
Under review as a conference paper at ICLR 2024

ADVERSARIAL IMITATION LEARNING VIA BOOSTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial imitation learning (AIL) has stood out as a dominant framework across
various imitation learning (IL) applications, with Discriminator Actor Critic (DAC)
(Kostrikov et al., 2019) demonstrating the effectiveness of off-policy learning algo-
rithms in improving sample efficiency and scalability to higher-dimensional obser-
vations. Despite DAC’s empirical success, the original AIL objective is on-policy
and DAC’s ad-hoc application of off-policy training does not guarantee successful
imitation (Kostrikov et al., 2019; 2020). Follow-up work such as ValueDICE
(Kostrikov et al., 2020) tackles this issue by deriving a fully off-policy AIL ob-
jective. Instead in this work, we develop a novel and principled AIL algorithm
via the framework of boosting. Like boosting, our new algorithm, AILBoost,
maintains an ensemble of properly weighted weak learners (i.e., policies) and trains
a discriminator that witnesses the maximum discrepancy between the distributions
of the ensemble and the expert policy. We maintain a weighted replay buffer to
represent the state-action distribution induced by the ensemble, allowing us to
train discriminators using the entire data collected so far. In the weighted replay
buffer, the contribution of the data from older policies are properly discounted
with the weight computed based on the boosting framework. Empirically, we
evaluate our algorithm on both controller state-based and pixel-based environments
from the DeepMind Control Suite. AILBoost outperforms DAC on both types
of environments, demonstrating the benefit of properly weighting replay buffer
data for off-policy training. On state-based environments, AILBoost outper-
forms ValueDICE and IQ-Learn(Garg et al., 2021), achieving competitive
performance with as little as one expert trajectory.

1 INTRODUCTION

Imitation learning (IL) is a promising paradigm for learning general policies without rewards from
demonstration data, achieving remarkable success in autonomous driving (Bronstein et al., 2022;
Pomerleau, 1988), video games (Baker et al., 2022; Shah et al., 2022) and graphics (Peng et al., 2021).
Adversarial Imitation Learning (AIL) is an incredibly successful approach for imitation learning
(Ho & Ermon, 2016; Fu et al., 2018; Kostrikov et al., 2019; Ke et al., 2020). These methods cast IL
as a distribution matching problem whereby the learning agent minimizes the divergence between
the expert demonstrator’s distribution and the state-action distribution induced by the agent. First
introduced by (Ho & Ermon, 2016), this divergence minimization can be achieved in an iterative
procedure reminiscent of GAN algorithms (Goodfellow et al., 2014) with our learned reward function
and policy being the discriminator and generator respectively.

Originally, a limitation of many AIL methods was that they were on-policy. That is, for on-policy
AIL methods like GAIL (Ho & Ermon, 2016) and AIRL (Fu et al., 2018), the algorithm would draw
fresh samples from the current policy in every iteration for the distribution matching process while
discarding all old samples, rendering the sample complexity of these algorithms to be prohibitively
large in many applications. Follow-up works (Kostrikov et al., 2019; Sasaki et al., 2019) attempt
to relax the on-policy requirement by creating off-policy methods that utilize the entire history of
observed data during the learning process. This history is often represented by a replay buffer
and methods such as Discriminator Actor Critic (DAC) show large improvements in scalability
and sample complexity over their on-policy counterparts. However, these methods modify the
distribution matching objective as a divergence minimization between the replay buffer’s and the
expert’s distribution, losing the guarantee of matching the expert’s behavior.

1

Under review as a conference paper at ICLR 2024

Algorithms like ValueDICE (Kostrikov et al., 2020) address this problem by deriving a new
formulation of the AIL divergence minimization objective to be entirely off-policy. ValueDICE,
however, in principle relies on the environments to have deterministic dynamics.1 In this work, we
consider a new perspective towards making AIL off-policy. We present a new principled off-policy
AIL algorithm, AILBoost, via the gradient boosting framework (Mason et al., 1999). AILBoost
maintains an ensemble of properly weighted weak learners or policies as well as a weighted replay
buffer to represent the state-action distribution induced by our ensemble. Our distribution matching
objective is then to minimize the divergence between the weighted replay buffer’s distribution (i.e.,
the state-action distribution induced by the ensemble) and the expert demonstrator’s distribution,
making the divergence minimization problem an off-policy learning problem. Similar to boosting
and gradient boosting, at every iteration, we aim to find a weak learner, such that when added to the
ensemble, the divergence between the updated ensemble’s distribution and the expert’s distribution
decreases. In other words, our approach can be understood as performing gradient boosting in the
state-action occupancy space, where black-box RL optimizer is used a weak learning procedure to
train weak learners, i.e., policies.

We evaluate AILBoost on the DeepMind Control Suite (Tassa et al., 2018) and compare against a
range of off-policy AIL algorithms (Behavior cloning, ValueDICE, DAC) as well as a state-of-the-
art IL algorithm, IQ-Learn. We show that our algorithm is comparable to or more sample efficient
than state-of-the-art IL algorithms in various continuous control tasks, achieving strong imitation
performance with as little as one expert demonstration. We also show that our approach scales to
vision-based, partially observable domains, where we again outperform DAC.

2 RELATED WORKS

Off-policy and Offline IL There has also been a wide variety of research conducted on off-policy
and offline IL, where the goal is to be either more sample efficient or safer by utilizing a replay buffer
or not collecting any environmental transitions during training, respectively. The most prominent of
said methods, and the closest to our work, is Discriminator-Actor-Critic (DAC) (Kostrikov et al.,
2019), which essentially replaces the on-policy RL algorithm in the adversarial IL setup with an
off-policy one such as DDPG (Lillicrap et al., 2019) or SAC (Haarnoja et al., 2018). However, as
mentioned previously, DAC doesn’t necessarily guarantee a distribution match between the expert
and the learned policy, prompting further work to be done. Further work has primarily focused on
weighting on-policy and off-policy data differently in both the policy update and the discriminator
update. ValueDICE (Kostrikov et al., 2020) mitigates this problem by deriving an objective
from the original distribution matching problem that only requires off-policy samples to compute.
More recently, methods such as IQ-Learn (Garg et al., 2021) have been developed to learn soft
Q functions over the environment space, which encodes both a reward and a policy for inverse
reinforcement learning, and model-based methods such as V-MAIL (Rafailov et al., 2021) have
shown that using expressive world models (Hafner et al., 2020) leads to strong imitation results in
domains with high-dimensional observations. Other off-policy IL works include SoftDICE (Sun
et al., 2021), SparseDICE (Camacho et al., 2021), and AdVIL/AdRIL/DAeQuIL (Swamy et al., 2021).

Orthogonally, on the offline side, where environment interaction is prohibited, works both on the
model-based side (Chang et al., 2021) and the model-free side (Kim et al., 2022; Yu et al., 2023)
has shown that distribution matching is still possible in these settings. These approaches generally
operate either by learning a transition model of the environment, with which to roll out in to do policy
optimization (Chang et al., 2021), or optimizing a modified version of the objective introduced in
(Kostrikov et al., 2020) by using samples from the suboptimal offline dataset as opposed to on-policy
samples for computation.

Boosting style approach in deep learning & RL The idea of using boosting for policy learning is
not new in the deep learning or reinforcement learning literature. On the deep learning side, AdaGAN
(Tolstikhin et al., 2017) apply standard adaptive boosting to GANs (Goodfellow et al., 2014) to

1One cannot derive an unbiased estimate of the objective function proposed in ValueDICE unless it has
infinite expert samples and the transition is deterministic (Kostrikov et al., 2020). See section 3.3 for more
detailed discussion.

2

Under review as a conference paper at ICLR 2024

address and fix issues such as mode collapse, while concurrent work (Grover & Ermon, 2017) showed
benefits of boosting in general Bayesian mixture models. In RL, the conservative policy iteration
(CPI) (Kakade & Langford, 2002) can be understood as performing gradient boosting in the policy
space (Scherrer & Geist, 2014). The authors in (Hazan et al., 2019) use a gradient boosting style
approach to learn maximum entropy policies. In this work, we perform gradient boosting in the space
of state-action occupancy measures, which leads to a principled off-policy IL approach.

3 PRELIMINARIES

We consider a discounted infinite horizon MDPM = ⟨S, P,A, r, γ, µ0⟩ where S is the state of states,
A is the set of actions, r : S ×A 7→ R is the reward function and r(s, a) is the reward for the given
state-action pair, γ ∈ (0, 1) is the discount factor, µ0 ∈ ∆(S) is the initial state distribution, and
P : S×A 7→ ∆(S) is the transition function. A policy π : S → ∆(A) interacts in said MDP, creating
trajectories τ composed of state-action pairs {(st, at)}Tt=1. We denote dπt to represent the state-
action visitation distribution induced by π at timestep t and dπ = (1− γ)

∑∞
t=0 γ

tdπt as the average
state-action visitation distribution induced by policy π. We define the value function and Q-function
of our policy as V π(s) = Eπ[

∑∞
t=0 γ

tr(st)|s0 = s] and Qπ(s, a) = r(s, a) + Es′∼P (·|s,a)[V
π(s′)].

The goal of RL is to find a policy that maximizes the expected cumulative reward.

In imitation learning, instead of having access to the reward function, we assume access to demon-
strations De = {(si, ai)}Ni=1 from an expert policy πe that our policy can take advantage of while
training. Note that πe might not necessarily be a Markovian policy. It is possible that πe is an
ensemble of weighted Markovian policies, i.e., πe = {αi, πi}ni=1 with αi ≥ 0,

∑
i αi = 1, which

means that for each episode, πe will first randomly sample a policy πi with probability αi at t = 0,
and then execute πi for the entire episode (i.e., no switch to other policies during the execution for
an episode). It is well known that the space of state action distributions induced by such ensembles
is larger than the space of state-action distributions induced by Markovian policies (Hazan et al.,
2019). The goal in IL is then to learn a policy that robustly mimics the expert. The simplest imitation
learning algorithm to address this issue is behavior cloning (BC): argminπ∈Π E(s,a)∼De [ℓ(π(s), a)]
where ℓ is a classification loss and Π is our policy class. Though this objective is simple, it is known
to suffer from covariate shift at test time (Pomerleau, 1988; Ross et al., 2011). Instead of minimizing
action distribution divergence conditioned on expert states, algorithms such as inverse RL (Ziebart
et al., 2008) and adversarial IL (Ho & Ermon, 2016; Finn et al., 2016; Ke et al., 2020; Sun et al.,
2019) directly minimize some divergence metrics between state-action distributions, which help
address the covariate shift issue (Agarwal et al., 2019).

3.1 ADVERSARIAL IMITATION LEARNING (AIL)

The goal of AIL is to directly minimize some divergence between some behavior policy state-action
visitation dπ and an expert policy state-action visitation dπ

e

. The choice of divergence results in
variously different AIL algorithms.

The most popular AIL algorithm is Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon,
2016) which minimizes the JS-divergence. This algorithm is a on-policy adversarial imitation
learning algorithm that connects Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) and maximum entropy IRL (Ziebart et al., 2008). GAIL trains a binary classifier called the
discriminator D(s, a) to distinguish between samples from the expert distribution and the policy
generated distribution. Using the discriminator to define a reward function, GAIL then executes an
on-policy RL algorithm such as Trust Region Policy Optimization (TRPO) (Schulman et al., 2017a)
or Proximal Policy Optimization (PPO) (Schulman et al., 2017b) to maximize the reward. That gives
us the following adversarial objective:

min
π

max
D

Es,a∼π [logD(s, a)] + Es,a∼πe [log(1−D(s, a))]− λH(π) (1)

where H(π) is an entropy regularization term. The first term in eq. (1) can be viewed as a pseudo
reward that can be optimized with respect to the the policy π on-policy samples. Note that GAIL
typically optimizes both policies and discriminators using on-policy samples, making it quite sample
inefficient. Using different divergences, there are various reward functions that can be optimized
with this framework (Orsini et al., 2021). In this work, while our proposed approach in general is

3

Under review as a conference paper at ICLR 2024

capable of optimizing many common divergences, we mainly focus on reverse KL divergence in our
experiments. Reverse KL divergence has been studied in prior works including Fu et al. (2018); Ke
et al. (2020). But different from prior works, we propose an off-policy method for optimizing reverse
KL by leveraging the framework of boosting.

3.2 DISCRIMINATOR ACTOR CRITIC (DAC)

One reason GAIL need a lot of interactions with the environment to learn properly is because of the de-
pendency on using on-policy approaches to optimize discriminators and policies. In particular, GAIL
does not reuse any old samples. Discriminator Actor Critic (DAC) (Kostrikov et al., 2019) extends
GAIL algorithms to take advantage of off-policy learning to optimize the discriminators and policies.

DAC introduces a replay bufferR to represent the history of transitions observed throughout training
in the context of IRL. This replay buffer allows DAC to perform off-policy training of the policy and
the discriminator (similar to (Sasaki et al., 2019)). Formally, DAC optimizes its discriminator with
the objective:

max
D

Es,a∼R [logD(s, a)] + Es,a∼πe [log(1−D(s, a))] . (2)

where this objective minimize the divergence between the expert distribution and the replay
buffer R distribution. Intuitively, this divergence does not strictly capture the divergence
of our policy distribution and the expert distribution, but a mixture of evenly weighted
policies learned up until the current policy. To rigorously recover a divergence between
our policy distribution and the expert distribution we need to apply importance weights:
min
π

max
D

Es,a∼R

[
pπ(s,a)
pR(s,a) logD(s, a)

]
+ Es,a∼πe [log(1−D(s, a))] − λH(π). While this objec-

tive recovers the on-policy objective of GAIL (Equation (1)), the authors note that estimating the
density ratio is difficult and has high variance in practice. Furthermore, they note that the not
using importance weights (Equation (2)) works well in practice, but does not guarantee successful
imitation, especially when the distribution induced by the replay buffer,R, is far from our current
policy’s state-action distribution. This is a fundamental problem of DAC.

3.3 VALUEDICE

ValueDICE (Kostrikov et al., 2020) was proposed to address the density estimation issue of off-
policy AIL algorithms formalized in DAC (see section 3.2). ValueDICE aims to minimize the
reverse KL divergence written in its Donsker-Varadhan (Donsker & Varadhan, 1983) dual form:

−KL(dπ||dπe) = min
x:S×A7→R

logE(s,a)∼dπe [ex(s,a)]− E(s,a)∼dπ [x(s, a)] (3)

Motivated from DualDICE (Nachum et al., 2019), ValueDICE performs a change of variable
using the Bellman operator Bπ2 with respect to the policy π; x(s, a) = ν(s, a)− Bπ(s, a); resulting
the following objective:

max
π

min
ν:S×A→R

logEs,a∼πe [exp (ν(s, a)− Bπν(s, a))]− (1− γ)Es0∼µ0,
a0∼π

[ν(s0, a0)] . (4)

Now the objective function does not contain on-policy distribution dπ (in fact only the initial state
distribution µ0 and the expert distribution). Despite being able to only using dπ

e

and µ0, the authors
have identified two aspects of the objective that will yield biased estimates. First, the first expectation
has a logarithm outside of it which would make mini-batch estimates of this expectation biased.
Moreover, inside the first expectation term, we have ν(s, a)− Bπν(s, a) with Bπ being the Bellman
operator. This limits ValueDICE’s objective to only be unbiased for environments with deterministic
transitions. This is related to the famous double sampling issue in TD learning. Although many
popular RL benchmarks have deterministic transitions (Bellemare et al., 2013; Tassa et al., 2018;
Todorov et al., 2012), this was a limitation not present in the GAIL.

In this work, we take a different perspective than ValueDICE to derive an off-policy AIL algorithm.
Different from ValueDICE, our approach is both off-policy and is amenable to mini-batch updates
even with stochastic environment transition dynamics.

2A bellman operator Bπ is defined as follows: given any function f(s, a), we have Bπf(s, a) := r(s, a) +
Es′∼P (s,a)f(s

′, π(s′),∀s, a.

4

Under review as a conference paper at ICLR 2024

4 ALGORITHM

Our algorithm, Adversarial Imitation Learning via Boosting (AILBoost) – motivated by classic gra-
dient boosting algorithms (Friedman, 2001; Mason et al., 1999) – attempts to mitigate a fundamental
issue related to off-policy imitation learning formalized in DAC (see section 3.2). The key idea is to
treat learned policies as weak learners, form an ensemble of them (with a proper weighting scheme
derived from a gradient boosting perspective), and update the ensemble via gradient boosting.

Weighted policy ensemble. Our algorithm will learn a weighted ensemble of policies, denoted
as π := {αi, πi}ni=1 with αi ≥ 0,

∑
i αi = 1 and πi being some Markovian policy. The way the

mixture works is that when executing π, at the beginning of an episode, a Markovian policy πi is
sampled with probability αi, and then πi is executed for the entire episode (i.e., no policy switch in
an episode). Note that π itself is not a Markovian policy anymore due to the sampling process at
the beginning of the episode, and in fact, such mixture policy’s induced state-action distribution can
be richer than that from Markovian policies (Hazan et al., 2019). This is consistent with the idea of
boosting: by combining weak learners, i.e., Markovian policies, we form a more powerful policy.
Given the above definition of π, we immediately have dπ :=

∑
i αid

πi , i.e., the weighted mixture of
the state-action distributions induced by Markovian policies πi.

Notation wise, given a dataset D, we denote ÊD[f(x)] as the empirical function average across the
dataset, i.e., ÊD[f(x)] =

∑
x∈D f(x)/ |D|.

4.1 AILBOOST : ADVERSARIAL IMITATION LEARNING VIA BOOSTING

We would like to minimize the reverse KL divergence between our policy state-action dis-
tribution dπ and the expert distribution dπ

e

– denoted by ℓ(dπ, dπ
e

) = KL(dπ||dπe

) :=∑
s,a d

π(s, a) ln(dπ(s, a)/dπ
e

(s, a)). The reasons that we focus on reverse KL is that (1) it has
been argued that the mode seeking property of reverse KL is more suitable for imitation learning
(Ke et al., 2020), (2) reverse KL is on-policy in nature, i.e., it focuses on minimizing the divergence
of our policy’s action distribution and the expert’s at the states from our policy, which help address
the covariate shift issue, and (3) the baselines we consider in experiments, DAC and ValueDICE,
all minimize the reverse KL divergence such as AIRL in practice 3. At a high level, our approach
directly optimizes ℓ(dπ, dπ

e

) via gradient boosting (Mason et al., 1999) in the state-action occupancy
space. Our ensemble π induces the following mixture state-action occupancy measure:

dπ :=

t∑
i=1

αid
πi , αi ≥ 0.

To compute a new weak learner πt+1, we will first compute the functional gradient of loss ℓ with
respect to dπ, i.e., ∇ℓ(d, dπe

)|d=dπ . The new weak learner πt+1 is learned via the following
optimization procedure: πt+1 = argmaxπ̃∈Π⟨dπ̃,−∇ℓ(d, dπ

e

)|d=dπ ⟩. Namely, we aim to search for
a new policy πt+1 such that its state-action occupancy measure dπt+1 is aligned with the negative
gradient−∇ℓ as much as possible. Note that the above optimization problem can be understood as an
RL procedure where the reward function is defined as −∇ℓ(d, dπe)|d=dπ ∈ RSA. Once we compute
the weak learner πt+1, we mix it into the policy ensemble with a fixed learning rate α ∈ (0, 1)

– denoted as dπ
′
= (1 − α)dπ + αdπt+1 . Note that the above mixing step can be interpreted as

gradient boosting in the state-action occupancy space directly: we re-write the update procedure as
dπ

′
= dπ + α(dπt+1 − dπ), where the ascent direction dπt+1 − dπ is approximating the (negative)

functional gradient −∇ℓ, since argmaxπ⟨dπ − dπ,−∇ℓ⟩ = πt+1 by the definition of πt+1. It has
been shown that such procedure is guaranteed to minimize the objective function (i.e., reverse KL
in this case) as long as the objective is smooth (our loss ℓ will be smooth as long as dπ is non-zero
everywhere) (e.g., see (Hazan et al., 2019) for the claim).4

3See the official repository
4Note that similar to AdaBoost, each weaker is not directly optimizing the original objective, but the weighted

combination of the weaker learners optimizes the original objective function – the reverse KL in our case.

5

https://github.com/google-research/google-research/tree/master/dac

Under review as a conference paper at ICLR 2024

Algorithm 1 AILBOOST (Adversarial Imitation Learning via Boosting)
Require: number of iterations T , expert data De, weighting parameter α

1: Initialize π1 weight α1 = 1, replay buffer B = ∅
2: for t = 1, . . . , T do
3: Construct the t-th dataset Dt = {(sj , aj)}Nj=1 where sj , aj ∼ dπt ∀j.
4: Compute discriminator ĝ using the weighted replay buffer:

ĝ = argmax
g

[
Ês,a∈Dπe [− exp(g(s, a))] +

t∑
i=1

αiÊs,a∈Di [g(s, a)]

]
(5)

5: Set B ← B ∪ Dt

6: Compute weak learner πt+1 via an off-policy RL approach (e.g., SAC) on reward −ĝ(s, a)
with replay buffer B

7: Set αi ← αi(1− α) for i ≤ t, and αt+1 = α
8: end for
9: Return Ensemble π = {(αi, πi)}Ti=1

Algorithmically, we first express the reverse KL divergence in its variational form (Nowozin et al.,
2016; Ke et al., 2020):

KL(dπ||dπ
e

) := max
g

[
Es,a∼dπe [− exp(g(s, a))] + Es,a∼dπg(s, a)

]
where g : S × A 7→ R is a discriminator. The benefit of using this variational form is that
computing the functional (sub)-gradient of the reverse KL with respect to dπ is easy, which is
ĝ = argmaxg

[
Es,a∼dπe [− exp(g(s, a))] + Es,a∼dπg(s, a)

]
, i.e., we have ĝ being a functional sub-

gradient of the loss KL(dπ||dπe

) with respect to dπ. The maximum discriminator ĝ will serve as a
reward function for learning the next weak learner πt+1, that is

πt+1 = argmax
π

Es,a∼dπ [−ĝ(s, a)] = argmax
π
⟨dπ,−ĝ(s, a)⟩. (6)

To compute ĝ in practice, we need unbiased estimates of the expectations via sample averaging which
can be done easily in our case. The expectation Es,a∼dπe can be easily approximated by the expert
dataset De. To approximate Es,a∼dπ where dπ is a mixture distribution, we maintain a replay buffer
Di for each weak learner πi which contains samples s, a ∼ dπi , and then weightDi via the weight αi

associated with πi. In summary, we optimize g as shown in Eq. 5 in Alg 4.1 (the highlighted red part
denotes the empirical expectation induced by weighted replay buffer). The optimization problem in
Eq 5 can be solved via stochastic gradient ascent on g.5 With ĝ, we can optimize for πt+1 using any
off-shelf RL algorithm, making the entire algorithm off-policy. In our experiments, we use SAC as the
RL oracle for argmaxπ Es,a∼dπ [−ĝ(s, a)]. Once πt+1 is computed, we mix πt+1 into the mixture,
and adjust the weights of older policies accordingly, i.e., αt+1 = α, and αi ← αi(1 − α),∀i ≤ t.
Note that this weighting scheme ensures that older policies get less weighted in the ensemble.
Remark 1. The use of SAC as the weak learning algorithm and the new way of computing discrimi-
nator from Eq. 5 make the whole training process completely off-policy. Particularly, unlike most
adversarial IL approaches, which compute discriminators by comparing on-policy samples from
the latest policy and the expert samples, we train the discriminator using all the data collected so
far (with proper weighting derived based on the boosting framework). The connection to boosting
and the proper weighting provides a principled way of leveraging off-policy samples for updating
discriminators. As we will show, compared to DAC which also uses off-policy samples for training
policies and discriminators, our principled approach leads to better performance.

Alg 4.1 AILBoost, summarizes the above procedure. In Line 10, we use SAC as the RL oracle
for computing the weak learner. In practice, we do not run SAC from scratch every time in Line 10.
Instead, SAC maintains its own replay buffer which contains all interactions it has with the environ-
ment so far. When computing πt+1, we first update the reward in the replay buffer using the latest

5Note that unlike ValueDICE, here we can easily use a finite number of samples to obtain an unbiased
estimate of the loss by replacing expectations by their corresponding sample averages.

6

Under review as a conference paper at ICLR 2024

learned reward function −ĝ, and we always warm start from πt. We include the detailed algorithmic
description in Appendix A.

Memory cost. Note that at the end, our algorithm returns a weighted ensemble of Markovian policies.
Comparing to prior works such as DAC, the maintenance of weak learners may increase additional
memory cost. However, the benefit of the weighted ensemble is that it induces richer state-action
distributions than that of Markovian policies. In practice, if memory cost really becomes a burden
(not in our experiments even with image-based control policies), we may just keep the latest few
policies (note that very old policy has exponentially small weight anyway).

5 EXPERIMENTS

In this section we aim to empirically investigate the following questions: (1) How does AILBoost
perform relative to other off-policy and state-of-the-art IL methods? (2) Does AILBoost enjoy
the sample complexity and scalability benefits of modern off-policy IL methods? (3) How robust is
AILBoost across various different adversarial training schedules?

Task Difficulty

Ball in Cup Catch Easy
Walker Walk Easy
Cheetah Run Medium
Quadruped Walk Medium
Humanoid Stand Hard

Table 1: Spread of environments evaluated
from the DeepMind Control Suite with hard-
ness designations from (Yarats et al., 2022).

We evaluate AILBoost on 5 environments on the
DeepMind Control Suite benchmark(Tassa et al.,
2018): Walker Walk, Cheetah Run, Ball in
Cup Catch, Quadruped Walk, and Humanoid
Stand. For each game, we train an expert RL agent
using the environment’s reward and collect 10 demon-
strations which we use as the expert dataset throughout
our experiments. We compare AILBoost against the
following baselines: DAC, an empirically succesful off-
policy IL algorithm; IQ-Learn, a state-of-the-art IL
algorithm; ValueDICE, another off-policy IL method;
and BC on the expert data used across all algorithms. We emphasize our comparison to IQ-Learn,
as it has been shown to outperform many other imitation learning baselines (e.g., SQIL (Reddy et al.,
2019)) across a variety of control tasks (Garg et al., 2021).

The base RL algorithm we used for training the expert, as well as for AILBoost and DAC, was SAC
for controller state-based experiments and DrQ-v2 (Yarats et al., 2022) for image-based experiments.
For IQ-Learn and ValueDICE, we used their respective codebases and hyperparameters provided
by the authors and both methods use SAC as their base RL algorithm. Please refer to Appendix B for
experimental details, training hyperparameters, and expert dataset specifications.

5.1 CONTROLLER STATE-BASED EXPERIMENTS

Figure 1 shows our aggregate results across the five DeepMind Control Suite (DMC) tasks that we
tested on. We chose these five tasks by difficulty as shown in Table 1. For evaluation, we follow the
recommendations of (Agarwal et al., 2021) and report the aggregate inter-quartile mean, mean, and
optimiality gap of AILBoost and all the baselines on the DMC suite with 95% confidence intervals.
We find that AILBoost not only outperforms all baselines but also consistently matches the expert
with only 1 expert trajectory.

When we inspect the 1 trajectory case closer, Figure 2 shows the learning curves on three repre-
sentative (1 easy, 1 medium, 1 hard task) environments where we see AILBoost maintain high
sample efficiency and strong imitation while state-of-the-art baselines like IQ-Learn completely
fail on Humanoid Stand. Finally, we note that AILBoost greatly outperforms ValueDICE
which aimed to make AIL off-policy from a different perspective. We refer readers to Figure 6
in the appendix for the learning curves on all five environments with different numbers of expert
demonstrations.

5.2 IMAGE-BASED EXPERIMENTS

Figure 3 demonstrates the scalability of AILBoost on a subset of environments with 10 expert
trajectories. For these experiments, we use DrQ-v2 (Yarats et al., 2022) as the underlying off-policy
RL algorithm for both DAC and AILBoost. On Walker Walk and Cheetah Run, we see

7

Under review as a conference paper at ICLR 2024

10 Demos

5 Demos

1 Demo

Expert Normalized Score

0.60 0.75 0.90
BC

ValueDICE
IQ-Learn

DAC
AILBoost

IQM

0.60 0.75 0.90

Mean

0.15 0.30 0.45

Optimality Gap

0.4 0.6 0.8 1.0
BC

ValueDICE
IQ-Learn

DAC
AILBoost

0.45 0.60 0.75 0.90 0.15 0.30 0.45 0.60

0.25 0.50 0.75 1.00
BC

ValueDICE
IQ-Learn

DAC
AILBoost

0.4 0.6 0.8 0.2 0.4 0.6 0.8

Figure 1: Aggregate metrics on DMC environments with 95% confidence intervals (CIs) based
on 5 environments spanning easy, medium, and hard tasks. Higher inter-quartile mean (IQM) and
mean scores (right) and lower optimality gap (left) is better. The CIs were calculated with percentile
bootstrap with stratified sampling over three random seeds and all metrics are reported on the expert
normalized scores. AILBoost outperforms DAC, ValueDICE, IQ-Learn, and BC across all
metrics, amount of expert demonstrations, and tasks.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Samples 1e6

0

200

400

600

800

1000

M
ea

n
Sc

or
e

Ball in Cup Catch

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Samples 1e6

0

200

400

600

800

1000
Cheetah Run

0 1 2 3 4 5 6
Samples 1e6

0

200

400

600

800

1000
Humanoid Stand

Expert BC IQ-Learn ValueDICE DAC AILBoost

Figure 2: Learning curves with 1 expert trajectory across 3 random seeds. Note AILBoost
successfully imitates expert on all environments where other baselines fail and achieves better
sample complexity than DAC. Note that when the environment difficulty level increases, our method
shows a larger performance gap compared to baselines (e.g., humanoid stand).

comparable to better performance than DAC demonstrating that our boosting strategy successfully
maintains the empirical, scaling properties of DAC. Furthermore, our use of different off-policy RL
algorithms show the versatility of AILBoost for IL.

5.3 SENSITIVITY TO GRADIENT-BASED OPTIMIZATION FOR WEAK LEARNERS AND
DISCRIMINATORS

Our algorithm relies on solving optimization problems in Eq. 6 and Eq. 5 for weak learners and
discriminators, where weak learner is optimized by SAC and discriminators are optimized by SGD.
While it is hard to guarantee in general that we can exactly solve the optimization problem due to
our policies and discriminators are both being non-convex neural networks, we in general found
that approximately solving Eq. 6 and Eq. 5 via gradient based update is enough to ensure good
performance. In this section, we test AILBoost across a variety of optimization schedules. Overall,
we find that AILBoost to be robust to optimization schedules — approximately optimizing Eq. 6

8

Under review as a conference paper at ICLR 2024

0 50000 100000 150000 200000 250000
Samples

0

200

400

600

800

M
ea

n
Sc

or
e

Walker Walk

0 50000 100000 150000 200000 250000
Samples

0

200

400

600

800

Cheetah Run

Expert BC DAC AILBoost

Figure 3: Image based: performance on image-based DMC environments, Walker Walk and
Cheetah Run, comparing AILBoost, DAC, and BC on three random seeds.

and Eq. 5 with sufficient amount of gradient updates ensures successful imitation; however, there
exists a sample complexity cost when over-optimizing either the discriminator or the policy.

Figure 4 shows our investigation of how sensitive AILBoost is to different optimization schedules
for both the policy and discriminator on two representative DMC environments. In particular, we test
with 5 expert demonstrations, where we vary the number of discriminator and policy updates. We
test the following update schemes:

• 1000 policy updates per 100 discriminator updates
• 1000 policy updates per 10 discriminator updates
• 1000 policy updates per 1 discriminator update
• 100 policy updates per 100 discriminator updates

These ranges, test various optimization schemes around the schedule that we chose for the main
results. We find that the more policy updates we do per discriminator update, the algorithm becomes
significantly less sample efficient despite asymptotically reaching expert performance. We also found
that an insufficient amount of updates on the discriminator general hurts the performance. This is
also expected since insufficient update on the discriminators may result a ĝ which does not optimize
Eq. 5 well enough.

0.0 0.5 1.0 1.5
Samples 1e6

0

200

400

600

800

1000

M
ea

n
Sc

or
e

Ball in Cup Catch

0.0 0.5 1.0 1.5
Samples 1e6

Walker Walk

Expert
1000 P, 100 D
1000 P, 10 D
1000 P, 1 D
100 P, 100 D

Figure 4: Policy and Discriminator Update Schedules: Learning curves for AILBoost on two
representative DMC environments, Walker Walk and Ball in Cup Catch, when optimizing
with varying policy and discriminator update schemes across 3 seeds.

6 CONCLUSION

In this work, we present a fully off-policy adversarial imitation learning algorithm, AILBoost.
Different from previous attempts at making AIL off-policy, via the gradient boosting framework,
AILBoost provides a principled way of re-using old data for learning discriminators and policies.
We show that our algorithm achieves state-of-the-art performance on state-based results on the
DeepMind Control Suite while being able to scale to high-dimensional, pixel observations. We are
excited to extend this framework to discrete control as well as investigate imitation learning from
observations alone under this boosting framework.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 29304–29320. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos, 2022.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013. doi: 10.1613/jair.3912. URL https://doi.org/10.1613%2Fjair.3912.

Eli Bronstein, Mark Palatucci, Dominik Notz, Brandyn White, Alex Kuefler, Yiren Lu, Supratik
Paul, Payam Nikdel, Paul Mougin, Hongge Chen, Justin Fu, Austin Abrams, Punit Shah, Evan
Racah, Benjamin Frenkel, Shimon Whiteson, and Dragomir Anguelov. Hierarchical model-based
imitation learning for planning in autonomous driving, 2022. URL https://arxiv.org/
abs/2210.09539.

Alberto Camacho, Izzeddin Gur, Marcin Lukasz Moczulski, Ofir Nachum, and Aleksandra Faust.
Sparsedice: Imitation learning for temporally sparse data via regularization. In ICML 2021
Workshop on Unsupervised Reinforcement Learning, 2021.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mit-
igating covariate shift in imitation learning via offline data with partial coverage. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 965–979. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/07d5938693cc3903b261e1a3844590ed-Paper.pdf.

M. D. Donsker and S. R.S. Varadhan. Asymptotic evaluation of certain markov process expectations
for large time. iv. Communications on Pure and Applied Mathematics, 36(2):183–212, March
1983. ISSN 0010-3640. doi: 10.1002/cpa.3160360204.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189 – 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.org/
10.1214/aos/1013203451.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Aditya Grover and Stefano Ermon. Boosted generative models, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

10

https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://doi.org/10.1613%2Fjair.3912
https://arxiv.org/abs/2210.09539
https://arxiv.org/abs/2210.09539
https://proceedings.neurips.cc/paper_files/paper/2021/file/07d5938693cc3903b261e1a3844590ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/07d5938693cc3903b261e1a3844590ed-Paper.pdf
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451

Under review as a conference paper at ICLR 2024

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa.
Imitation learning as f -divergence minimization, 2020.

Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. Demodice: Offline imitation learning with supplementary imperfect
demonstrations. In International Conference on Learning Representations (ICLR), 2022. URL
https://openreview.net/forum?id=BrPdX1bDZkQ.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=Hk4fpoA5Km.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=Hyg-JC4FDr.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient
descent. In S. Solla, T. Leen, and K. Müller (eds.), Advances in Neural Information Processing Sys-
tems, volume 12. MIT Press, 1999. URL https://proceedings.neurips.cc/paper_
files/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. Advances in Neural Information Processing Systems,
32, 2019.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Sertan Girgin,
Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychowicz. What matters
for adversarial imitation learning? Advances in Neural Information Processing Systems, 34:
14656–14668, 2021.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. AMP. ACM Transactions
on Graphics, 40(4):1–20, jul 2021. doi: 10.1145/3450626.3459670. URL https://doi.org/
10.1145%2F3450626.3459670.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
D. Touretzky (ed.), Advances in Neural Information Processing Systems, volume 1. Morgan-
Kaufmann, 1988. URL https://proceedings.neurips.cc/paper_files/paper/
1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Visual adversarial imitation learn-
ing using variational models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 3016–
3028. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/1796a48fa1968edd5c5d10d42c7b1813-Paper.pdf.

11

https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=BrPdX1bDZkQ
https://openreview.net/forum?id=Hk4fpoA5Km
https://openreview.net/forum?id=Hk4fpoA5Km
https://openreview.net/forum?id=Hyg-JC4FDr
https://openreview.net/forum?id=Hyg-JC4FDr
https://proceedings.neurips.cc/paper_files/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf
https://doi.org/10.1145%2F3450626.3459670
https://doi.org/10.1145%2F3450626.3459670
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1796a48fa1968edd5c5d10d42c7b1813-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1796a48fa1968edd5c5d10d42c7b1813-Paper.pdf

Under review as a conference paper at ICLR 2024

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. Sample efficient imitation learning for
continuous control. In International conference on learning representations, 2019.

Bruno Scherrer and Matthieu Geist. Local policy search in a convex space and conservative policy
iteration as boosted policy search. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings,
Part III 14, pp. 35–50. Springer, 2014.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Rohin Shah, Steven H. Wang, Cody Wild, Stephanie Milani, Anssi Kanervisto, Vinicius G. Goecks,
Nicholas Waytowich, David Watkins-Valls, Bharat Prakash, Edmund Mills, Divyansh Garg,
Alexander Fries, Alexandra Souly, Chan Jun Shern, Daniel del Castillo, and Tom Lieberum.
Retrospective on the 2021 basalt competition on learning from human feedback, 2022.

Mingfei Sun, Anuj Mahajan, Katja Hofmann, and Shimon Whiteson. Softdice for imitation learning:
Rethinking off-policy distribution matching. arXiv preprint arXiv:2106.03155, 2021.

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation learning
from observation alone. In International conference on machine learning, pp. 6036–6045. PMLR,
2019.

Gokul Swamy, Sanjiban Choudhury, J. Andrew Bagnell, and Zhiwei Steven Wu. Of moments and
matching: A game-theoretic framework for closing the imitation gap. In Proceedings of the 38th
International Conference on Machine Learning, 2021.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard Schölkopf.
Adagan: Boosting generative models, 2017.

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://
github.com/denisyarats/pytorch_sac, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=_SJ-_yyes8.

Lantao Yu, Tianhe Yu, Jiaming Song, Willie Neiswanger, and Stefano Ermon. Offline imitation
learning with suboptimal demonstrations via relaxed distribution matching, 2023.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

12

https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac
https://openreview.net/forum?id=_SJ-_yyes8

Under review as a conference paper at ICLR 2024

A DETAILED ALGORITHM PSEUDOCODE

Appendix A presents a more detailed pseudocode of AILBoost. The main detail here is the 2-step
process of learning our discriminator using a weighted replay buffer of weak learner samples and
then learning a weak learner for a certain number of RL steps.

Algorithm 2 AILBOOST (Adversarial Imitation Learning via Boosting)
Require: number of iterations T , expert data De, weighting parameter α

1: Initialize π1 weight α1 = 1, replay buffer B = ∅
2: for t = 1, . . . , T do
3: Construct the t-th dataset Dt = {(sj , aj)}Nj=1 where sj , aj ∼ dπt ∀j.
4: Set B ← B ∪ Dt

5: for # of Discriminator Updates do
6: Sample batch from B with respective sample weights αi<t

7: Update discriminator ĝ via Eq. 5
8: end for
9: for # of Weak Learner Updates do

10: Compute weak learner πt+1 via an off-policy RL approach (e.g., SAC) on reward −ĝ(s, a)
with replay buffer B with uniform weights on all samples

11: end for
12: Set αi ← αi(1− α) for i ≤ t, and αt+1 = α
13: end for
14: Return Ensemble π = {(αi, πi)}Ti=1

After learning our ensemble, we evaluate it by randomly sampling a policy, πi, from our ensemble
with probability αi. With this weighted sampling, we then collect a trajectory. Appendix A details
this process.

Algorithm 3 AILBOOST EVALUATION

Require: Ensemble π = {(αi, πi)}Ti=1
1: for # of Evaluation Trajectories do
2: Sample πi ∼ π with probability αi

3: Collect trajectory using πi

4: end for

13

Under review as a conference paper at ICLR 2024

B IMPLEMENTATION AND EXPERIMENT DETAILS

Here we detail all environment specifications and hyperparameters used in the main text.

B.1 ENVIRONMENT DETAILS

Following the standards used by DrQ-v2 (Yarats et al., 2022), all environments have a maximum
horizon length of 500 timesteps. This is achieved by setting each environment’s action repeat to be
2 frames. For image based tasks, each state is 3 stacked frames that are each 84 × 84 dimensional
RGB images (thus 9× 84× 84).

Task Action Space Dimension Task Traits Reward Type

Ball in Cup Catch 2 swing, catch sparse
Walker Walk 6 walk dense
Cheetah Run 6 run dense

Quadruped Walk 12 walk dense
Humanoid Stand 21 stand dense

Table 2: Task descriptions, action space dimension, and reward type for each tested environment.

B.2 DATASET DETAILS

Using the publicly released implementation for SAC and DrQ-v2, we trained high quality expert
policies for state-based and image-based environments respectively. We refer the readers to (Yarats
et al., 2022) and (Haarnoja et al., 2018; Yarats & Kostrikov, 2020) for exact hyperparameters.

Task
Expert

Performance
Random

Performance

Ball in Cup Catch 980.8 16.4
Walker Walk 966.6 19.9
Cheetah Run 910.5 0.2

Quadruped Walk 959.2 17.9
Humanoid Stand 927.8 3.9

Walker Walk (Vision) 823.1 9.6
Cheetah Run (Vision) 806.3 0.3

Table 3: Average expert and random performance calculated by averaging 50 trajectories collected
from the expert and random policies respectively. Vision experts are denoted (vision)

B.3 HYPERPARAMETERS

For ValueDICE and IQ-Learn, we used the base hyperparameters they reported for the MuJoCo
benchmark suite. In order to ensure good performance, we tried different configurations for every
environments (i.e. the configuration for Cheetah Run for Walker Walk) since despite using the
same physics engine and models, there are minor differences for DeepMind Control Suite. For DAC
and AILBoost, we used our own implementations. Table 4 details the hyperparameters used. Note
that all hyperparameters are shared between DAC and AILBoost except for the update frequency
of the disciminrator vs the policy. Note that this is one of the core differences between DAC and
AILBoost.

For AILBoost we predominanty tested 4 hyperparameters: # of discriminator updates, steps to
learn weak learners, weighting parameter α, and the TD n-step. For the # of discriminator updates we
tested 10, 100, 500, 1000, and 5000. For the the steps to learn weak learners, we tested 1000, 5000,
10000, 20000, and 100000. For α, we swept 0.95, 0.7, 0.4, 0.2, and 0.05. Finally, we tested either TD
n-step 1 or 3.

14

Under review as a conference paper at ICLR 2024

Setting Values

Policy Architecture (state) 3 layer MLP with 1024 hidden units each

DAC (state) total number of steps: 10e6
replay buffer size: 1e6
learning rate: 1e-4
action repeat: 2
batch size: 256
TD n-step: 1
discount factor: 0.99
gradient penalty coeff: 10.0
policy update frequency: 2

AILBoost (state) Samples per Weak Learner (N): 1000
of Weak Learners (T): 100
Steps to learn Weak Learner: 1000
of Discriminator updates: 100
Weighting Parameter (α): 0.05

Policy Architecture (vision) Model Architecture from (Yarats et al., 2022)

DAC (vision) total number of steps: 20e6
replay buffer size: 1e6
learning rate: 1e-4
action repeat: 2
batch size: 512
TD n-step: 3
discount factor: 0.99
gradient penalty coeff: 10.0
policy update frequency: 2

AILBoost (vision) Samples per Weak Learner (N): 10000
of Weak Learners (T): 100
Steps to learn Weak Learner: 20000
of Discriminator updates: 500
Weighting Parameter (α): 0.05

Table 4: Hyperparameters used for DAC and AILBoost. All of DAC’s hyperparameters are shared
by AILBoost except for the parameters colored in blue. In particular, the update frequency of the
disciminrator vs the policy is one of the core differences between DAC and AILBoost.

15

Under review as a conference paper at ICLR 2024

C ADDITIONAL RESULTS

C.1 AGGREGATE PERFORMANCE COMPARISONS

Following the recommendations of (Agarwal et al., 2021), we do an additional diagnostic of measuring
the probability of improvement between two algorithms. This metric measures how likely it is for
X to outperform Y on a randomly selected task from the benchmark suite. Specifically, P (X >
Y) = 1

m

∑
m P (Xm > Ym) where P (Xm > Ym) is the probability of X outperforming Y on task

m. Note that this measurement does not account for the size of improvement. Figure 5 shows the
comparison. AILBoost shows significant improvement over all other algorithms other than DAC.
In conjuction with Figure 1, we see that although the chance of AILBoost doing better than DAC
is ≈ 50%, the size of improvement AILBoost has over DAC denoted by the IQM and Mean are
significantly larger.

Figure 5: Probability of improvement between all tested baselines and AILBoost.

16

Under review as a conference paper at ICLR 2024

C.2 LEARNING CURVES

Here we present the complete suite of learning curves for all 5 environments.

Figure 6: Learning curves for AILBoost and all baselines on the DMC environments with 10, 5,
and 1 expert trajectories across 3 seeds.

17

Under review as a conference paper at ICLR 2024

C.3 LEARNING CURVES ACROSS DIFFERENT OPTIMIZATION SCHEDULES

Here we present the full suite of learning curves where we vary how often the policy and the
discriminator update relative to each other. We keep every other hyperparameter constant in this
ablation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples 1e6

0

200

400

600

800

1000

M
ea

n
Sc

or
e

Ball in Cup Catch

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples 1e6

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples 1e6

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Samples 1e6

Cheetah Run

Expert 1000 P, 100 D 1000 P, 10 D 1000 P, 1 D 100 P, 100 D 10 P, 100 D 1 P, 100 D

Figure 7: Learning curves for AILBoost on 4 out of the 5 DMC environments with 5 expert
trajectories across 3 seeds, where we vary the number of policy updates and discriminator updates
the agent takes over time.

18

	Introduction
	Related works
	Preliminaries
	Adversarial Imitation Learning (AIL)
	Discriminator Actor Critic (DAC)
	ValueDICE

	Algorithm
	AILBoost: Adversarial Imitation Learning via Boosting

	Experiments
	Controller State-based Experiments
	Image-based Experiments
	Sensitivity to gradient-based optimization for weak learners and discriminators

	Conclusion
	Detailed Algorithm Pseudocode
	Implementation and Experiment Details
	Environment Details
	Dataset Details
	Hyperparameters

	Additional Results
	Aggregate Performance Comparisons
	Learning Curves
	Learning curves across different optimization schedules

