ≤ −ξ,
P{V (X,Y ) ≤ Qclass

1−α(Y )|Y = y′ /∈ Rob(α)} − P{V (X,Y ) ≤ QMCP
1−α|Y = y′ /∈ Rob(α)}

≥ 1

ny′
+ ξ′.

Then class y and y′ are over- and under-covered, respectively:

P{V (X,Y ) ≤ QMCP
1−α|Y = y} ≥ 1− α+ ξ, P{V (X,Y ) ≤ QMCP

1−α|Y = y′} ≤ 1− α− ξ′.

Proof. (of Proposition 1)

(1) Class y is over-covered. We start with the lower bound of the class-conditional coverage using
class-conditional quantile for class y ∈ Rob(α), i.e., Theorem 1 in Romano et al. (2020), as follows.

1− α ≤ P{V (X,Y ) ≤ Qclass
1−α(y)|Y = y ∈ Rob(α)}

=P{V (X,Y ) ≤ QMCP
1−α|Y = y ∈ Rob(α)}

+ 1[y ∈ Rob(α)] ·

(
P
{
V (X,Y ) ≤ Qclass

1−α(y)]
∣∣∣Y = y ∈ Rob(α)

}
− P

{
V (X,Y ) ≤ QMCP

1−α

∣∣∣Y = c ∈ Rob(α)
})

+ 1[y /∈ Rob(α)] ·

(
P
{
V (X,Y ) ≤ Qclass

1−α(y)
∣∣∣Y = c /∈ Rob(α)

}
− P

{
V (X,Y ) ≤ QMCP

1−α

∣∣∣Y = c /∈ Rob(α)
})

. (13)
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By assumption, for y ∈ Rob(α) and ξ > 0 such that the following inequality holds:

P{V (X,Y ) ≤ Qclass
1−α(y)|Y = y ∈ Rob(α)} − P{V (X,Y ) ≤ QMCP

1−α|Y = y ∈ Rob(α)} ≤ −ξ,
(14)

by plugging inequality (14) into inequality (13), we derive the class-conditional over-coverage of
CP on class y:

P{V (X,Y ) ≤ QMCP
1−α|Y = y ∈ Rob(α)} ≥ 1− α+ ξ.

(2) Class c′ is under-covered. We start with the upper bound of the class-conditional coverage using
class-conditional quantile for class y′ /∈ Rob(α), i.e., Theorem 1 in Romano et al. (2020), as follows.

1− α+
1

ny′
≥ P{V (X,Y ) ≤ Qclass

1−α(y
′)|Y = y′ /∈ Rob(α)}

=P{V (X,Y ) ≤ QMCP
1−α|Y = y′ /∈ Rob(α)}

+ 1[y′ ∈ Rob(α)] ·

(
P{V (X,Y ) ≤ Qclass

1−α(y
′)|Y = y′ /∈ Rob(α)}

− P{V (X,Y ) ≤ QMCP
1−α|Y = y′ /∈ Rob(α)}

)

+ 1[y′ /∈ Rob(α)] ·

(
P{V (X,Y ) ≤ Qclass

1−α(y
′)|Y = y′ /∈ Rob(α)}

− P{V (X,Y ) ≤ QMCP
1−α|Y = y′ /∈ Rob(α)}

)
. (15)

By assumption, for y′ /∈ Rob(α) and ξ′ > 0 such that the following inequality holds:

P{V (X,Y ) ≤ Qclass
1−α(y

′)|Y = y′ /∈ Rob(α)} − P{V (X,Y ) ≤ QMCP
1−α|Y = y′ /∈ Rob(α)}

≥ 1

ny′
+ ξ′, (16)

by plugging inequality (16) into inequality (15), we derive the class-conditional under-coverage of
CP on class y′:

P{V (X,Y ) ≤ QMCP
1−α|Y = c′ /∈ Rob(α)} ≤ 1− α− ξ′.

The above two results of over-coverage of class y and under-coverage of class y′ show that the
class-conditional coverage can easily deviate from the marginal coverage as long as there exists a
margin (i.e., ξ, ξ′) for class-conditional coverage between using marginal quantile (i.e., QMCP

1−α) and
class-conditional quantile (i.e., Qclass

1−α(y), Q
class
1−α(y

′)), as in (14) and (16).

B.2 PROOF OF THEOREM 1

Theorem 3. (Theorem 1 restated, k-CCP guarantees class-conditional coverage) Suppose that se-
lecting {k(y)}y∈Y results in class-wise top-k(y) error {ϵy}y∈Y . If the nominated mis-coverage
probability α̃y of CCP for class y is set as

α̃y ≤ α− εny − δ − ϵy, for 0 < δ < 1, εny =
√

(3(1− α) log(2/δ))/ny,

then k-CCP can achieve the class-conditional coverage as defined in equation (1).

Before proving Theorem 1, we introduce the following technical lemma.

Lemma 1. (Concentration inequalities for quantiles) Define εn =
√

3(1− α) log(2/δ)/n. Let
Q1−α = max{t : PV {V ≤ t} ≥ 1 − α} be the true quantile of a random variable V given
α, and Q̂1−α = V(⌈n(1−α)⌉) be the empirical quantile estimated by n randomly sampled set
{V1, ..., Vn}ni=1. Then with probability at least 1− δ, we have Q̂1−α−εn−1/n ≤ Q1−α ≤ Q̂1−α+εn

where Õ hides the logarithmic factor.
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Lemma 1 has been studied in a previous paper (see Proposition 2(a) in Vovk (2012)). To make the
proof and conclusion of the Lemma 1 complete with the Theorem 1, we prove it again at the end of
this subsection. Now we begin to prove Theorem 1.

Proof. (of Theorem 1)

Let y ∈ Y denote any class label. With the lower bound of the coverage on class y (Theorem 1 in
Romano et al. (2020)), we have

1− (α̃+ εny )

≤P{Yn+1 ∈ CCCP
1−α̃−εny

(Xn+1)|Y = y} = P{V (Xn+1, Yn+1) ≤ Qclass
1−α̃−εny

|Y = y}

=(P{Lemma 1 holds}+ P{Lemma 1 not holds}) · P{V (Xn+1, Yn+1) ≤ Qclass
1−α̃−εny

|Y = y}

≤1 · P{V (Xn+1, Yn+1) ≤ Q̂class
1−α̃|Y = y}+ δ · 1

=P{V (Xn+1, Yn+1) ≤ Q̂class
1−α̃, rf (Xn+1, Yn+1) ≤ k̂(y)|Y = y}

+ P{V (Xn+1, Yn+1) ≤ Q̂class
1−α̃, rf (Xn+1, Yn+1) > k̂(y)|Y = y}+ δ

≤P{V (Xn+1, Yn+1) ≤ Q̂class
1−α̃, rf (Xn+1, Yn+1) ≤ k̂(y)|Y = y}

+ P{rf (Xn+1, Yn+1) > k̂(y)|Y = y}︸ ︷︷ ︸
≤ϵy

+δ

≤P{Yn+1 ∈ Ĉk-CCP
1−α̃ (y)|Y = y}+ ϵy + δ,

where the second inequality is due to Lemma 1, and the last inequality is due to the definition of ϵy ,
i.e., P{rf (Xn+1, Yn+1) ≤ k̂(y)|Y = y} ≥ 1− ϵy .

Re-arranging the above inequality, we have

P{Yn+1 ∈ Ĉk-CCP
1−α̃ (y)|Y = y} ≥ 1− α̃− εny

− δ − ϵy ≥ 1− α,

where the last inequality is due to α̃y ≤ α− εny
− δ − ϵy . This implies that k-CCP guarantees the

class-conditional coverage on any class y.

After proving Theorem 1, now we show the deferred proof of lemma 1:

Proof. (of Lemma 1)

Define Zi = 1[Vi ≤ Q1−α] where 1 ≤ i ≤ n and 1[·] is an indicator function. Then Zi is a
Bernoulli random variable with P{Zi = 1} = 1 − α and P{Zi = 0} = α from the definition of
Q(α). Let Ẑ = 1

n

∑n
i=1 Zi and E[Ẑ] = 1− α.

According to Chernoff bound, we know

P

{∣∣∣∣∣ 1n
n∑

i=1

Zi − E[Ẑ]

∣∣∣∣∣ ≥ εE[Ẑ]

}
≤ 2 exp

(
− nE[Ẑ]ε2/3

)
= 2 exp

(
− n(1− α)ε2/3

)
.

By setting δ = 2 exp(−n(1− α)ε2/3), i.e., ε = εn
1−α =

√
(3 log(2/δ))/((1− α)n), we have with

probability at least 1− δ:∣∣∣∣∣ 1n
n∑

i=1

1[Vi ≤ Q1−α]− (1− α)

∣∣∣∣∣ ≤ (1− α)ε =
εn

1− α
(1− α) = εn =

√
(3(1− α) log(2/δ))/n.

(17)

Recall the definition of the empirical quantile Q̂1−α given α:

Q̂1−α = max

{
t :

1

n

n∑
i=1

1[Vi ≤ t] ≥ 1− α

}
.
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Then we know the following upper bound and lower bound for 1− α:

1

n

n∑
i=1

1[Vi ≤ Q̂1−α−1/n] ≤ (1− α) ≤ 1

n

n∑
i=1

1[Vi ≤ Q̂1−α]. (18)

Re-arranging (17) and using the above upper/lower bounds, with probability at least 1− δ, we have

(1− α)(1− ε) ≤ 1

n

n∑
i=1

1[Vi ≤ Q1−α] ≤ (1− α)(1 + ε)

⇔ 1− (1− (1− α)(1− ε)︸ ︷︷ ︸
≜α′

) ≤ 1

n

n∑
i=1

1[Vi ≤ Q1−α] ≤ 1− (1− (1− α)(1 + ε)︸ ︷︷ ︸
≜α′′

)

(18)⇒ 1

n

n∑
i=1

1[Vi ≤ Q̂1−α′−1/n] ≤
1

n

n∑
i=1

1[Vi ≤ Q1−α] ≤
1

n

n∑
i=1

1[Vi ≤ Q̂1−α′′ ]

⇔ Q̂1−α′−1/n ≤ Q1−α ≤ Q̂1−α′′ . (19)

Finally, we simplify α′ and α′′ as follows

α′ = 1− (1− α)(1− ε) = α+ ε(1− α) = α+
√
3(1− α) log(2/δ)/n = α+ εn,

α′′ = 1− (1− α)(1 + ε) = α− ε(1− α) = α−
√
3(1− α) log(2/δ)/n = α− εn. (20)

Therefore, plugging (20) into (19), we have

Q̂1−α−εn−1/n ≤ Q1−α ≤ Q̂1−α+εn .

B.3 PROOF OF THEOREM 2

Theorem 4. (Theorem 2 restated, k-CCP produces smaller prediction sets than CCP) Suppose the
following inequality holds for any y ∈ Y:∑

y∈Y
σy · PZn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]
≤
∑
y∈Y

PZn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]
.

Then k-CCP produces smaller expected prediction sets than CCP, i.e.,

EXn+1
[|Ĉk-CCP

1−α̃ (Xn+1)|] ≤ EXn+1
[|ĈCCP

1−α(Xn+1)|].

Proof. (of Theorem 2)

The proof idea is to reduce the the cardinality of the prediction set made by k-CCP to that made by
CCP in expectation.

EZn+1
[|Ĉk-CCP

1−α̃ (Xn+1)|] = EZn+1

[∑
y∈Y

1

[
V (Xn+1, y) ≤ Q̂class

1−α̃(y), rf (Xn+1, y) ≤ k̂(y)
]]

=
∑
y∈Y

EZn+1

[
1[V (Xn+1, y) ≤ Q̂class

1−α̃(y), rf (Xn+1, y) ≤ k̂(y)]
]

=
∑
y∈Y

PZn+1

[
V (Xn+1, y) ≤ Q̂class

1−α̃(y), rf (Xn+1, y) ≤ k̂(y)
]

(a)
=
∑
y∈Y

σy · PZn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
] (b)

≤
∑
y∈Y

EZn+1

[
1[V (Xn+1, y) ≤ Q̂class

1−α(y)]
]

=EZn+1

[∑
y∈Y

1[V (Xn+1, y) ≤ Q̂class
1−α(y)]

]
= EZn+1

[|ĈCCP
1−α(Xn+1)|], (21)
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where the equality (a) is due to the definitions of σy , and inequality (b) is due to the assumption∑
y∈Y

σy · PZn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]
≤
∑
y∈Y

PZn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]
.

This implies that k-CCP requires smaller prediction sets to guarantee the class-conditional coverage
compared to CCP.

C COMPLETE EXPERIMENTAL RESULTS

C.1 TRAINING DETAILS

For CIFAR-10 and CIFAR-100, we train ResNet20 using LDAM loss function given in Cao et al.
(2019) with standard mini-batch stochastic gradient descent (SGD) using learning rate 0.1, momen-
tum 0.9, and weight decay 2e − 4 for 200 epochs. The batch size is 128. For experiments on
mini-ImageNet, we use the same setting. For Food-101, the batch size is 256 and other parameters
are kept the same.

C.2 CALIBRATION DETAILS

As mentioned in Section 5.1, we balanced split the validation set of CIFAR-10 and CIFAR-100, the
number of calibration data is 5000. For mini-ImageNet, the number of calibration data is 15000. For
Food-101, the total number is 12625. To compute the mean and standard deviation for the overall
performance, we repeat calibration experiments for 10 times. Moreover, we select the g from the
interval [0.1, 1] with range 0.05 to find the minimal g that k-CCP and CCP achieves the target class-
conditional coverage. We re-emphasize that the we have discussed the assumption in Theorem 2
and Remark 3.

The regularization parameter for RAPS scoring function is from the set kreg ∈ {3, 5, 7} and λ ∈
{0.001, 0.01, 0.1} based on the empirical setting in cluster-CP. We select the combination of
kreg and λ for each experiments with same imbalanced type and imbalanced ratio on the same
dataset, where the most of APSS values of all methods are minimum. The hyper-parameter g is
selected from the interval [0.1, 1] with range 0.05 to find the minimal g that CCP, cluster-CP,
and k-CCP achieve the target class-conditional coverage.

C.3 ILLUSTRATION OF IMBALANCED DATA

(a) EXP (b) POLY (c) MAJ
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Figure 3: Illustrative examples of the different imbalanced distributions of the number of training examples per
class index c on CIFAR-100

C.4 COMPLETE EXPERIMENT RESULTS

In this subsection, we report complete experimental results over four datasets, three decaying types,
five imbalance ratios. Specifically, Table 3, 4, 5 report results on CIFAR-10 with three decay-
ing types. Table 6, 7, 8 report results on CIFAR-100 with three decaying types. Table 9, 10, 11
report results on mini-ImageNet with three decaying types. Table 12, 13, 14 report results on Food-
101 with three decaying types. Due to the limited time for rebuttal, we just report the results of
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cluster-CP with two imbalanced ratio ρ = 0.1 and ρ = 0.5. We will add all results in the final
paper.

Figure 4 shows overall results on CIFAR-10 and CIFAR-100, including distribution of class-wise
quantiles v.s. marginal quantile, histograms of class-conditional coverage and prediction set size
achieved by MCP, CCP, cluster-CP, and k-CCP, and the histogram of condition numbers σy in
Theorem 2, which are all corresponding to Figure 1 in main text.

Figure 5 shows the sensitivity of CCP, cluster-CP, and k-CCP for g on CIFAR-10 and CIFAR-
100 with APS scoring function, which are all corresponding to Figure 2 in main text.

Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11 show the class-conditional coverage
and the corresponding prediction set sizes on EXP ρ = 0.1, EXP ρ = 0.5, POLY ρ = 0.1, POLY
ρ = 0.5, MAJ ρ = 0.1, MAJ ρ = 0.5, respectively. This result on EXP ρ = 0.1 is in Figure 1 and
Figure 4. Because of the same reason, we lack of visualization results of cluster-CP methods
and we will add the complete visualization results in the final paper.

Figure 12, Figure 13, and Figure 14 show the distribution of class-wise quantiles with EXP ρ = 0.5,
POLY ρ = 0.5, and MAJ ρ = 0.5, respectively.

Figure 15, Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20 verify the condition numbers
σy on EXP ρ = 0.1, EXP ρ = 0.5, POLY ρ = 0.1, POLY ρ = 0.5, MAJ ρ = 0.1, MAJ ρ = 0.5,
respectively.
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Figure 4: Justification experiments: CIFAR-10 in first row and CIFAR-100 in second row with ResNet20
model. First column: distribution of class-wise quantiles v.s. marginal quantile with imbalance type EXP and
imbalance ratio ρ = 0.5. Second and third columns: histograms of class-conditional coverage and prediction
set size achieved by MCP, CCP, cluster-CP, and k-CCP with imbalance type EXP and imbalance ratio
ρ = 0.1. The final column: the histogram of condition numbers σy in Theorem 2 with imbalance type EXP
and imbalance ratio ρ = 0.1.
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Figure 5: Results for under coverage ratio and average prediction set size achieved by CCP, cluster-CP,
and k-CCP methods as a function of g using APS scoring function with imbalance type EXP for imbalance
ratio ρ = 0.1. k-CCP degenerates to CCP in CIFAR-10, so overlopping with CCP (the black line overlaps with
the red one).
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ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.460 ± 0.025 0.390 ± 0.03 0.4 ± 0.032 0.4 ± 0.014 0.49 ± 0.026
CCP 0.110 ± 0.030 0.14 ± 0.029 0.140 ± 0.032 0.08 ± 0.031 0.040 ± 0.020

cluster-CP 0.160 ± 0.025 — — — 0.080 ± 0.012
k-CCP 0.110 ± 0.030 0.14 ± 0.029 0.140 ± 0.032 0.008 ± 0.031 0.040 ± 0.020
MCP 1.132 ± 0.033 1.13 ± 0.03 1.169 ± 0.034 1.227 ± 0.039 1.406 ± 0.035
CCP 1.481 ± 0.082 1.508 ± 0.090 1.625 ± 0.083 1.711 ± 0.101 2.032 ± 0.096

cluster-CP 1.445 ± 0.017 — — — 2.323 ± 0.0115
k-CCP 1.481 ± 0.082 1.508 ± 0.090 1.625 ± 0.083 1.711 ± 0.101 2.032 ± 0.096

Measure Methods EXP

UCR

APSS

Table 3: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type EXP and APS scoring function
on dataset CIFAR-10. The dash symbol (—) means missing results that will be finished in the final version. We
set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.51 ± 0.033 0.54 ± 0.021 0.41 ± 0.03 0.47 ± 0.028 0.32 ± 0.031
CCP 0.14 ± 0.032 0.17 ± 0.028 0.12 ± 0.031 0.07 ± 0.025 0.01 ± 0.009

cluster-CP 0.14 ± 0.021 — — — 0.01 ± 0.009
k-CCP 0.14 ± 0.032 0.17 ± 0.028 0.12 ± 0.031 0.07 ± 0.025 0.01 ± 0.009
MCP 1.17 ± 0.028 1.107 ± 0.028 1.138 ± 0.032 1.57 ± 0.033 1.214 ± 0.038
CCP 1.487 ± 0.09 1.465 ± 0.090 1.571 ± 0.086 1.652 ± 0.084 1.945 ± 0.087

cluster-CP 1.612 ± 0.013 — — — 2.102 ± 0.015
k-CCP 1.487 ± 0.09 1.465 ± 0.090 1.571 ± 0.086 1.652 ± 0.084 1.945 ± 0.087

Measure Methods POLY

UCR

APSS

Table 4: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type POLY and APS scoring function
on dataset CIFAR-10. The dash symbol (—) means missing results that will be finished in the final version. We
set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.38 ± 0.019 0.33 ± 0.014 0.45 ± 0.029 0.51 ± 0.03 0.5 ± 0.014
CCP 0.12 ± 0.024 0.13 ± 0.025 0.11 ± 0.03 0.06 ± 0.021 0.01 ± 0.009

cluster-CP 0.15 ± 0.025 — — — 0.009 ± 0.013
k-CCP 0.12 ± 0.024 0.13 ± 0.025 0.11 ± 0.03 0.06 ± 0.021 0.01 ± 0.009

MCP 1.17 ± 0.028 1.107 ± 0.028 1.138 ± 0.032 1.57 ± 0.033 1.406 ± 0.035
CCP 1.487 ± 0.09 1.465 ± 0.090 1.571 ± 0.086 1.652 ± 0.084 2.032 ± 0.096

cluster-CP 1.787 ± 0.019 — — — 2.969 ± 0.025
k-CCP 1.481 ± 0.082 1.508 ± 0.090 1.625 ± 0.083 1.711 ± 0.101 2.032 ± 0.096

Measure Methods MAJ

UCR

APSS

Table 5: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type MAJ and APS scoring function
on dataset CIFAR-10. The dash symbol (—) means missing results that will be finished in the final version. We
set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.
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ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.386±(0.009) 0.394±(0.010) 0.361±(0.012) 0.382±(0.011) 0.384±(0.018)
CCP 0.009±(0.003) 0.015±(0.004) 0.011±(0.004) 0.016±(0.003) 0.011±(0.002)

cluster-CP 0.004±(0.002) — — — 0.004±(0.002)
k-CCP 0.0±(0.0) 0.0±(0.0) 0.0±(0.0) 0.0±(0.0) 0.001±(0.001)
MCP 10.303±(0.111) 10.848±(0.104) 12.480±(0.113) 12.909±(0.115) 14.544±(0.119)
CCP 44.194±(0.514) 44.447±(0.566) 47.688±(0.569) 46.955±(0.500) 50.963±(0.482)

cluster-CP 30.922±(0.454) — — — 43.883±(1.070)
k-CCP 20.355±(0.357) 20.540±(0.356) 22.550±(0.306) 23.163±(0.265) 25.185±(0.279)

Measure Methods EXP

UCR

APSS

Table 6: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type EXP and APS scoring function
on dataset CIFAR-100. The dash symbol (—) means missing results that will be finished in the final version.
We set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of
prediction set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.395±(0.010) 0.382±(0.014) 0.409±(0.013) 0.383±(0.015) 0.410±(0.010)
CCP 0.011±(0.003) 0.008±(0.002) 0.016±(0.003) 0.011±(0.004) 0.015±(0.003)

cluster-CP 0.001±(0.001) 0.008±(0.002) 0.016±(0.003) 0.011±(0.004) 0.015±(0.003)
k-CCP 0.0±(0.0) 0.0±(0.0) 0.0±(0.0) 0.0±(0.0) 0.0±(0.0)
MCP 15.730±(0.126) 16.738±(0.170) 17.670±(0.165) 20.422±(0.211) 25.888±(0.197)
CCP 49.896±(0.490) 54.011±(0.572) 56.018±(0.529) 59.893±(0.438) 64.366±(0.390)

cluster-CP 56.696±(0.393) — — — 63.208±(0.364)
k-CCP 25.843±(0.300) 26.851±(0.222) 29.655±(0.286) 31.933±(0.218) 37.035±(0.245)

Measure Methods POLY

UCR

APSS

Table 7: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type POLY and APS scoring function
on dataset CIFAR-100 that will be finished in the final version. The dash symbol (—) means missing results.
We set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of
prediction set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.352±(0.010) 0.412±(0.014) 0.361±(0.009) 0.374±(0.010) 0.401±(0.008)
CCP 0.017±(0.003) 0.008±(0.002) 0.018±(0.004) 0.011±(0.004) 0.008±(0.004)

cluster-CP 0.005±(0.002) — — — 0.019±(0.005)
k-CCP 0.002±(0.001) 0.001±(0.001) 0.000±(0.000) 0.000±(0.000) 0.001±(0.001)
MCP 11.680±(0.117) 14.034±(0.128) 15.171±(0.121) 18.516±(0.152) 23.796±(0.159)
CCP 48.323±(0.548) 49.193±(0.403) 53.688±(0.537) 55.024±(0.402) 64.640±(0.621)

cluster-CP 33.623±(0.395) — — — 50.382±(0.711)
k-CCP 21.196±(0.320) 24.058±(0.282) 25.501±(0.249) 29.344±(0.315) 35.630±(0.232)

Measure Methods MAJ

UCR

APSS

Table 8: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type MAJ and APS scoring function
on dataset CIFAR-100 that will be finished in the final version. The dash symbol (—) means missing results.
We set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of
prediction set size.
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ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.408 ± 0.008 0.424 ± 0.008 0.406 ± 0.009 0.405 ± 0.01 0.414 ± 0.012
CCP 0.007 ± 0.003 0.001 ± 0.001 0.0 ± 0.0 0.002 ± 0.002 0.001 ± 0.001

cluster-CP 0.009 ± 0.003 — — — 0.002 ± 0.001
k-CCP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
MCP 9.705 ± 0.101 9.498 ± 0.102 9.438 ± 0.098 9.361 ± 0.092 8.931 ± 0.093
CCP 26.666 ± 0.415 30.437 ± 0.352 29.777 ± 0.409 30.007 ± 0.33 34.867 ± 0.445

cluster-CP 27.786 ± 0.307 — — — 33.114 ± 0.418
k-CCP 18.129 ± 0.454 17.546 ± 0.453 18.944 ± 0.381 18.81 ± 0.368 17.769 ± 0.463

Measure Methods EXP

UCR

APSS

Table 9: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type EXP and APS scoring
function on dataset mini-ImageNet. The dash symbol (—) means missing results that will be finished in the
final version. We set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair
comparison of prediction set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.412 ± 0.013 0.4 ± 0.009 0.427 ± 0.011 0.407 ± 0.01 0.41 ± 0.009
CCP 0.005 ± 0.002 0.002 ± 0.001 0.003 ± 0.001 0.001 ± 0.001 0.001 ± 0.001

cluster-CP 0.028 ± 0.005 — — — 0.015 ± 0.003
k-CCP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
MCP 9.81 ± 0.102 9.838 ± 0.091 9.801 ± 0.107 9.528 ± 0.099 9.665 ± 0.101
CCP 26.620 ± 0.369 30.236 ± 0.331 30.912 ± 0.401 31.639 ± 0.422 29.852 ± 0.36

cluster-CP 21.273 ± 0.369 — — — 25.550 ± 0.279
k-CCP 17.784 ± 0.438 17.751 ± 0.466 19.388 ± 0.441 19.342 ± 0.443 19.153 ± 0.412

Measure Methods POLY

UCR

APSS

Table 10: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type POLY and APS scoring
function on dataset mini-ImageNet. The dash symbol (—) means missing results that will be finished in the
final version. We set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair
comparison of prediction set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.408 ± 0.009 0.405 ± 0.012 0.424 ± 0.01 0.43 ± 0.01 0.411 ± 0.007
CCP 0.011 ± 0.004 0.005 ± 0.002 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

cluster-CP 0.015 ± 0.005 — — — 0.011 ± 0.003
k-CCP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
MCP 9.84 ± 0.091 9.929 ± 0.112 9.817 ± 0.092 9.499 ± 0.094 9.123 ± 0.086
CCP 27.306 ± 0.377 31.114 ± 0.456 30.741 ± 0.345 30.608 ± 0.433 34.186 ± 0.32

cluster-CP 25.288 ± 0.226 — — — 25.229 ± 0.352
k-CCP 18.11 ± 0.414 17.874 ± 0.511 19.711 ± 0.439 19.592 ± 0.376 18.594 ± 0.439

Measure Methods MAJ

UCR

APSS

Table 11: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type MAJ and APS scoring
function on dataset mini-ImageNet. The dash symbol (—) means missing results that will be finished in the
final version. We set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair
comparison of prediction set size.
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ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.444 ± 0.007 0.452 ± 0.007 0.439 ± 0.005 0.427 ± 0.006 0.364 ± 0.01
CCP 0.001 ± 0.001 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

cluster-CP 0.007 ± 0.003 — — — 0.003 ± 0.002
k-CCP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
MCP 9.57 ± 0.076 9.687 ± 0.075 10.437 ± 0.064 11.404 ± 0.076 13.998 ± 0.089
CCP 40.408 ± 0.378 41.156 ± 0.405 40.881 ± 0.398 42.207 ± 0.356 60.762 ± 0.531

cluster-CP 28.828 ± 0.294 — — — 44.885 ± 0.589
k-CCP 17.281 ± 0.225 17.294 ± 0.202 17.928 ± 0.21 18.63 ± 0.241 20.61 ± 0.222

Measure Methods EXP

UCR

APSS

Table 12: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type EXP and APS scoring function
on dataset Food-101. The dash symbol (—) means missing results that will be finished in the final version. We
set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.466 ± 0.009 0.446 ± 0.011 0.456 ± 0.006 0.465 ± 0.007 0.451 ± 0.008
CCP 0.001 ± 0.001 0.001 ± 0.001 0.002 ± 0.001 0.0 ± 0.0 0.001 ± 0.001

cluster-CP 0.007 ± 0.002 — — — 0.010 ± 0.003
k-CCP 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
MCP 12.267 ± 0.079 12.349 ± 0.085 13.533 ± 0.09 14.357 ± 0.08 16.468 ± 0.095
CCP 45.148 ± 0.342 45.572 ± 0.355 46.134 ± 0.347 47.788 ± 0.407 65.672 ± 0.515

cluster-CP 32.873 ± 0.307 — — — 38.326 ± 0.248
k-CCP 20.452 ± 0.209 20.503 ± 0.192 21.606 ± 0.206 22.62 ± 0.187 24.771 ± 0.192

Measure Methods POLY

UCR

APSS

Table 13: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type POLY and APS scoring function
on dataset Food-101. The dash symbol (—) means missing results that will be finished in the final version. We
set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.

ρ = 0.5 ρ = 0.4 ρ = 0.3 ρ = 0.2 ρ = 0.1

MCP 0.462 ± 0.008 0.469 ± 0.009 0.47 ± 0.01 0.459 ± 0.007 0.467 ± 0.006
CCP 0.0 ± 0.0 0.001 ± 0.001 0.003 ± 0.001 0.0 ± 0.0 0.0 ± 0.0

cluster-CP 0.007 ± 0.003 — — — 0.005 ± 0.003
k-CCP 0.0 ± 0.0 0.001 ± 0.001 0.002 ± 0.001 0.0 ± 0.0 0.002 ± 0.001

MCP 9.964 ± 0.078 10.742 ± 0.075 11.57 ± 0.088 12.654 ± 0.085 16.256 ± 0.088
CCP 41.453 ± 0.335 43.252 ± 0.385 44.884 ± 0.348 45.492 ± 0.288 66.633 ± 0.622

cluster-CP 33.258 ± 0.450 — — — 46.430 ± 0.337
k-CCP 19.398 ± 0.223 18.97 ± 0.217 20.375 ± 0.218 21.172 ± 0.242 25.164 ± 0.197

Measure Methods MAJ

UCR

APSS

Table 14: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5, ρ = 0.4, ρ = 0.2, and ρ = 0.1 with imbalance type MAJ and APS scoring function
on dataset Food-101. The dash symbol (—) means missing results that will be finished in the final version. We
set UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.
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(a) CIFAR-10 (b) CIFAR-100 (c) mini-ImageNet (d) Food-101

Class Conditional Coverage0.0
1.0
2.0
3.0
4.0
5.0
6.0

Fr
eq

ue
nc

y Method
MCP
CCP
k-CCP

Class Conditional Coverage0.0
10.0
20.0
30.0
40.0
50.0

Fr
eq

ue
nc

y Method
MCP
CCP
k-CCP

Class Conditional Coverage0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

Fr
eq

ue
nc

y Method
MCP
CCP
k-CCP

Class Conditional Coverage0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

Fr
eq

ue
nc

y Method
MCP
CCP
k-CCP

Prediction Set Size0.0
1.0
2.0
3.0
4.0
5.0

Fr
eq

ue
nc

y

Method
MCP
CCP
k-CCP

Prediction Set Size0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0

Fr
eq

ue
nc

y

Method
MCP
CCP
k-CCP

Prediction Set Size0.0

50.0

100.0

150.0

200.0

Fr
eq

ue
nc

y

Method
MCP
CCP
k-CCP

Prediction Set Size0.0
50.0

100.0
150.0
200.0
250.0
300.0

Fr
eq

ue
nc

y

Method
MCP
CCP
k-CCP

Figure 6: Class-conditional coverage (Top row) and prediction set size (Bottom row) achieved by MCP, CCP,
and k-CCPmethods using ResNet20 model on CIFAR-10, CIFAR-100, mini-ImageNet, and Food-101 datasets
with imbalance type EXP for imbalance ratio ρ = 0.1. It is clear that k-CCP has more densely distributed class-
conditional coverage above 0.9 (the target 1−α class-conditional coverage) than CCP with significantly smaller
prediction sets on CIFAR-100, mini-ImageNet and Food-101.
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Figure 7: Class-conditional coverage (Top row) and prediction set size (Bottom row) achieved by MCP, CCP,
and k-CCPmethods using ResNet20 model on CIFAR-10, CIFAR-100, mini-ImageNet, and Food-101 datasets
with imbalance type EXP for imbalance ratio ρ = 0.5. It is clear that k-CCP has more densely distributed class-
conditional coverage above 0.9 (the target 1−α class-conditional coverage) than CCP with significantly smaller
prediction sets on CIFAR-100, mini-ImageNet and Food-101.
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Figure 8: Class-conditional coverage (Top row) and prediction set size (Bottom row) achieved by MCP, CCP,
and k-CCPmethods using ResNet20 model on CIFAR-10, CIFAR-100, mini-ImageNet, and Food-101 datasets
with imbalance type POLY for imbalance ratio ρ = 0.1. It is clear that k-CCP has more densely distributed
class-conditional coverage above 0.9 (the target 1− α class-conditional coverage) than CCP with significantly
smaller prediction sets on CIFAR-100, mini-ImageNet and Food-101.
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Figure 9: Class-conditional coverage (Top row) and prediction set size (Bottom row) achieved by MCP, CCP,
and k-CCPmethods using ResNet20 model on CIFAR-10, CIFAR-100, mini-ImageNet, and Food-101 datasets
with imbalance type POLY for imbalance ratio ρ = 0.5. It is clear that k-CCP has more densely distributed
class-conditional coverage above 0.9 (the target 1− α class-conditional coverage) than CCP with significantly
smaller prediction sets on CIFAR-100, mini-ImageNet and Food-101.
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Figure 10: Class-conditional coverage (Top row) and prediction set size (Bottom row) achieved by MCP, CCP,
and k-CCPmethods using ResNet20 model on CIFAR-10, CIFAR-100, mini-ImageNet, and Food-101 datasets
with imbalance type MAJ for imbalance ratio ρ = 0.1. It is clear that k-CCP has more densely distributed
class-conditional coverage above 0.9 (the target 1− α class-conditional coverage) than CCP with significantly
smaller prediction sets on CIFAR-100, mini-ImageNet and Food-101.
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Figure 11: Class-conditional coverage (Top row) and prediction set size (Bottom row) achieved by MCP, CCP,
and k-CCPmethods using ResNet20 model on CIFAR-10, CIFAR-100, mini-ImageNet, and Food-101 datasets
with imbalance type MAJ for imbalance ratio ρ = 0.5. It is clear that k-CCP has more densely distributed
class-conditional coverage above 0.9 (the target 1− α class-conditional coverage) than CCP with significantly
smaller prediction sets on CIFAR-100, mini-ImageNet and Food-101.
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Figure 12: Distribution of class-wise quantiles with ResNet20 model on CIFAR-10, CIFAR-100, mini-
ImageNet, and Food-101 datasets with imbalance type EXP and imbalance ratio ρ = 0.5. This result verifies
that the deviation of class-wise quantiles from the marginal quantile can easily happen, i.e., the assumption of
class-conditional under-coverage for MCP in Proposition 1.
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Figure 13: Distribution of class-wise quantiles with ResNet20 model on CIFAR-10, CIFAR-100, mini-
ImageNet, and Food-101 datasets with imbalance type POLY and imbalance ratio ρ = 0.5. This result verifies
that the deviation of class-wise quantiles from the marginal quantile can easily happen, i.e., the assumption of
class-conditional under-coverage for MCP in Proposition 1.
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Figure 14: Distribution of class-wise quantiles with ResNet20 model on CIFAR-10, CIFAR-100, mini-
ImageNet, and Food-101 datasets with imbalance type MAJ and imbalance ratio ρ = 0.5. This result verifies
that the deviation of class-wise quantiles from the marginal quantile can easily happen, i.e., the assumption of
class-conditional under-coverage for MCP in Proposition 1.
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Figure 15: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.1 EXP. Vertical dashed lines
represent the value 1, and we observe that all the condition numbers are smaller than 1. This verifies the validity
of the condition for Theorem 2, and thus confirms that k-CCP produces smaller prediction sets than CCP by
the optimized trade-off between calibration on non-conformity scores and calibrated label ranks.
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Figure 16: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.5 EXP. Vertical dashed lines
represent the value 1, and we observe that all the condition numbers are smaller than 1. This verifies the validity
of the condition for Theorem 2, and thus confirms that k-CCP produces smaller prediction sets than CCP by
the optimized trade-off between calibration on non-conformity scores and calibrated label ranks.
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Figure 17: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.1 POLY. Vertical dashed lines
represent the value 1, and we observe that all the condition numbers are smaller than 1. This verifies the validity
of the condition for Theorem 2, and thus confirms that k-CCP produces smaller prediction sets than CCP by
the optimized trade-off between calibration on non-conformity scores and calibrated label ranks.
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Figure 18: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.5 POLY. Vertical dashed lines
represent the value 1, and we observe that all the condition numbers are smaller than 1. This verifies the validity
of the condition for Theorem 2, and thus confirms that k-CCP produces smaller prediction sets than CCP by
the optimized trade-off between calibration on non-conformity scores and calibrated label ranks.
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Figure 19: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.1 MAJ. Vertical dashed lines
represent the value 1, and we observe that all the condition numbers are smaller than 1. This verifies the validity
of the condition for Theorem 2, and thus confirms that k-CCP produces smaller prediction sets than CCP by
the optimized trade-off between calibration on non-conformity scores and calibrated label ranks.
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Figure 20: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.5 MAJ. Vertical dashed lines
represent the value 1, and we observe that all the condition numbers are smaller than 1. This verifies the validity
of the condition for Theorem 2, and thus confirms that k-CCP produces smaller prediction sets than CCP by
the optimized trade-off between calibration on non-conformity scores and calibrated label ranks.
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D EXPERIMENTS WITH CLUSTER-CP USING APS SCORE FUNCTION

With the same model, evaluation metrics, and APS score function Romano et al. (2020), we add the
comparison experiments with cluster-CP Ding et al. (2023) 3 on four datasets and summarize the
results in Table 15. We highlight that we also select the g from the interval [0.1, 1] with increments of
0.05 to find the minimal g that k-CCP and cluster-CP achieves the target class-conditional coverage.

Based on the results in Table 15, we make the following observations: (i) cluster-CP and k-CCP
can guarantee the class-conditional coverage; and (ii) k-CCP significantly outperforms cluster-CP
on three datasets by producing smaller prediction sets.

ρ = 0.5 ρ = 0.1 ρ = 0.5 ρ = 0.1 ρ = 0.5 ρ = 0.1

MCP 0.460 ± 0.025 0.490 ± 0.026 0.510 ± 0.033 0.320 ± 0.030 0.380 ± 0.020 0.500 ± 0.014
CCP 0.110 ± 0.030 0.040 ± 0.020 0.140 ± 0.032 0.010 ± 0.001 0.120 ± 0.024 0.010 ± 0.001

cluster-CP 0.160 ± 0.025 0.080 ± 0.012 0.140 ± 0.021 0.010 ± 0.001 0.150 ± 0.025 0.09 ± 0.013
k-CCP 0.110 ± 0.030 0.040 ± 0.020 0.140 ± 0.032 0.010 ± 0.001 0.120 ± 0.024 0.010 ± 0.001

MCP 1.132 ± 0.033 1.406 ± 0.045 1.117 ± 0.028 1.214 ± 0.038 1.196 ± 0.032 2.039 ± 0.046
CCP 1.481 ± 0.082 2.032 ± 0.096 1.487 ± 0.090 1.945 ± 0.087 1.765 ± 0.093 2.964 ± 0.123

cluster-CP 1.445 ± 0.017 2.323 ± 0.015 1.612 ± 0.013 2.102 ± 0.015 1.787 ± 0.019 2.969 ± 0.025
k-CCP 1.481 ± 0.082 2.032 ± 0.096 1.487 ± 0.090 1.945 ± 0.087 1.765 ± 0.093 2.964 ± 0.123

MCP 0.386 ± 0.009 0.384 ± 0.018 0.395 ± 0.010 0.411 ± 0.010 0.352 ± 0.010 0.401 ± 0.008
CCP 0.009 ± 0.003 0.011 ± 0.002 0.011 ± 0.003 0.015 ± 0.003 0.017 ± 0.003 0.008 ± 0.004

cluster-CP 0.004 ± 0.002 0.004 ± 0.002 0.001 ± 0.001 0.004 ± 0.002 0.005 ± 0.002 0.019 ± 0.005
k-CCP 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.001 0.001 ± 0.001
MCP 10.303 ± 0.111 14.544 ± 0.119 15.729 ± 0.126 25.888 ± 0.197 11.680 ± 0.117 23.796 ± 0.159
CCP 44.194 ± 0.514 50.963 ± 0.481 49.895 ± 0.489 64.366 ± 0.389 48.323 ± 0.548 64.640 ± 0.621

cluster-CP 30.922 ± 0.454 43.883 ± 1.070 56.696 ± 0.393 63.208 ± 0.364 33.623 ± 0.395 50.382 ± 0.711
k-CCP 20.355 ± 0.357 25.185 ± 0.278 25.843 ± 0.300 37.034 ± 0.244 21.196 ± 0.320 35.630 ± 0.232

MCP 0.408 ± 0.008 0.414 ± 0.012 0.412 ± 0.013 0.410 ± 0.0018 0.408 ± 0.010 0.411 ± 0.007
CCP 0.007 ± 0.003 0.001 ± 0.001 0.005 ± 0.002 0.001 ± 0.001 0.011 ± 0.004 0.003 ± 0.001

cluster-CP 0.009 ± 0.003 0.002 ± 0.001 0.028 ± 0.005 0.015 ± 0.003 0.015 ± 0.005 0.011 ± 0.003
k-CCP 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
MCP 9.705 ± 0.101 8.930 ± 0.093 9.810 ± 0.101 9.665 ± 0.101 9.840 ± 0.091 9.123 ± 0.086
CCP 26.666 ± 0.415 34.867 ± 0.445 26.620 ± 0.369 29.852 ± 0.360 27.306 ± 0.377 29.200 ± 0.379

cluster-CP 27.786 ± 0.307 33.114 ± 0.418 21.273 ± 0.369 25.550 ± 0.279 25.288 ± 0.226 25.229 ± 0.352
k-CCP 18.129 ± 0.453 17.769 ± 0.463 17.784 ± 0.438 19.153 ± 0.412 18.110 ± 0.414 18.594 ± 0.439

MCP 0.444 ± 0.007 0.364 ± 0.010 0.466 ± 0.009 0.451 ± 0.008 0.462 ± 0.008 0.467 ± 0.006
CCP 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.001 0.001 ± 0.001 0.000 ± 0.000 0.000 ± 0.000

cluster-CP 0.007 ± 0.003 0.003 ± 0.002 0.007 ± 0.002 0.010 ± 0.003 0.007 ± 0.003 0.005 ± 0.003
k-CCP 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.001 ± 0.001 0.000 ± 0.000 0.000 ± 0.000
MCP 9.570 ± 0.076 13.998 ± 0.089 12.267 ± 0.079 16.468 ± 0.095 9.964 ± 0.078 23.796 ± 0.159
CCP 40.408 ± 0.378 60.762 ± 0.531 45.148 ± 0.342 65.6723 ± 0.515 41.453 ± 0.335 66.633 ± 0.622

cluster-CP 28.828 ± 0.294 44.885 ± 0.589 32.873 ± 0.307 38.326 ± 0.248 33.258 ± 0.450 46.430 ± 0.337
k-CCP 17.281 ± 0.225 20.610 ± 0.222 20.452 ± 0.209 24.771 ± 0.192 19.398 ± 0.223 26.584 ± 0.191

Measure Methods EXP POLY MAJ

CIFAR-10

UCR

APSS

CIFAR-100

UCR

APSS

mini-ImageNet

UCR

APSS

Food-101

UCR

APSS

Table 15: Results comparing k-CCP and cluster-CP with ResNet-20 model and APS score function under
different imbalance ratios ρ = 0.5 and ρ = 0.1. We set UCR of k-CCP the same as or better than that of
cluster-CP for a fair comparison of prediction set size. The APSS results show that k-CCP significantly
outperforms cluster-CP in terms of the average prediction set size over all settings on CIFAR-100, mini-
ImageNet, and Food-101.

E COMPARISON EXPERIMENTS USING RAPS SCORE FUNCTION

With the same model, evaluation metrics and RAPS score function Angelopoulos et al. (2020), we
add the comparison experiments with MCP, CCP, and cluster-CP on four datasets with different im-
balanced type and imbalance ratio ρ = 0.5 and ρ = 0.1. The regularization parameter for RAPS
score function is from the set kreg ∈ {3, 5, 7} and λ ∈ {0.001, 0.01, 0.1}. We select the combina-
tion of kreg and λ for each experiments with same imbalanced type and imbalanced ratio on same

3https://github.com/tiffanyding/class-conditional-conformal/tree/main
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dataset, where the most of APSS values of all methods are minimum. The overall performance
is summarized in Table 16. We highlight that we also select the g from the interval [0.1, 1] with
increments of 0.05 to find the minimal g that CCP, cluster-CP, and k-CCP achieves the target class
conditional coverage.

Based on the results in Table 16, we make the following observations: (i) CCP, cluster-CP, and k-
CCP can guarantee the class-conditional coverage; and (ii) k-CCP significantly outperforms CCP
and cluster-CP on three datasets by producing smaller prediction sets.

ρ = 0.5 ρ = 0.1 ρ = 0.5 ρ = 0.1 ρ = 0.5 ρ = 0.1

MCP 0.460 ± 0.021 0.490 ± 0.026 0.500 ± 0.031 0.290 ± 0.030 0.380 ± 0.019 0.500 ± 0.014
CCP 0.010 ± 0.020 0.020 ± 0.013 0.080 ± 0.030 0.050 ± 0.021 0.090 ± 0.022 0.040 ± 0.015

cluster-CP 0.160 ± 0.025 0.080 ± 0.012 0.140 ± 0.021 0.040 ± 0.015 0.150 ± 0.025 0.120 ± 0.013
k-CCP 0.010 ± 0.020 0.020 ± 0.013 0.080 ± 0.030 0.050 ± 0.021 0.090 ± 0.022 0.040 ± 0.015
MCP 1.143 ± 0.004 1.419 ± 0.013 1.118 ± 0.004 1.233 ± 0.006 1.196 ± 0.032 2.043 ± 0.016
CCP 1.502 ± 0.007 2.049 ± 0.013 1.558 ± 0.010 1.776 ± 0.012 1.786 ± 0.020 2.628 ± 0.012

cluster-CP 1.493 ± 0.017 2.323 ± 0.015 1.612 ± 0.013 1.981 ± 0.013 1.787 ± 0.019 2.968 ± 0.024
k-CCP 1.502 ± 0.007 2.049 ± 0.013 1.558 ± 0.010 1.776 ± 0.012 1.786 ± 0.020 2.628 ± 0.012

MCP 0.388 ± 0.007 0.384 ± 0.018 0.394 ± 0.010 0.402 ± 0.010 0.352 ± 0.010 0.401 ± 0.007
CCP 0.008 ± 0.002 0.011 ± 0.002 0.011 ± 0.003 0.015 ± 0.003 0.015 ± 0.003 0.008 ± 0.004

cluster-CP 0.004 ± 0.002 0.004 ± 0.002 0.001 ± 0.001 0.003 ± 0.002 0.005 ± 0.002 0.018 ± 0.006
k-CCP 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000
MCP 10.300 ± 0.080 14.554 ± 0.107 15.755 ± 0.103 25.850 ± 0.150 11.684 ± 0.091 23.708 ± 0.137
CCP 44.243 ± 0.340 50.969 ± 0.345 49.877 ± 0.354 64.247 ± 0.234 48.337 ± 0.355 64.580 ± 0.536

cluster-CP 30.971 ± 0.454 43.883 ± 1.073 56.656 ± 0.354 63.113 ± 0.397 33.656 ± 0.388 50.365 ± 0.701
k-CCP 20.355 ± 0.005 25.185 ± 0.011 25.843 ± 0.006 37.035 ± 0.005 21.197 ± 0.005 35.631 ± 0.007

MCP 0.408 ± 0.008 0.410 ± 0.011 0.412 ± 0.014 0.410 ± 0.008 0.403 ± 0.010 0.412 ± 0.007
CCP 0.007 ± 0.003 0.003 ± 0.001 0.018 ± 0.002 0.004 ± 0.002 0.000 ± 0.000 0.005 ± 0.002

cluster-CP 0.008 ± 0.004 0.003 ± 0.001 0.031 ± 0.005 0.002 ± 0.001 0.004 ± 0.002 0.011 ± 0.004
k-CCP 0.009 ± 0.003 0.000 ± 0.000 0.004 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
MCP 9.703 ± 0.076 9.003 ± 0.067 9.806 ± 0.079 9.714 ± 0.075 9.865 ± 0.060 9.146 ± 0.063
CCP 26.689 ± 0.177 29.750 ± 0.219 21.352 ± 0.196 26.266 ± 0.218 36.535 ± 0.196 25.641 ± 0.217

cluster-CP 27.466 ± 0.268 32.991 ± 0.434 21.212 ± 0.298 36.061 ± 0.475 32.085 ± 0.424 25.269 ± 0.375
k-CCP 15.101 ± 0.003 18.418 ± 0.003 15.331 ± 0.003 17.465 ± 0.003 17.388 ± 0.003 17.167 ± 0.004

MCP 0.445 ± 0.007 0.363 ± 0.010 0.466 ± 0.008 0.450 ± 0.007 0.457 ± 0.008 0.465 ± 0.006
CCP 0.002 ± 0.001 0.000 ± 0.000 0.002 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.008 ± 0.002

cluster-CP 0.003 ± 0.002 0.003 ± 0.002 0.007 ± 0.002 0.005 ± 0.002 0.007 ± 0.002 0.006 ± 0.003
k-CCP 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.001 ± 0.001 0.000 ± 0.000 0.002 ± 0.001
MCP 9.580 ± 0.037 14.039 ± 0.055 12.327 ± 0.046 16.541 ± 0.060 10.040 ± 0.051 16.293 ± 0.047
CCP 40.411 ± 0.285 60.790 ± 0.395 36.550 ± 0.141 41.755 ± 0.153 32.957 ± 0.224 36.797 ± 0.139

cluster-CP 28.919 ± 0.287 44.583 ± 0.667 32.928 ± 0.358 41.785 ± 0.220 32.983 ± 0.518 46.078 ± 0.312
k-CCP 17.282 ± 0.004 20.610 ± 0.006 20.452 ± 0.002 24.771 ± 0.004 19.398 ± 0.006 25.163 ± 0.002

Measure Methods EXP POLY MAJ

CIFAR-10

UCR

APSS

CIFAR-100

UCR

APSS

mini-ImageNet

UCR

APSS

Food-101

UCR

APSS

Table 16: Results comparing MCP, CCP, cluster-CP, and k-CCP under different imbalance ratios ρ = 0.5
and ρ = 0.1 using the RAPS score function. The regularization parameter for RAPS score function is selected
from the set [3, 5, 7] and [0.001, 0.01, 0.1]. We select the best results as each element in the table. We set UCR
of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction set
size. The APSS results show that k-CCP significantly outperforms CCP and cluster-CP in terms of average
prediction set size over all settings on CIFAR-100, mini-ImageNet, and Food-101.

F COMPARISON EXPERIMENTS WITH CONFORMAL TRAINING MODEL

To verify the suitability of k-CCP, we add the experiments by performing calibration using MCP,
CCP, cluster-CP, and k-CCP on the conformal training model Stutz et al. (2021) 4 in CIFAR-100
dataset. The imbalance type is EXP and the imbalance ratio is ρ = 0.1. The regularization pa-
rameters of conformal training model are r ∈ {0.01, 0.05, 0.1, 0.5, 1.0}. We have selected the best
results for each method and summarized results in Table 17. It is clear that k-CCP outperforms CCP
and cluster-CP, and improvement is not caused by RAPS. Due to the limited time for rebuttal and

4https://github.com/google-deepmind/conformal training/tree/main
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large computational cost of training conformal classifiers, we plan to add the corresponding results
for mini-ImageNet and Food-101 in the final paper.

APS RAPS

MCP 0.355 ± 0.014 0.377 ± 0.011
CCP 0.041 ± 0.004 0.046 ± 0.004

cluster-CP 0.027 ± 0.008 0.039 ± 0.007
k-CCP 0.000 ± 0.000 0.000 ± 0.000
MCP 19.786 ± 0.141 15.175 ± 0.127
CCP 38.505 ± 0.301 37.439 ± 0.593

cluster-CP 36.055 ± 0.636 36.193 ± 0.687
k-CCP 31.281 ± 0.007 31.283 ± 0.006

Measure Methods CIFAR-100

UCR

APSS

Table 17: Results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-18 model by conformal
training loss proposed by Stutz et al. (2021) and imbalance ratio ρ = 0.1 EXP on dataset CIFAR-100. We set
UCR of k-CCP the same as or better than that of CCP and cluster-CP for a fair comparison of prediction
set size.

G ILLUSTRATION OF GROUP-WISE AVERAGE PREDICTION SIZE

To visualize the average prediction prediction set size gap between group class, we add the experi-
ments with same model, imbalance type and imbalance ratio on four datasets. We select the top 1/4
classes of largest number of data to the majority group. Similarly, we select the bottom 1/4 classes
of smallest number of data to the minority group, and the remaining 1/2 classes to the medium
group.
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Figure 21: Comparison of average prediction set size with ρ = 0.1 EXP and APS score function. These results
show that there exists small gap between the average predictions set size on majority, medium, and minority
groups.
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Figure 22: Comparison of average prediction set size with ρ = 0.1 EXP and RAPS score function. These
results show that there exists small gap between the average predictions set size on majority, medium, and
minority groups.

H ABLATION STUDY FOR HYPER-PARAMETER g WITHIN k-CCP

We add the ablation study to verify how the hyper-parameter g affects the performance of
CCP, Cluster-CP, and k-CCP. We use the under coverage ratio (UCR) and average prediction
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Figure 23: Under coverage ratio (Top row) and average prediction set size (Bottom row) achieved by CCP,
cluster-CP, and k-CCP methods using ResNet20 model and RAPS score function on CIFAR-10, CIFAR-
100, mini-ImageNet, and Food-101 datasets with imbalance type EXP for imbalance ratio ρ = 0.1. k-CCP
degenerates to CCP in CIFAR-10, so there are only two lines (the black line overlaps with the red line).

set size (APSS) as metrics, which are introduced in Section 5.1. We set the range of g from
{0.1, 0.15, · · · , 0.7} on four datasets. Based on the results in Figure 2, 5, and 23, the UCR and
APSS of k-CCP are much smaller than CCP and Cluster-CP with the same g value.

I VERIFICATION OF σy ON CALIBRATION SET

To investigate the validity of σy on calibration datasets, we add experiments with imbalance ratio
ρ = 0.1 and imbalance type EXP on four datasets.

Figure 24 verifies the validity of Theorem 2 and confirms that optimized trade-off between the cov-
erage with inflated quantile and the constraint with calibrated rank leads to smaller prediction sets.
Experiments even show a stronger condition (σy ≤ 1 for all y) than the weighted aggregation con-
dition in (12). It also confirms that the condition number {σy}Cy=1 could be evaluated on calibration
datasets without testing datasets and thus decreases the computation cost. We notice that k-CCP
degenerates to CCP on CIFAR-10, so σy = 1 for all y and there is no trade-off. On the other three
datasets, we observe significant conditions for the optimized trade-off in k-CCP.
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Figure 24: Verification of condition numbers {σy}Cy=1 in Theorem 2 with ρ = 0.1 EXP on calibration datasets.
Vertical dashed lines represent the value 1, and we observe that all the condition numbers are smaller than
1. This verifies the validity of the condition for Theorem 2, and thus confirms that the conditional number
{σy}Cy=1 could be evaluated on calibration datasets without testing datasets and thus decrease the computation
cost.
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