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Goal-Driven Human Motion Synthesis in Diverse Tasks

Supplementary Material

1. Preliminaries: Conditional Sampling from001

Diffusion Model002

We describe the diffusion models from which we formu-003
late conditional diffusion to generate adaptive motions with004
precise control. Diffusion models have shown remarkable005
performance in learning data distributions and effectively006
learning or sampling from conditional distributions. These007
models consist of two processes: a forward diffusion pro-008
cess and a reverse process. Denoting p0(x0) as the original009
data distribution, the forward process injects i.i.d. Gaussian010
noise to a data distribution xt = x0+σtϵ with ϵ ∼ N (0, I),011
where x0 ∈ X is an instance within the dataset X and σt012
monotonically increases with respect to time t ∈ [0, T ].013
In the reverse process, the model generates data samples014
from pure Gaussian noise by recursively sampling from a015
denoising model Dθ. The conditional denoising model Dθ016
depends on time t and the additional feature c in the input017
data. We use reconstruction loss during training and directly018
learn to predict the original data x0:019

L = Ex0,t,c∥Dθ(xt, t, c)− x0∥1. (1)020

The trained diffusion models can flexibly generate output021
satisfying the user-specified condition y with an appropriate022
guidance function. From the Bayes’ rule, the conditional023
score can be calculated as follows:024

∇xt
log p(xt|y) = ∇xt

log p(xt) +∇xt
log p(y|xt). (2)025

The first term from the right side can be obtained through a026
pre-trained denoising model Dθ, while the second term can027
be acquired by the gradient of an analytic guidance function028
G(xt,y). The guidance function evaluates how well the029
diffusion sample x satisfies the given condition y, and its030
gradient is calculated as −∇xG(xt,y).031

However, the diffusion sample xt inherently contains ad-032
ditive noise, and simply computing the gradient of a func-033
tion based on xt can result in inaccurate gradients. DPS [2]034
proposes a formulation to find a more meaningful sam-035
ple point x̂t to incorporate the gradient ∇xt log p(y|xt) ≃036
∇xt

log p(y|x̂t). We can additionally adopt Monte Carlo037
sampling in order to update the guidance function G more038
accurately [6]. The modified estimate of the guidance func-039
tion GMC is computed as follows:040

GMC(xt,y) = − log

(
1

n

n∑
i=1

exp(−G(x(i),y))

)
, (3)041

where n is the number of the samples. And x(i) are i.i.d.042
samples from N (x̂t, r

2
t I), where rt = σt/

√
1 + (σt)2.043

We utilize the guidance sampling method to design an an- 044
alytic function that satisfies the given constraints, enabling 045
precise control of the generation process. For the main pa- 046
per, we simply write G(x,y) to refer to Eq. 3. 047

2. Further Details 048

2.1. Implementation Details 049

As stated in the paper, our diffusion network integrates the 050
ControlNet [9] structure into the U-Net architecture pro- 051
posed in [4]. Our stage1, key joint diffusion model features 052
a lighter architecture with fewer diffusion steps compared 053
to the Stage 2, full-body diffusion model. In the key joint 054
diffusion model, the latent dimension of each block in the 055
U-Net is set to 64, while in the full-body diffusion model, it 056
is set to 256. Also, in Stage 1, we set the diffusion timestep 057
T as 100, whereas in Stage 2, we set T as 1000. More hy- 058
perparameters are presented in Table 1. 059

For the object reaching scenario, we set λ1 = 10, λ2 = 060
100, λ3 = 20 for calculating the guidance function during 061
the sampling stage 1. Similarly, for the rock climbing sce- 062
nario, we set λ1 = 20, λ2 = 20, λ3 = 3. For the contact 063
aware motion generation scenario, we set λ1 = 0, λ2 = 064
1, λ3 = 0. Lastly, for the sitting with suggested contact 065
points scenario, we set λ1 = 10, λ2 = 20, λ3 = 0. 066

The number of Monte Carlo sampling iterations n is set 067
to 5 to achieve more accurate gradients. 068

Hyperparameter Stage 1 Stage 2

Training iterations 0.3M 1M
Learning rate 1e-4 1e-4

Optimizer Adam W Adam W
Weight decay 1e-2 1e-2

Batch size 64 64
Channels dim 64 256

Channel multipliers [2, 2, 2, 2] [2, 2, 2, 2]
Variance scheduler Cosine [5] Cosine [5]

Diffusion steps 100 1000
Diffusion variance β̃ = 1−αt−1

1−αt
βt β̃ = 1−αt−1

1−αt
βt

EMA weight (β) 0.9999 0.9999

Table 1. Hyperparameters of each model

2.2. Bounding Box Estimation 069

We constructed bounding boxes, particularly for the reach- 070
ing an object scenario. To design an upper bounding box, 071
we first connected the joint positions of both shoulders and 072
projected the resulting vector onto a plane to define one axis 073
of the upper bounding box. We set this vector as the direc- 074
tion of one axis, thereby defining the upper body bound- 075
ing box as the minimal box containing the vertices of the 076
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upper body. Similarly, we connected the joint positions of077
both feet and utilized the resulting vector as one axis of the078
lower bounding box, establishing the lower bounding box079
for the lower body. We predict the shape of the bounding080
box for each frame based on the positions and 6 DoF poses081
of the key joints predicted in stage 1, along with the shape082
parameter β.083

3. Dataset Description084

In the reaching an object scenario (Task 1), we utilized the085
CIRCLE dataset [1]. From the whole dataset, we specif-086
ically used the reaching data from the dataset. We aug-087
mented the data by reversing the left-hand reaching se-088
quences into right-hand sequences, resulting in a total of089
3138 right-hand reaching sequences. Additionally, we pro-090
cessed the data to identify the goal point where the reaching091
hand moved farthest from its initial position. For the ran-092
dom split experimental setup, 2510 data samples were allo-093
cated for training. For the scene split experimental setup, all094
environments except the media room and closet were desig-095
nated as the training set, resulting in 2205 data samples for096
training.097

For the rock climbing scenario (Task 2), we utilize the098
dataset from [8], where pose information is accompanied099
by synchronized RGB images. With this additional infor-100
mation, we manually selected motion sequences starting101
from when the subject detached from the climbing rock un-102
til when they securely reached the climbing rock again, re-103
sulting in 156 data samples. Similarly, for the sitting with104
suggested contact points scenario (Task 4), we utilized the105
dataset from [10]. We manually segmented 160 data sam-106
ples starting from a stable initial point until the subject sat107
on the chair.108

For the contact aware motion generation scenario (Task109
3), we utilized the dataset from [3]. We utilized smplx seg-110
mentation to convert vertices-level contact into joint-level111
contact information. If a point within the segmentation of112
the corresponding part is marked as a contact, the associated113
joint is designated as a contact joint. We observed that con-114
tact usually occurs at the hands and feet, therefore, vertex-115
level contact was replaced with joint-level contact for the116
two hands and two feet.117

Subsequently, we normalized the entire dataset by set-118
ting the face direction at the initial frame to the +z axis and119
the initial root position as the origin.120

4. Additional Task (Task 4): Sitting with Sug-121

gested Contact Points122

We focus on generating motions sitting on a chair, where123
contact points on the chair are provided for both hands [10].124
We collected 160 samples from the COUCH [10], with 128125
sequences used for training. As before, the setting may126

Method Success rate
(%)

Dist. to goal
(cm)

MJPE
(cm)

OmniControl [7] 43.7 16.72 14.02
Ours single-stage 31.2 22.10 15.08
Ours 71.8 10.98 12.84

Table 2. Quantitative evaluation on sitting with suggested contact
points scenario.

be subject to overfitting and our two-stage composition can 127
provide precise control in unseen conditions. We mark suc- 128
cess when the hand positions are within 10 cm of the speci- 129
fied contact points at the final sitting pose. This requirement 130
involves two goal conditions for both hands. Therefore both 131
hands are the key joint set of the task. 132

The scene contains only a chair without a complicated 133
structure and we omitted suggestive-path features and the 134
collision-avoidance guidance term. Our key joint diffu- 135
sion model still incorporates the trajectory-control guid- 136
ance, which is sufficient to flexibly adapt the motion se- 137
quences to the desired output. 138

Table 2 shows that our full pipeline outperforms the one- 139
stage pipeline in most of the metrics. Even in the rather 140
simple setting, the single-stage method suffers from over- 141
fitting, and the key joint trajectories serve a crucial role in 142
composing the motion with precise control. 143

5. Additional Results 144

We present additional qualitative results comparing with the 145
baseline for each task, namely the reaching an object sce- 146
nario (Figure 1), rock climbing scenario (Figure 2), and 147
sitting with suggested contact points scenario (Figure 3). 148
Additionally, we provide supplementary video containing 149
entire motion sequences. Please watch our supplementary 150
video for more results. 151
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Figure 1. Qualitative results on the reaching an object scenario.
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Figure 2. Qualitative results on the rock climbing scenario.

controllable human motion synthesis. In Proceedings of the169
IEEE/CVF International Conference on Computer Vision,170
pages 2151–2162, 2023. 1171

[5] Alex Nichol and Prafulla Dhariwal. Improved denoising dif-172
fusion probabilistic models, 2021. 1173

[6] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mar-174
dani, Ming-Yu Liu, Jan Kautz, Yongxin Chen, and Arash175
Vahdat. Loss-guided diffusion models for plug-and-play176
controllable generation. In International Conference on Ma-177
chine Learning (ICML), 2023. 1178

[7] Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and179
Huaizu Jiang. Omnicontrol: Control any joint at any time for180
human motion generation. arXiv preprint arXiv:2310.08580,181
2023. 2182

[8] Ming Yan, Xin Wang, Yudi Dai, Siqi Shen, Chenglu Wen,183
Lan Xu, Yuexin Ma, and Cheng Wang. Cimi4d: A large mul-184
timodal climbing motion dataset under human-scene interac-185
tions. In Proceedings of the IEEE/CVF Conference on Com-186

puter Vision and Pattern Recognition (CVPR), pages 12977– 187
12988, 2023. 2 188

[9] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding 189
conditional control to text-to-image diffusion models, 2023. 190
1 191

[10] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke, 192
Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards 193
controllable human-chair interactions. 2022. 2 194

4



CVPR HuMoGen
#12

CVPR HuMoGen
#12

CVPR HuMoGen 2025 Submission #12. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

O
ur

s
O

ur
s s

in
gl

e-
st

ag
e

O
ur

s
O

ur
s s

in
gl

e-
st

ag
e

Figure 3. Qualitative results on the sitting with suggested contact points scenario.
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