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Abstract

Visual robotic manipulation research and appli-
cations often use multiple cameras, or views, to
better perceive the world. How else can we uti-
lize the richness of multi-view data? In this pa-
per, we investigate how to learn good represen-
tations with multi-view data and utilize them for
visual robotic manipulation. Specifically, we train
a multi-view masked autoencoder which recon-
structs pixels of randomly masked viewpoints and
then learn a world model operating on the rep-
resentations from the autoencoder. We demon-
strate the effectiveness of our method in a range
of scenarios, including multi-view control and
single-view control with auxiliary cameras for rep-
resentation learning. We also show that the multi-
view masked autoencoder trained with multiple
randomized viewpoints enables training a policy
with strong viewpoint randomization and transfer-
ring the policy to solve real-robot tasks without
camera calibration and an adaptation procedure.
Video demonstrations are available at: https:
//sites.google.com/view/mv—mwn.

1. Introduction

The camera is a ubiquitous instrument for robot vision that
provides rich information about a workspace from various
viewpoints. Thus it has been a widely-used technique for
roboticists to utilize multiple cameras for solving complex
manipulation tasks (Akkaya et al., 2019; Akinola et al.,
2020; James et al., 2022). However, prior work utilize multi-
view data naively as inputs and has yet to investigate how
to learn effective multi-view representations. Considering
recent studies have shown the benefit of single-view repre-
sentation learning for control (Nair et al., 2022; Radosavovic
et al., 2022), it is desirable to explore the potential of multi-
view representation learning for visual robotic manipulation.
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A notable exception is the work of Sermanet et al. (2018),
which learns view-invariant representations via contrastive
learning. However, enforcing viewpoint invariance assumes
that all viewpoints share similar information and thus re-
quires careful curation of positive and negative pairs, similar
to other contrastive approaches that often depend on com-
plex design choices about sampling such pairs (Arora et al.,
2019). This can make it challenging to learn representations
from diverse multi-view data and limit its applicability to
a narrow distribution of visual robotic manipulation setups.
Instead, we aim to develop a simple multi-view representa-
tion learning method effective for more diverse setups.

In this paper, we present Multi-View Masked World Model
(MV-MWM), a reinforcement learning framework that
trains a multi-view masked autoencoder for representation
learning and a world model to solve visual manipulation
tasks. Our autoencoder consists of a synergistic combina-
tion of view-masking: which masks viewpoints at random,
and video autoencoding: which reconstructs video frames of
both masked and unmasked viewpoints. We find our autoen-
coder effectively learns representations that capture useful
information of the current viewpoint but also the cross-view
information from different viewpoints. For behavior learn-
ing, we learn a world model on frozen representations from
either single-view or multi-view data, which is particularly
feasible as the autoencoder consists of vision transformer
(Dosovitskiy et al., 2021) layers that take inputs of vari-
able sizes. We then train actor and critic with imaginary
trajectories from the world model (Hafner et al., 2021).

We highlight the main contributions of this paper below:

e We present Multi-View Masked World Model, a rein-
forcement learning framework that trains a multi-view
masked autoencoder with a view-masking and learns a
world model upon autoencoder representations.

e We demonstrate the effectiveness of MV-MWM in var-
ious visual robotic manipulation setups. These setups
include (i) a multi-view control where agents operate on
multi-view data, (ii) a single-view control where agents
operate on single-view data but use auxiliary cameras
for representation learning, and (iii) a viewpoint-robust
control where agents operate on single randomized
viewpoint but use multiple randomized viewpoints for
representation learning, as illustrated in Figure 1. Our
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Figure 1. Illustration of our framework. Given multi-view data from multiple cameras or multiple randomized viewpoints, we mask
viewpoints from video frames at random and train a multi-view masked autoencoder to reconstruct pixels of both masked and unmasked
viewpoints. We then learn a world model upon frozen autoencoder representations to solve tasks from various robotic manipulation setups,
including a multi-view control, a single-view control, and a viewpoint-robust control in both simulation and real-world.

experiments on RLBench (James et al., 2020) show
that our method outperforms single-view representa-
tion learning baselines (Radford et al., 2021; He et al.,
2021; Seo et al., 2022a) and a multi-view representa-
tion learning baseline (Sermanet et al., 2018).

e We show that MV-MWM can solve real-world robotic
manipulation tasks by transferring a policy trained in
simulation to a real-robot without camera calibration.
We further show that MV-MWM works on a range of
viewpoints and even with a hand-held camera subject to
rotation or shaking while solving the tasks; showcasing
impressive visual servoing robustness.

2. Related Work

Visual control with multiple cameras Leveraging mul-
tiple cameras has long been considered a practical and fea-
sible technique in robotics, as the camera is usually an
affordable and ubiquitous device (Sola et al., 2008; Carrera
et al., 2011; Yang et al., 2021). Based on recent advances
in computer vision and robot learning, there have been sev-
eral approaches that utilize multi-view data from multiple
cameras for visual control (Sermanet et al., 2018; Akinola
et al., 2020; Zhan et al., 2020; Chen et al., 2021a; Hsu et al.,
2022; Jangir et al., 2022; Shridhar et al., 2022; Guhur et al.,
2022). While most approaches utilize multi-view data di-
rectly as inputs for robots, recent works have demonstrated
that self-supervised learning that learns view-invariant rep-
resentations (Sermanet et al., 2018) or 3D keypoints (Chen
et al., 2021a) can be useful for downstream tasks. Yet these
approaches assume viewpoints have similar characteristics
or require multiple cameras for both representation learning
and behavior learning phases, limiting their applicability to

a narrow set of setups. Instead this work aims to develop
a framework that can learn representations from diverse
viewpoints and leverage them for various setups.

Unsupervised representation learning for visual control
Most prior researches on representation learning for visual
control have focused on solving control tasks using the
representations learned with single-view data (Watter et al.,
2015; Oord et al., 2018; Gelada et al., 2019; Hafner et al.,
2019; Yarats et al., 2021; Seo et al., 2022b). We instead
demonstrate that multi-view representations can be also
useful for single-view control. Another line of works related
to our work have demonstrated that pre-training with self-
supervised learning enables agents to solve control tasks
with frozen representations (Stooke et al., 2021; Schwarzer
et al., 2021; Nair et al., 2022; Parisi et al., 2022; Xiao et al.,
2022; Radosavovic et al., 2022). Our framework also learns
to solve tasks with frozen representations but it differs in
that representations are continually updated using the online
samples throughout training. Incorporating pre-training into
our framework would be an interesting future direction.

3. Multi-View Masked World Models for
Visual Robotic Manipulation

We present Multi-View Masked World Models (MV-MWM),
a reinforcement learning framework that learns multi-view
representations and utilize them for visual robotic manip-
ulation. Our method builds on top of the Masked World
Models MWM; Seo et al. 2022a) framework, which learns
a world model on frozen masked autoencoder features. We
first introduce how to learn multi-view representations in
Section 3.1. We then describe in Section 3.2 how to utilize
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Figure 2. Masked view reconstruction on Phone On Base (left) and Put Rubbish in Bin (right) tasks from RLBench (James et al., 2020).
We visualize ground-truth frames with masked viewpoints (upper two rows) and ground-truth frames with reconstructed frames (lower
two rows). We find that the model can reconstruct masked viewpoints, successfully capturing the location of objects in the scene.

them for learning world models and behaviors to solve vi-
sual manipulation tasks. We provide the overview of our
framework in Figure 1. The key difference to MWM is
detailed in Appendix B and Algorithm 1.

3.1. Multi-View Representation Learning

For representation learning with multi-view data, we intro-
duce a new model called Multi-View Masked Autoencoder
(MV-MAE). Our main idea is to train a video masked autoen-
coder (Feichtenhofer et al., 2022; Tong et al., 2022) with
view-masking to reconstruct missing pixels of randomly
masked viewpoints. We also incorporate the idea of a prior
work (Seo et al., 2022a) that masks convolutional features in-
stead of pixel patches (He et al., 2021) and predicts rewards
to learn representations capturing fine-grained details re-
quired for visual control. We first describe each component
in detail and provide the formal objective.

Convolutional feature embedding Unlike prior work
that masks random pixel patches (He et al., 2021), we em-
bed camera observations into convolutional feature maps
and mask these features following the design of Seo et al.
(2022a). This is based on the observation where masked im-
age modeling with pixel patch masking can make it difficult
for the model to learn fine-grained details within patches.
Specifically, we downsample 96 x 96 x 3 inputs images to
convolutional feature maps with the spatial size of 6 x 6 by
introducing 4 convolutional layers. We separately process
observations from each viewpoint with convolutional layers
that share parameters. For each viewpoint, we add fixed
2D sin-cos position embeddings (Chen et al., 2021b) to the
features. We also add learnable 1D parameters representing
each viewpoint and timestep to features of each video frame
from different viewpoints, following Geng et al. (2022) that
introduces parameters for vision and language inputs.

View masking To learn cross-view information from mul-
tiple viewpoints, we introduce a novel view-masking strat-

egy that masks all the features from a randomly selected
viewpoint. Specifically, we mask randomly selected view-
points from video frames by randomly sampling one view-
point for each frame. We also mask randomly selected
features from remaining viewpoints (see Figure 1) because
we want the autoencoder to learn not only cross-view infor-
mation but also the information within each viewpoint by
reconstructing raw visual observations with masked features.
Then we flatten the unmasked features and concatenate them
into a single sequence. We empirically find that the proposed
view-masking can be more effective than uniform-masking
scheme by explicitly encouraging multi-view representation
learning (see Figure 7(a) for supporting experiments).

Video autoencoding Despite its potential, the proposed
masked view reconstruction objective might be too challeng-
ing for the autoencoder without any access to information
from missing viewpoints. To address this issue, we consider
a combination of video masked autoencoding (Feichten-
hofer et al., 2022; Tong et al., 2022) and the proposed view-
masking strategy. Because the autoencoder attends to un-
masked neighbor frames from the same view, the model can
focus on modeling important information such as the move-
ment of robot arms, while ignoring redundant information
such as background for reconstructing masked viewpoints
(see Figure 2 for examples of masked view reconstruction).
Specifically, our encoder processes a sequence of unmasked
features from all viewpoints and video frames through a
series of vision transformer (ViT; Dosovitskiy et al. 2021)
layers. Then we concatenate a set of mask tokens with
encoded features, and add learnable parameters for each
viewpoint and frame to corresponding features and mask
tokens. The decoder processes them through ViT layers and
linearly projects them into pixel patch predictions. We also
follow the idea of Seo et al. (2022a) that predicts a reward
to encode task-relevant information.

Objective Let o] 1 = {of,...,0{, 7_, } be a video from a
viewpoint v € V where ¢ is current timestep, 7" is window
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size of the video autoencoder, and ) is a set of available
viewpoints. Given videos {0} r},ey from multiple view-
points, rewards 7, 7 = {r1, ..., "+7_1}, and a mask ratio
of m, MV-MAE consists of following components:

Convolution stem: A 7 = f5°"(0f 1)
View-masking: hi'p ~ pmaSk(hZ‘T | {hf,T}vev, m)
ViT encoder: zip ~ po(zi | hi'r) (1

{a;},T}UEV ~ p¢({ézT}vEV | ZtmT)

ViT decoder: R R m
Ty T~ P¢(Tt,T | Zt,T)

We train the model to reconstruct pixels and predict rewards,
which corresponds to optimizing model parameters ¢ by
minimizing the negative log-likelihood as below:

Lrmee () = — lnp(;s({O;T}veV | 2ir) — Inpg(rer | 217)

3.2. World Model and Behavior Learning

Representations Once we learn multi-view representa-
tions, we leverage them for learning a world model and
utilize the world model for visual control. A favorable
property of MV-MAE is that the ViT encoder can extract
representations from single-view images even if the encoder
is trained with multi-view video data. Based on this property,
we learn a world model for solving visual robotic manip-
ulation tasks from two setups: multi-view and single-view
control. These setups vary in the availability of viewpoints
during the control phase, yet both adopt a multi-view data
for representation learning. To provide input to the world
model, we extract representations by encoding multi-view
data {o?},¢y or single-view data o? by using the MV-MAE
encoder in Equation 1 withm = 0 and T' = 1.! We exploit
the notation by denoting both representations as z; because
the objective for learning the world model is same for both
single-view and multi-view world models.

World model learning Following Seo et al. (2022a), we
implement the world model as a variant of recurrent state-
space model (RSSM; Hafner et al. 2019) that takes frozen
autoencoder representations as inputs and reconstruction
targets. The world model consists of following components:

Encoder: st~ qo(st| St—1,a-1, 2¢)
2y~ Zi|s

Decoder: At pe(f [5¢) 2)
7t ~ po (7t | 5t)

Dynamics model:  §; ~ pg (8¢ | St—1,a:-1)

The encoder extracts state s; from previous state s;_1, pre-
vious action a;_1, and current autoencoder representations
z¢. The dynamics model learns to predict s; without an

'We extract image representations as our world model operates
upon observations from each timestep with a recurrent architecture.

Algorithm 1 Multi-View Masked World Models.
Key differences to MWM (Seo et al., 2022a) in gray.
1: Initialize parameters ¢, 0, 1, &
2: Initialize a buffer B and a fixed expert buffer B¢
3: for each timestep ¢ do
:// COLLECT TRANSITIONS

4
5 Update state s; ~ qg(S¢|St—1,ar—1, 2¢)
6:  Sample action a; ~ py (a|st)
7:  Add transition to replay buffer 5
8:  // MULTI-VIEW REPRESENTATION LEARNING
9:  Sample ({0} 7 }vev,Tj1) ~ B
10:  Update ¢ by minimizing £™"™2¢(¢)
11:  // WORLD MODEL LEARNING
12:  Sample ({0% }oev, aj—1,75) ~ B
13:  Obtain z; from either {0} },cy (multi-view control)
or oY (single-view control with 7)
14:  Update 6 by minimizing £"(6)
15:  // BEHAVIOR LEARNING
16:  Obtain initial state §o and imagine {(s;, d;, 7;) }/L,
17: Sample expert demonstration ({0 },ev, a§) ~ B*
18:  Update £ by minimizing £71%3¢(&)
19:  Update ) by minimizing £2°*° (¢))
20: end for

access to z;, which enables the model to predict forward
into the future. Following Hafner et al. (2021), we utilize
discrete latents for s;. The decoder reconstructs z; to pro-
vide learning signal for model states and predicts r; to allow
for computing rewards from future states without decoding
future autoencoder representations. All model parameters 0
are jointly optimized by minimizing the negative variational
lower bound (Kingma & Welling, 2014):
L70) = —Inpg(z¢ | 5t) — Inpg(re | s¢)
+ BKL[qo(s¢|st—1, ar—1, 2¢) || po(S¢|s1—1, as—1)],

where (3 is a scale hyperparameter.

Behavior learning For behavior learning, we employ the
actor-critic learning scheme of DreamerV?2 (Hafner et al.,
2021) where the objective is to train a policy that maxi-
mizes the predicted future values by gradients propagated

through the world model. Specifically, a stochastic actor
and a deterministic critic is defined as below:

Actor: Gy ~ py(ag|8:)

Critie: ve(51) ~ By, [ 7' '74]
where {(3;, a;, ) }L, is predicted from initial state 3¢ us-
ing the stochastic actor and dynamics model in Equation 2.
Given a A-return (Schulman et al., 2015) defined as below:

VA= d {(1 = Nve(341) + AV, ift < H

3

ift=H @
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the critic is trained to regress the A-return and the actor is
trained to maximize the A-return with gradients backpropa-
gated through the world model. Moreover, to better utilize
expert demonstrations which we assume the access to by
following the setup of James & Davison (2022), we intro-
duce a behavior cloning loss that encourages the actor to
imitate expert actions. Objectives are summarized as below:

H-1

> 5 (elsn) —se(V7)?

t=1

£actor(w) KN ]Epe,Pw [7‘/{\ —nH [at|'§t” — lnpw(aﬂst)

Ecritic (5) - E

— PesPy

where sg is a stop gradient operation, 7 is a scale hyperpa-
rameter for an entropy H [a;|5;], and a is an expert action.

To summarize, we iterate the processes of (i) training the
video autoencoder with view-masking for multi-view rep-
resentation learning, (ii) learning the world model and be-
haviors for multi-view or single-view control, (iii) collecting
samples with environment interaction. We highlight the key
differences between MWM and MV-MWM in Algorithm 1.

4. Experiments

We evaluate MV-MWM on challenging visual robotic ma-
nipulation tasks from RLBench (James et al., 2020) — a stan-
dard benchmark for vision-based robotics which has been
shown to serve as a proxy for real-robot experiments (James
& Davison, 2022). Furthermore, we evaluate the zero-shot
performance of our method on real-world by transferring
the trained agent to control real-robots. We designed our
experiments to explore the benefit of multi-view representa-
tion learning on practical and important robotics scenarios.
Specifically, we aim to investigate the following questions:

e Can MV-MWM learn multi-view representations useful
for various visual robotic manipulation setups?

e Can MV-MWM trained in simulation be transferred to
solve real-world visual robotic manipulation tasks?

* How does MV-MWM compare to baselines in terms of
sample-efficiency and asymptotic performance?

* What is the effect of each component in MV-MWM?

Implementation We build our implementation upon the
official implementation of MWM (Seo et al., 2022a) and
implementation details are same unless otherwise specified.
We run 8 parallel simulators to accelerate training by avoid-
ing the bottleneck from a slow simulator. Our autoencoder
consists of the 8-layer ViT encoder and 6-layer ViT de-
coder, where the embedding dimension is set to 256. We
use the same set of hyperparameters for all experiments. We
provide more implementation details in Appendix A.

(c) Put Rubbish in Bin (d) Stack Wine

Figure 3. Examples of multi-view data consisting of front and
wrist camera observations used in our experiments. Front camera
observations provide a broad look at a robot workspace and wrist
camera observations provide a closer look at target objects.

Environment For all experiments, we use only 96 x 96
RGB observations from each camera; proprioceptive state
and depth are not used. While RLBench is originally de-
signed to evaluate the performance in a sparse reward setup,
we design dense rewards for our experiments. Moreover,
to ease the difficulty of exploration in large action space,
we enforce a robot gripper to be in an upright position ex-
cept for a case where rotation is required for solving the
task. Following James & Davison (2022), we fill a replay
buffer with expert demonstrations. Unlike prior approaches
that utilize path planner with the policy to output next best
gripper pose (James & Davison, 2022; James et al., 2022;
Shridhar et al., 2022; James & Abbeel, 2022a;b), our RL
agent outputs relative change in gripper position. We pro-
vide further details in Appendix A.

Baselines We first compare MV-MWM with MWM to
evaluate the benefit of multi-view representation learning.
We note that both use the same amount of training data. We
also consider baselines that utilize frozen pre-trained repre-
sentations. Specifically, we consider CLIP (Radford et al.,
2021) and MAE (He et al., 2021) representations as they
have recently shown to be effective for robotic manipulation
(Shridhar et al., 2021; Radosavovic et al., 2022). Moreover,
to compare our method with other multi-view representation
learning method designed for visual control, we consider
time contrastive network (TCN; Sermanet et al. (2018)) that
enforces view-invariance through contrastive learning as a
baseline. We call these baselines as CLIP+WM, MAE+WM,
and TCN+WM to denote that we learn world models upon
these representations. All methods use frozen representa-
tions for world model and behavior learning. We note that
MV-MWM, MWM, and TCN+WM learn representations
from scratch throughout training, but we do not fine-tune the
representations of CLIP+WM and MAE+WM for a com-
parison with frozen pre-trained representations. We provide
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Figure 4. Aggregate success rate on five multi-view and single-view control tasks and two viewpoint-robust control tasks. We report
the average success rate evaluated using the last five model checkpoints. The result shows the mean and stratified bootstrap confidence
interval across 32 runs for viewpoint-robust control and 20 runs otherwise. We provide the learning curve for all tasks in Appendix C.

more details on baselines in Appendix B.

4.1. Multi-View and Single-View Control

Multi-view control setup We evaluate MV-MWM on
a multi-view control setup where the agent operates on
both front and wrist cameras, which is a widely-used setup
for visual manipulation with multiple cameras (Zhan et al.,
2020; James & Davison, 2022; Jangir et al., 2022). For all
baselines, we extract representations from each viewpoint
and use concatenated features as inputs to the agent. For
our method, we use multi-view representations from our
autoencoder as we previously mentioned in Section 3.2.

Single-view control setup We also consider a single-view
control setup to investigate whether multi-view represen-
tation learning with auxiliary cameras can be helpful for
training a single-view agent. This can be useful for a practi-
cal scenario where we can utilize additional cameras during
training, but the robot should operate on a single camera at
deployment time. We note that this setup has also been inves-
tigated in Sermanet et al. (2018), but we use more different
types of cameras for representation learning. Specifically,
we learn visual representations using multi-view data con-
sisting of front and wrist camera observations and train the
RL agent that operates on the front camera.

Results In Figure 4, we observe that MV-MWM outper-
forms MWM, which shows that multi-view representation
learning can be helpful for both multi-view and single-view
control. We find that TCN significantly fails to solve most
of the tasks in both setups. This shows the critical drawback
of TCN, which suffers from mode collapse when negative
samples are too similar (e.g., wrist camera observations
look similar after grasping the objects in our case). Interest-
ingly, we also find that MAE+WM and CLIP+WM achieve
non-zero success rates, which shows that large pre-trained

models can extract useful representations. However, MV-
MWM largely outperforms both baselines, demonstrating
that multi-view representation learning with in-domain data
can be crucial for visual robotic manipulation. Given the
results, it would be an interesting direction to integrate pre-
training with our multi-view representation learning by em-
ploying recently developed efficient fine-tuning techniques
(Gao et al., 2021; Zhang et al., 2021; Sharma et al., 2023).

4.2. Viewpoint-Robust Control

Problem setup We consider a viewpoint-robust control
setup where we learn a policy robust to camera perturbations,
which can enable us to deploy robots to real-world without
a tedious camera calibration (see Section 4.3 for our real-
robot experiments). However, we observe that learning to
solve tasks under hard viewpoint randomization is a very
challenging problem. To address this, we propose to utilize
multi-view representation learning by generating multiple
randomized viewpoints and learn representations with them
(see Figure 1 for illustration). Then we train a single-view
agent on randomized viewpoints upon these representations
to solve tasks with randomized cameras.

Experimental setup We randomize the position and ori-
entation of the front camera at every episode. We construct
three randomization type, which represents how strongly
viewpoints are randomized: weak, medium, and strong as
exemplified in Figure 5. For faster experimentation, we
modify the tasks to be more easier by making a target ob-
ject be located upright (i.e., not rotated related to the table).
Because we aim to evaluate viewpoint-robust control agents
to solve real-world robotic tasks, we also modify the col-
ors of a simulated workspace to be similar to colors of a
real-world setup and apply brightness and contrast augmen-
tation to videos throughout training. For evaluation, we
train all agents on weak and medium randomization setups
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Figure 5. Aggregate success rate on two viewpoint-robust control tasks under both seen and unseen viewpoint randomization setups
exemplified in the second row. We report the average success rate evaluated using the last five model checkpoints. The result shows the
mean and stratified bootstrap confidence interval across 8 runs. We provide the learning curve for all tasks in Appendix C.

and report the performance under both seen (i.e., weak and
medium) and unseen (i.e., strong) randomization setups.

Results Figure 5 shows the performance of visual con-
trol agents on both seen and unseen randomization setups.
We first observe that our single-view baseline, MWM, can
achieve competitive training performance on weak random-
ization setup. This aligns with the observation of Sadeghi
et al. (2018) that shows a recurrent policy can be robust
to randomized viewpoints. However, we observe that the
performance of MWM significantly degrades as randomiza-
tion gets stronger, implying that the recurrent architecture
alone is not enough for viewpoint-robust control. We find
that other baselines also struggle on medium randomization
setup, failing to improve their generalization performance on
unseen randomization setup. On the other hand, MV-MWM
learns to solve the tasks under medium randomization and
outperforms all baselines on both seen and unseen setups
(see Figure 4 for aggregate performance). We also find that
TCN + WM trained on randomized viewpoints achieves
non-zero success rates, in contrast to results with the front
and wrist cameras in Section 4.1. We hypothesize this is
because contrastive learning becomes easier when using
similar viewpoints. Nonetheless, MV-MWM largely out-
performs TCN + WM, which highlights the benefit of our
simple yet effective masked view reconstruction objective.

4.3. Real-Robot Manipulation via Sim-to-Real Transfer

Setup We also evaluate the zero-shot performance of
agents trained in simulation for solving real-world manip-
ulation tasks. We deploy the agents trained under medium
randomization to solve the Pick Up Cup task without camera

Table 1. Zero-shot sim-to-real transfer performance of viewpoint-
robust control agents trained in simulation for solving a real-world
visual robotic manipulation task.

4 Method Success rate
\ MAE + WM 7.1%
MWM 11.3%
] : ] MV-MWM 74.7 %

calibration and adaptation procedures. We conduct experi-
ments with the Franka Research 3 and use Movelt2 library
based on ROS 2 framework for controlling the arm. We use
RGB observations from RealSense D435f camera.

Results For evaluation, we measure the success rate across
3 viewpoints and 20 randomized cup positions for each
viewpoint. Table 1 shows the real-world performance of
MV-MWM and two baselines we selected for their over-
all similarity to our method. We find that MV-MWM can
solve the task without camera calibration and largely out-
performs all baselines. We further evaluate MV-MWM on
an extreme setup where we use a hand-held camera which
is subject to shake, rotation, and translation while solving
the task. We note that viewpoint is not randomized within
the episode for training our world model, which makes the
setup more challenging. Surprisingly, Figure 6 shows that
MV-MWM can solve the task on this challenging setup only
using RGB observations, which showcases the effective-
ness of our method for real-world visual robotic manipula-
tion. Video demonstrations are available at our webpage:
https://sites.google.com/view/mv—mwn.
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Rotation

Translation

Figure 6. We study the robustness of MV-MWM to camera perturbations in a real-world by considering an extreme setup where the
agent operates on a hand-held camera subject to shake, rotation, and translation. We observe that MV-MWM can solve the task using
only RGB observations without proprioceptive states and any adaptation procedure. Best viewed as videos provided in the webpage:

https://sites.google.com/view/mv—mwn.
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Figure 7. Learning curves of single-view visual control agents operating on the front camera for solving three manipulation tasks from
RLBench (James et al., 2020), investigating the effect of (a) view masking, (b) video autoencoding and (c) masking ratio. The solid line
and shaded regions represent the mean and stratified bootstrap confidence interval across 12 runs.

4.4. Ablation Study and Analysis

Effect of view-masking We evaluate the performance of
MV-MWM with and without the proposed view-masking
scheme in Figure 7(a). Specifically, we consider a baseline
trained with the uniform-masking scheme that mask random
features from multi-view inputs, i.e., MV-MWM (View-
masking: X). We observe that performance largely degrades
without view-masking, which shows that view-masking is
crucial for multi-view representation learning.

Effect of video autoencoding Figure 7(b) shows that
sample-efficiency of our method significantly improves with
video autoencoding. This shows that enabling the model to
have access to unmasked frames of the same view ease the
difficulty of masked view reconstruction, making the combi-
nation of view-masking and video autoencoding synergistic.

Masking ratio Figure 7(c) shows that MV-MWM perfor-
mance keeps increasing with a higher masking ratio. We hy-
pothesize this is because spatial information redundancy (He
et al., 2021) is more significant in visual observations from

manipulation tasks than natural images. This also aligns
with the observation of prior work (Tong et al., 2022) where
90% masking ratio has shown to be effective for videos.

Scaling property In Figure 17(a) and Figure 17(b) avail-
able at Appendix D, we also investigate whether MV-MWM
can be further scaled up for better performance by improv-
ing the number of gradient steps and increasing the model
size. We find that training with more gradient steps and
larger models can further improve the sample-efficiency.

Data augmentation for viewpoint-robust control To in-
vestigate the importance of using visual observations from
randomized cameras, we consider a baseline that uses im-
ages perturbed with data augmentation (i.e., rotation, transla-
tion, brightness, and contrast) for multi-view representation
learning. As shown in Figure 18(a) available at Appendix D,
we observe that using the images from physically perturbed
images largely outperforms the baseline based on data aug-
mentation. This is because such a randomized camera can
provide images from different perspectives that contain ad-
ditional information which is not available from the single,
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Figure 8. Aggregate success rate of imitation learning agents on
five single-view control tasks. The result shows the mean and
stratified bootstrap confidence interval across 20 runs.

fixed camera viewpoint. On the other hand, data augmen-
tation fails to give such information useful for implicitly
capturing 3D information of a robot workspace. Given this
result, investigation into how to set up a real-world robot
learning setup with randomized cameras would be an inter-
esting and important future research direction.

We provide learning curves for ablation study in Appendix C
and additional analysis in Appendix D.

4.5. Imitation Learning Experiments

Setup Finally, we investigate the effectiveness of our
multi-view representation learning method on imitation
learning (IL) setup, which is a widely-considered setup in
the field of robotics. We consider a setup where we train vi-
sual control agents only with behavior cloning (BC) instead
of RL to solve the tasks. Specifically, we consider the single-
view control setup as in Section 4.1, using the same set of
five manipulation tasks. For training, we use 100 expert
demonstrations collected with the scripted policies available
from the RLBench simulator. Unlike in the RL setup, we
follow a setup of prior work that utilizes the output next best
gripper pose. We use the same architecture as in RL exper-
iments but find that using more stronger L2 weight decay
largely improves the performance by preventing the overfit-
ting. We also disable video autoencoding in IL experiments
because the model is trained until convergence in this setup
so that there is no problem from training difficulty from the
view-masking as in RL setup. For baselines, we consider the
same set of baselines as previous experiments but exclude
TCN due to its overall low performance. For evaluation, we
measure the average success rate over 500 episodes where
the object position is randomized every episode.

Results In Figure 8, we observe that the trend in IL experi-
ments is the same as in prior experiments, where our method,
MV-MWM, outperforms all the baselines. In particular, M V-
MWM outperforms MWM, which uses the same amount of

training data, by a large margin (14.35%p). We also find that
the proposed view-masking scheme significantly improves
the performance, e.g., the view-masking scheme improves
the performance from 57.92% to 64.48%. This experimental
result shows that the benefit of multi-view representation
learning along with the proposed view-masking scheme is
consistent across both RL and IL setups, highlighting the
effectiveness of our method for diverse, practical robotic
manipulation setups.

5. Discussion

Limitation and future directions One limitation of our
work is that considered tasks are simple in that they do not
require a long-horizon planning and involve a single object.
Scaling up our framework to solve more challenging tasks
is a direction we hope to investigate in future works. For
instance, incorporating a more scalable architecture (Jaegle
et al., 2021) along with large-scale pre-training on large
datasets (Deng et al., 2009; Dasari et al., 2019) would be
an interesting direction that can improve the generaliza-
tion capability of visual manipulation system while having
the benefit of multi-view representation learning. Another
interesting direction would be to design a viewpoint ran-
domization setup for real-world robot learning, where it is
non-trivial to aggressively randomize viewpoints as we have
done in sim-to-real transfer experiments.

Conclusion We present Multi-View Masked World Mod-
els, a reinforcement learning framework that learns multi-
view representations and utilize them for diverse visual
robotic manipulation setups. We conduct extensive exper-
iments and find that our method consistently outperforms
various baselines across a range of tasks in both simulation
and real-world environments. We hope this work encourages
future research to further explore the potential of multi-view
representation learning for visual robotic manipulation.

Acknowledgements We would like to thank Danijar
Hafner, Sangwoo Mo, Youngwoon Lee, Xingyu Lin, Hao
Liu, Jongjin Park, Carlo Sferrazza, Sihyun Yu, and anony-
mous reviewers for helpful comments. This work was par-
tially supported by Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) grant
funded by the Korea government (MSIT) (No0.2022-0-00953,
Self-directed AI Agents with Problem-solving Capability;
No0.2019-0-00075, Artificial Intelligence Graduate School
Program (KAIST)) and KAIST-NAVER Hypercreative Al
Center. This material is based upon work supported by the
Google Cloud Research Credits program with the award
(N6U8S-OLLR-JDTW-JNWP). We also appreciate NVIDIA
Corporation (https://www.nvidia.com/) and Cir-
rascale Cloud Services (https://cirrascale.com/)
for providing compute resources.


https://www.nvidia.com/
https://cirrascale.com/

Multi-View Masked World Models for Visual Robotic Manipulation

References

Akinola, 1., Varley, J., and Kalashnikov, D. Learning precise
3d manipulation from multiple uncalibrated cameras. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O.,
and Saunshi, N. A theoretical analysis of contrastive
unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Carrera, G., Angeli, A., and Davison, A. J. Slam-based
automatic extrinsic calibration of a multi-camera rig. In
2011 IEEE International Conference on Robotics and
Automation (ICRA), 2011.

Chen, B., Abbeel, P., and Pathak, D. Unsupervised learn-
ing of visual 3d keypoints for control. In International
Conference on Machine Learning, 2021a.

Chen, X., Xie, S., and He, K. An empirical study of training
self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2021b.

Dasari, S., Ebert, F., Tian, S., Nair, S., Bucher, B., Schmeck-
peper, K., Singh, S., Levine, S., and Finn, C. Robonet:
Large-scale multi-robot learning. In Conference on Robot
Learning, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, 2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2021.

Feichtenhofer, C., Fan, H., Li, Y., and He, K. Masked
autoencoders as spatiotemporal learners. arXiv preprint
arXiv:2205.09113,2022.

Gao, P, Geng, S., Zhang, R., Ma, T., Fang, R., Zhang,
Y., Li, H.,, and Qiao, Y. Clip-adapter: Better vision-
language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021.

10

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Belle-
mare, M. G. Deepmdp: Learning continuous latent space
models for representation learning. In International Con-
ference on Machine Learning, 2019.

Geng, X., Liu, H., Lee, L., Schuurams, D., Levine, S., and
Abbeel, P. Multimodal masked autoencoders learn trans-
ferable representations. arXiv preprint arXiv:2205.14204,
2022.

Guhur, P.-L., Chen, S., Garcia, R., Tapaswi, M., Laptey,
I, and Schmid, C. Instruction-driven history-aware
policies for robotic manipulations. arXiv preprint
arXiv:2209.04899, 2022.

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, 2019.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Master-
ing atari with discrete world models. In International
Conference on Learning Representations, 2021.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., and Girshick, R.
Masked autoencoders are scalable vision learners. arXiv
preprint arXiv:2111.06377, 2021.

Hsu, K., Kim, M. J., Rafailov, R., Wu, J., and Finn, C.
Vision-based manipulators need to also see from their
hands. arXiv preprint arXiv:2203.12677, 2022.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International Conference on Machine
Learning, 2021.

James, S. and Abbeel, P. Coarse-to-Fine Q-attention with
Learned Path Ranking. arXiv preprint arXiv:2204.01571,
2022a.

James, S. and Abbeel, P. Coarse-to-Fine Q-attention
with Tree Expansion. arXiv preprint arXiv:2204.12471,
2022b.

James, S. and Davison, A. J. Q-attention: Enabling efficient
learning for vision-based robotic manipulation. [EEE
Robotics and Automation Letters, 2022.

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. RL-
Bench: The robot learning benchmark & learning envi-
ronment. /EEE Robotics and Automation Letters, 2020.

James, S., Wada, K., Laidlow, T., and Davison, A. J.
Coarse-to-Fine Q-attention: Efficient learning for visual
robotic manipulation via discretisation. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2022.



Multi-View Masked World Models for Visual Robotic Manipulation

Jangir, R., Hansen, N., Ghosal, S., Jain, M., and Wang,
X. Look closer: Bridging egocentric and third-person
views with transformers for robotic manipulation. /EEE
Robotics and Automation Letters, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation. arXiv preprint arXiv:2203.12601, 2022.

Oord, A. v. d,, Li, Y., and Vinyals, O. Representation
learning with contrastive predictive coding. In Advances
in Neural Information Processing Systems, 2018.

Parisi, S., Rajeswaran, A., Purushwalkam, S., and Gupta,
A. The unsurprising effectiveness of pre-trained vision
models for control. arXiv preprint arXiv:2203.03580,
2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning, 2021.

Radosavovic, 1., Xiao, T., James, S., Abbeel, P., Malik, J.,
and Darrell, T. Real world robot learning with masked
visual pre-training. In Conference on Robot Learning,
2022.

Sadeghi, F., Toshev, A., Jang, E., and Levine, S. Sim2real
viewpoint invariant visual servoing by recurrent control.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Schwarzer, M., Rajkumar, N., Noukhovitch, M., Anand, A.,
Charlin, L., Hjelm, D., Bachman, P., and Courville, A.
Pretraining representations for data-efficient reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, 2021.

11

Seo, Y., Hafner, D., Liu, H., Liu, F., James, S., Lee, K., and
Abbeel, P. Masked world models for visual control. In
Conference on Robot Learning, 2022a.

Seo, Y., Lee, K., James, S., and Abbeel, P. Reinforcement
learning with action-free pre-training from videos. In
International Conference on Machine Learning, 2022b.

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E.,
Schaal, S., and Levine, S. Time-contrastive networks:
Self-supervised learning from video. In 2018 IEEE inter-
national conference on robotics and automation (ICRA),
2018.

Sharma, M., Fantacci, C., Zhou, Y., Koppula, S., Heess, N.,
Scholz, J., and Aytar, Y. Lossless adaptation of pretrained
vision models for robotic manipulation. In International
Conference on Learning Representations, 2023.

Shridhar, M., Manuelli, L., and Fox, D. Cliport: What and
where pathways for robotic manipulation. In Conference
on Robot Learning, 2021.

Shridhar, M., Manuelli, L., and Fox, D. Perceiver-actor: A
multi-task transformer for robotic manipulation. arXiv
preprint arXiv:2209.05451, 2022.

Sola, J., Monin, A., Devy, M., and Vidal-Calleja, T. Fus-
ing monocular information in multicamera slam. /EEE
transactions on robotics, 2008.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling
representation learning from reinforcement learning. In
International Conference on Machine Learning, 2021.

Tong, Z., Song, Y., Wang, J., and Wang, L. Videomae:
Masked autoencoders are data-efficient learners for self-
supervised video pre-training. In Advances in Neural
Information Processing Systems, 2022.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller,
M. Embed to control: A locally linear latent dynamics
model for control from raw images. In Advances in neural
information processing systems, 2015.

Xijao, T., Radosavovic, 1., Darrell, T., and Malik, J. Masked
visual pre-training for motor control. arXiv preprint
arXiv:2203.06173, 2022.

Yang, A.J., Cui, C., Barsan, I. A., Urtasun, R., and Wang, S.
Asynchronous multi-view slam. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
2021.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Mastering
visual continuous control: Improved data-augmented re-
inforcement learning. arXiv preprint arXiv:2107.09645,
2021.



Multi-View Masked World Models for Visual Robotic Manipulation

Zhan, A., Zhao, P., Pinto, L., Abbeel, P., and Laskin, M.
A framework for efficient robotic manipulation. arXiv
preprint arXiv:2012.07975, 2020.

Zhang, R., Fang, R., Zhang, W., Gao, P,, Li, K., Dai, J., Qiao,
Y., and Li, H. Tip-adapter: Training-free clip-adapter
for better vision-language modeling. arXiv preprint
arXiv:2111.03930, 2021.

12



Multi-View Masked World Models for Visual Robotic Manipulation

A. Implementation Details

RLBench details For RLBench experiments, we designed dense rewards for five manipulation tasks used in our experi-
ments. We first construct waypoints where the robot should reach (i.e., phone and base positions in Phone On Base). Then
we define the reward to be the distance between the gripper and the next checkpoint. In tasks that does not need rotation in
solving (i.e., Phone On Base, Pick Up Cup, Take Umbrella Out of Umbrella Stand, Put Rubbish in Bin), we disable rotation
to reduce redundancy in exploring rotating actions. For disabling rotation, we use a path planner with identity quaternion
to force the robot to be in an upright position. In these tasks, we train the RL agent to output relative change in (X, y, z)
position. For tasks that requires rotation (i.e., Stack Wine), RL agent is trained to output relative quaternion changes as well
as (x,y,z) position changes. For viewpoint-robust control, we ease the difficulty of tasks. For Phone On Base, we make
phone and base be located upright (i.e., not rotated related to the table). For Pick Up Cup, we make the distractor cup colors
be fixed as yellow instead of changing the color for each episode. For such tasks, we append asterisk (*) after the (shortened)
task name; i.e., Phone* and Cup*. For more details, we refer readers to the source code we have attached.

Viewpoint randomization We randomize viewpoint by adjusting position and orientation of front camera. Specifically,
we randomize five parameters of camera position and orientation: 6, ¢, d, h, 1), which represents as follows:

* @: angle that determines how camera is moved clockwise (from the front camera) with respect to the origin.
¢ ¢: angle that determines how camera is tilted downward.

e ¢): angle that determined how camera is rolled clockwise.

* d: distance from the origin of the simulator.

* h: height of camera from the floor.

S
Y

(a) Images with varying 0

(c) Images with varying

(' - 7 2
&\ = a3\ i

(d) Images with varying d (e) Images with varying h

Figure 9. Rendered images with varying randomization parameters.

We exemplify how each parameter affects viewpoint in Figure 9. By randomizing aforementioned five parameters, we design
three randomization types (weak, medium, and strong) as follows.

* weak:
0~ [-5°,5°], ¢ ~[26°28°], o ~[-5°5°, d~[1.25°1.45°], h~[1.5,1.7]
* medium:
0~ [-7.5°,75°, ¢~[25.5°,28.5°], @ ~[-7.5°,7.5°], d~[1.2,15], h~[1.45,1.75]
¢ strong:

0 ~ [—10°, —7.5°| U [7.5°,10°], ¢ ~ [25° 25.5°] U[28.5°,29°], ¢ ~ [—10°,—7.5°] U [7.5°,10°],
d~[1.15,1.2]U[15,1.55], h~ [1.4,1.45] U[1.75,1.8]
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Note that we design the strong randomization, whose distribution does not overlap with that of weak or medium ran-
domization, in order to evaluate the performance under unseen viewpoint conditions. When we start episodes to collect
transitions for training, we sample two random viewpoints under the randomization type. In evaluation phase, we sample one
random viewpoint under the randomization type. The sampled viewpoints are maintained for an episode, and we re-sample
viewpoints when new episode begins.

Architecture and optimization details Our architecture is based on the publicly available source code of Seo et al.
(2022a), which is implemented with tfimm? library. We use 8-layer ViT encoder and 6-layer ViT decoder. For each view
and time step, we introduce additional 1D learnable parameters that have the same embedding size as transformer blocks.
We add these parameters to 2D fixed sin-cos embeddings and add them to features. We note that these parameters are shared
across the same times and the same views. We do not introduce separate parameters for randomized viewpoints in our
viewpoint-robust control experiments. For optimization, we use Adam optimizer (Kingma & Ba, 2015) with the learning
rate of 3e — 4, the weight decay of 1e — 6, and the batch size of 1024. For training MV-MAE, we apply warm-up learning
rate scheduling over initial 2500 gradient steps from learning rate of 0. We take 1 gradient step per every 16 environment
steps. We follow the training schemes and details of Seo et al. (2022a) regarding the architecture, unless otherwise specified.

Computation We use 24 CPU cores (Intel Xeon CPU @ 2.2GHz) and 1 GPU (NVIDIA A100 40GB GPU) for our
experiments. We find that there is no significant difference between all methods with regard to wall time because rendering
speed of the RLBench simulator is a bottleneck rather than algorithmic difference. Running experiments over 300k
environment steps for MV-MWM takes approximately 12 hours.

Hyperparameters We report the hyperparameters used in our experiments in Table 2.

Table 2. Hyperparameters used in our experiments. Unless otherwise specified, we use the same hyperparameters used in MWM (Seo
et al., 2022a).

Hyperparameter Value

Representation learning

Image observation 96 x 96 x 3

Image normalization Mean: (0.485,0.456,0.406), Std: (0.229, 0.224, 0.225)
Autoencoder batch size 1024

Autoencoder initialization steps 10000

Autoencoder warm-up steps 2500

Autoencoder learning rate 3-107%

Autoencoder masking ratio 0.95

Autoencoder ViT encoder size 8 layers, 4 heads, 256 units

Autoencoder ViT decoder size 6 layers, 4 heads, 256 units

Behavior learning

Action repeat 1

Max episode length 150

Early episode termination True (when path planner fails)

Reward normalization True

Number of expert demonstrations 50 (single-view and multi-view control), 100 (viewpoint-robust control)
World model batch size 36

World model expert batch size 12

World model sequence length 50

World model tradeoff (/3) 1.0

World model ViT encoder size 2 layers, 4 heads, 128 units
World model ViT decoder size 2 layers, 4 heads, 128 units

https://github.com/martinsbruveris/tensorflow-image-models
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B. Baselines
B.1. Masked world models

Masked world models (MWM; Seo et al. 2022a) is a visual model-based reinforcement learning framework which decouples
visual representation learning and dynamicd model learning. Specifically, MWM trains a self-supervised vision transformer
(ViT; Dosovitskiy et al. 2021) to reconstruct pixels given masked convolutional features for representation model. Then, a
world model is trained on top of the frozen visual representations. The major methodological difference between MV-MWM
and MWM is that MV-MWM learns cross-view information from multiple viewpoints by training a multi-view masked
autoencoder but MWM only considers visual information within each viewpoint. Specifically, MWM does not employ
pair information between multiple viewpoints in representation learning, but considers images from different viewpoints
as independent instances in training. Whereas, MV-MWM considers cross-view information along with a synergistic
combination of view-masking and video-autoencoding in contrast to MWM that trains an image autoencoder with uniform
masking. With this methodological difference, MV-MWM allows for learning world models that can be useful for a range of
important and practical visual robotic manipulation setups.

B.2. Time contrastive network

Time contrastive network (TCN; Sermanet et al. 2018) is a contrastive approach that learns view-invariant representations by
attracting the representations of simultaneous viewpoints but making the representations from the same viewpoints be far
located. For a given (anchor) frame in one viewpoint, we sample a positive and negative frame as follows. For the positive
frame, we use the frame that has the same timestep as the given anchor frame but from another viewpoint. For the negative
frame, we choose a frame that is a temporally faraway frame from the same viewpoint. Specifically, we sample a random
frame among frames that are at least 30 timesteps away from the anchor frame. After building a triplet of anchor, positive,
and negative frame, we train the encoder model with triplet loss (Schroff et al., 2015), which is formulated as follows:

Lyex = max(||f (") — f(o")II3 = (o) = f(o™)3 + e, 0), ®)

where « is margin, f(-) refers embedding of a frame, and 0, o?, and o™ are anchor, positive, and negative frame, respectively.
In our implementation of TCN, we use same encoder architecture with MV-MWM for a fair comparison; 8-layer ViT
encoder. For embedding f(-), we use class embedding from the last layer of ViT encoder. In the control phase, we freeze
the encoder and use average pooled token embeddings as an input for the RL agent. For RL agent, we employ the same
world model and policy architecture with MV-MWM for a fair comparison.

B.3. Pretrained MAE and CLIP with world model MAE+WM, CLIP+WM)

Masked autoencoder (MAE; He et al. 2021) learns visual representation in a self-supervised manner by training a vision
Transformer (ViT; Dosovitskiy et al. 2021) to reconstruct masked patches. Contrastive language-image pre-training (CLIP;
Radford et al. 2021) learns visual representation by aligning embedding of text and image with contrastive learning. Recently,
it has been shown that pre-training MAE with (in-the wild) large-scale dataset, and then training a control module on
top of frozen representation can solve real-world robotic manipulation tasks (Radosavovic et al., 2022; Shridhar et al.,
2021). To compare such training scheme with ours, we design MAE+WM and CLIP+WM, which learn world model upon
frozen representation of pretrained MAE or CLIP. For a fair comparison, we match the world model size with that used in
MV-MWM: i.e., 2 layers and 4 heads for the world model ViT encoder and decoder. For the pretrained MAE and CLIP, we
employ open-sourced pretrained model from huggingface transformers library.>* For the input of pretrained MAE and CLIP,
we use 224 x 224 RGB observation from each camera. Then, we feed 7 x 7 patches into the world model.

*https://huggingface.co/facebook/vit-mae-base
4https ://huggingface.co/openai/clip-vit-base-patch32
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C. Full Experimental Results

C.1. Multi-view Control with Front and Wrist Camera
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Figure 10. Learning curves of RL agents that operate on front and wrist camera observation for solving five tasks from RLBench as
measured on the success rate. The solid line and shaded regions represent the mean and standard deviations, respectively, across 4 runs.

C.2. Single-view Control with Front Camera
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Figure 11. Learning curves of RL agents that operate on front camera observation for solving five tasks from RLBench as measured on the
success rate. The solid line and shaded regions represent the mean and standard deviations, respectively, across 4 runs.
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C.3. Viewpoint-Robust Control
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Figure 12. Success rate on seen (weak) and unseen (strong) viewpoints by RL agents trained on weak randomization across two tasks
from RLBench. The solid line and shaded regions represent the mean and standard deviations, respectively, across 4 runs.
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Figure 13. Success rate on seen (medium) and unseen (strong) viewpoints by agents trained on medium randomization across two tasks
from RLBench. The solid line and shaded regions represent the mean and standard deviations, respectively, across 4 runs.
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C.4. Ablation Study and Analysis

Figure 14. Effect of view masking. The solid line and shaded regions represent the mean and standard deviation across 4 runs.
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Figure 15. Effect of video autoencoding. The solid line and shaded regions represent the mean and standard deviation across 4 runs.
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Figure 16. Effect of mask ratio. The solid line and shaded regions represent the mean and standard deviation across 4 runs.
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D. Additional Experiments
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Figure 17. Aggregate learning curves on Phone On Base and Take Umbrella Out of Stand in single-view control to investigate the effect
of (a) training ratio, (b) model size, (c) proprioceptive states, (d) fine-tuning MV-MAE encoder, and (e) auxiliary behavior cloning loss
with expert demonstration. The solid line and shaded regions represent the mean and standard deviation across 4 runs.

Training ratio In Figure 17(a), we investigate whether MV-MWM can be scaled up for better performance by adjusting
the training ratio, which is the number of gradient steps per every 16 environment steps. We find that sample-efficiency can

be further improved with training ratio higher than 1. This insight would bring practical guidance for future researchers
when applying MV-MWM to new tasks.

Model size We further investigate the scaling property of MV-MWM by scaling up the model size in Figure 17(b). We
increase the number of patches in ViTs by reducing the patch size of MV-MAE from 16 to 8. We find that larger model
achieve higher asymptotic performance as well as higher sample-efficiency.

Proprioceptive states In Figure 17(c), we analyze whether feeding auxiliary proprioceptive states into the world model
could improve performance. We observe that additional proprioceptive states does not make performance boost. We
hypothesize that this is because our method implicitly learns 3D information by learning cross-view information from
multi-view data, thus including proprioceptive state does not make large information gain.

Fine-tuning MV-MAE encoder We investigate whether fine-tuning MV-MAE encoder when training world model could
improve performance; we fine-tune the last one or two layers of the MV-MAE encoder and freeze all the other layers of
the MV-MAE encoder. We observe that fine-tuning does not make gains in Figure 17(d), which shows that our visual
representation learning scheme enables the autoencoder to effectively capture information required for solving the task.

Behavior cloning loss with expert demonstration Figure 17(e) shows that how behavior cloning loss using expert
demonstrations affect performance. We find that using behavior loss improves sample-efficiency, yet the asymptotic
performance converges to that without the behavior cloning loss. The behavior cloning loss could implicitly reduce an
exploration space into area nearby expert demonstrations, which accelerates training especially in the early phase.
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Data augmentation for viewpoint-robust control To investigate the importance of using visual observations from
randomized cameras, we consider a baseline that uses images perturbed with data augmentation (i.e., rotation, translation,
brightness, and contrast) for multi-view representation learning. As shown in Figure 18(a), we observe that using the images
from physically perturbed images largely outperforms the baseline based on data augmentation. This is because such a
randomized camera can provide images from different perspectives that contain additional information which is not available
from the single, fixed camera viewpoint. On the other hand, data augmentation fails to give such information useful for
implicitly capturing 3D information of a robot workspace. Given this result, investigation into how to set up a real-world
robot learning setup with a randomized camera would be an interesting and important future research direction.

Three cameras experiments To assess how the number of viewpoints used for representation learning affects the
performance, we train MV-MWM with more than two cameras in multi-view representation learning: three cameras of
{Front, Wrist, and Left Shoulder}. As shown in Figure 18(b), we find that including additional Left Shoulder camera does
not largely affect the performance compared to using only Front and Wrist cameras. We hypothesize this is because a
widely-used camera configuration with Front and Wrist camera is already sufficient for capturing the information required
for completing the considered tasks. It would be an interesting future direction to investigate the importance of specific
camera viewpoints for solving a variety of tasks.

Longer training step In Figure 19, we report the experimental results with larger training steps to provide asymptotic
results of our analysis experiments. We observe that the performance gain from view-masking is significant over longer
training horizon, which shows the effectiveness of the proposed masking scheme. On the other hand, because the video
autoencoding is introduced to improve the sample-efficiency at the initial phase of training by addressing the difficulty of
training with the view-masking, we find that the benefit of employing the video autoencoding becomes less significant in
a more long-term manner. Moreover, we observe that high masking ratio is crucial for sample-efficiency but asymptotic
performance with different masking ratios is similar. We hypothesize this is because our proposed view-masking scheme
can asymptotically encourage the model to learn useful representations even with the low masking ratio as 50%.
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Figure 18. (a) Aggregate learning curves on Phone On Base* and Pick Up Cup* in viewpoint-robust control to investigate the effect of
using randomized cameras. (b) Aggregate learning curves of multi-view visual control agents for solving three manipulation tasks.
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Figure 19. Learning curves of single-view visual control agents operating on the front camera for solving Phone On Base task from
RLBench (James et al., 2020), investigating the effect of (a) view masking, (b) video autoencoding and (c) masking ratio. The solid line
and shaded regions represent the mean and standard deviation across 4 runs.
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