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1. Method-Additional Details

1.1. Pre-processing

For the maximal plane projection, by coverage of points we
mean the unique number projection of the point set that we
get on a plane. We call its output as pseudo-height field
when we essentially create a height field only due to tak-
ing projection on the axial planes which approximated the
height field. Also, we pass the x, y values from the grid
along with the value associated with it. So, the pseudo-
height field is a 3D point set.

1.2. The sketchTransformer Network

We choose a transformer based architecture as we observe it
to be better suited to handle unstructured and irregular data
that we deal with as compared to the CNN based architec-
tures.

Both the stage 1 and 2 decoders are linear decoders of
different sizes. We found in our experiments that the lin-
ear decoders are performing better for these specific tasks
as compared to convolutional decoders. In particular, the
convolutional decoders output have noise in the boundary
regions. The PCT based encoder outputs the positional, av-
erage and maximum feature sets corresponding to the in-
put. The positional feature set encodes the geometry of the
input. Essentially, the input points are grouped and sam-
pled progressively in the encoder. The average feature set
encodes the average geometry of each group. The maxi-
mum feature set encodes the maximum geometry of each
group. For stage 1 decoder, we want to extract a denser
set of points from the pseudo-height field. This requires re-
moving unwanted points and upsampling the point set at the
same time, so we use all the three feature sets. For stage 2
decoder, we want to predict the control grid from a dense
set of points. This requires downsampling the point set in a
way, so we use only the average feature set. We empirically
found the average feature set more useful than the mean fea-
ture set for this purpose.

1.3. Post-processing

For joining the adjacent surface patches, the boundary con-
trol points are adjusted in a way that they join smoothly.
In particular, we align the corresponding boundary control
points and their adjacent control points from both the sur-
faces before stitching the boundary control points. Let this
set of control points be CB . To align the points in CB , we
first fit a cubic Bézier curve to it. Then, we further move the
boundary control points such that it become the mid point
of the corresponding adjacent control points from both the
surfaces. Finally, we explicitly stitch the boundary control
points together.

2. Training sketchTransformer- Additional De-
tails

2.1. Dataset

In order to train sketchTransformer, we need a dataset with
pairs of sketch strokes and surfaces. We extract BSpline
surface patches and their corresponding control grids from
the ABC dataset [7]. We sample random curves from these
surfaces and extract points from these curves. To augment
this, we extend some of these curves and add random noise
to the extracted points. We re-parameterize the control grids
to an empirically fixed size of 16×16. Then we use Geomdl
NURBS [2] library to recreate the BSpline surfaces from the
given control points of the extracted patches. We call this
dataset the ABCSurface dataset. From this dataset, we use
45K patches for training, 5K patches for validation and 10K
patches for testing. Examples from the dataset can be seen
in Figure 1.

2.2. Network details

The two stages of sketchTransformer are trained separately
with an Adam optimizer with a learning rate of 0.001 for
both. The Stage 2 network is trained with the output from
the Stage 1 network.

Data Pre-processing: We fix the number of points to be
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Figure 1. Example of strokes, strokes with jitter (used for augmen-
tations), ground truth control grids and ground truth surfaces from
the ABCSurface dataset.

sampled from each stroke as 20. The points and ground
truth surfaces are normalized to the range [0, 1]. During
training, we choose a random number of strokes from the
given set of strokes corresponding to each strokes-surface
pair.

3. Additional Results
Here we present additional results for our framework.

3.1. Comparison with Baselines

We compare our method with the baselines as given in the
main paper for fitting a single surface patch to a set of sketch
strokes.

3.1.1 Single Surface Patch Fitting Evaluation

We evaluate our method for fitting a single patch to a given
set of 3D strokes. Figure 2 shows additional results for
single surface patch fitting. The first column in the im-
age shows the input sketch strokes, where are the rest of
the columns show corresponding single surface patches fit
using various methods. These methods are Least Squares
Fit (LSQ) [2], ParseNet (PN) [10], StPNet (SN) [1], Vari-
ational Implicit Point Set Surface (VIPSS) [6], Neural Ker-
nel Surface Reconstruction (NKSR) [5]. sketchTransformer
(SK) is the method presented in this paper and GT is the
ground truth. Figure 2 shows additional results for single
surface patch fitting with our method and the baselines.

Next we test our method on a subset of the dataset with
boundary strokes from the boundABCSpline dataset [1].
This dataset contains the boundary sketch strokes along
with inner strokes in the input sketches. This is an im-

portant set-up to evaluate the effect of the availability of
boundary strokes on the created surface. Table 1 and Fig-
ure 3 shows that our sketchTransformer network beats all
the networks for the single patch fitting task on the bound-
ABCSpline dataset as well. Figure 4 shows how the shape
of the surface evolves as more sketch strokes are input.

3.1.2 Component Analysis

We also evaluate different components of the our method
separately by comparing it with relevant baselines.

Stage 1: We first compare the output of this part of our
framework, SK, with other baselines. We compare with the
Radial Basis function and Least Square [3, 8] based approx-
imations (RLSQ), PU Transformer [9] (PU) which is de-
signed for upsampling of point clouds, and StPNet [1] (SN)
designed for fitting surfaces to sketch strokes. Table 2 and
Figure 5 presents the results for this comparison.

Stage 2: We compare this part of our framework with
other baselines that perform such surface fits. This include
the Radial Basis function and Least Square [3, 8] based ap-
proximations (RLSQ) and Parsenet [10] (PN). Here, we use
the point set output by Stage 1 network as input as opposed
to using the strokes directly. Table 3 and Figure 6 shows
these results.

3.1.3 Multiple Surface Patch Fitting Evaluation

We evaluate our framework for multiple surface fitting on
the standard patch based models from the classic Utah tea
set dataset [11]. Quantitative and qualitative results for
these can be seen in the main paper in Section 4.1.

Here, we compare average running times for various
methods to fit and recover the entire model from the sam-
pled sketch strokes. We run all the experiments on a ma-
chine with Intel Core i7 @4.20GHz CPU with 16 GB RAM,
and a NVIDIA GeForce GTX 1060 6GB GPU. These re-
sults are presented in Table 4. Note that these are times for
the entire models, over multiple patches and even though
our method is slower than NKSR, we produce much bet-
ter results as can be seen in results in the main paper and in
Figure 7. Also, our method is still fast enough to be suitable
for interactive modelling.

Figure 7 shows spatial distribution of the error on point
samples taken from patches fit using various methods for
the same evaluation for the comparison given in Section 4.1
Figure 6 in the main paper.

3.2. Modelling from real 3D sketches

3.2.1 Results on Existing Dataset

We show additional examples of surface models created
from 3D curated dataset [4] in Figure 8.
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Figure 2. Additional results for comparing with baselines for creating single surface patches from input strokes, on ABCSurface dataset.
LSQ: [8], PN: [10], SN: [1], VIPSS: [6], NKSR: [5], SK: Our method.

Input Strokes LSQ PN SN VIPSS NKSR SK GT

Figure 3. Comparing with baselines for creating single surface patches from input strokes, on boundABCSpline dataset. LSQ: [8], PN:
[10], SN: [1], VIPSS: [6], NKSR: [5], SK: Our method.

Figure 4. Evolution of shape of the surface fit by our method with increasing number of strokes.

Chamfer Hausdorff
LSQ PN SN VIPSS NKSR SK LSQ PN SN VIPSS NKSR SK

0.0897 0.0437 0.299 0.1438 0.1216 0.0103 0.3254 0.5067 1.0679 0.4859 0.4226 0.305

Table 1. Comparing with baselines for creating single surface patches from input strokes, on boundABCSpline dataset.LSQ: [8], PN:
[10], SN: [1], VIPSS: [6], NKSR: [5].

RLSQ PU SN SK
Chamfer 1.4e+13 0.0214 0.3786 0.0119

Hausdorff 0.4929 0.2778 1.1009 0.2278

Table 2. Comparison of our Stage 1 network with the respective
baseline methods on ABCSurface dataset. The percentage im-
provement of our method over the best performing baseline are:
Chamfer: 44.39, Hausdorff: 17.99. RLSQ: [3, 8], PU: [9], SN:
[1], SK: Our proposed method

LSQ PN VIPSS NKSR SK
Chamfer 0.4046 0.0478 0.3705 0.43 0.0235

Hausdorff 0.3132 0.4557 0.3095 0.3729 0.2989

Table 3. Comparison of our Stage 2 networks with the respec-
tive baseline methods on ABCSurface dataset. The percentage
improvement of our method over the best performing baseline are:
Chamfer: 50.84, Hausdorff: 3.42. LSQ: [8] PN: [10], VIPSS:
[6], NKSR: [5], SK: Our proposed method
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Figure 5. Qualitative comparison of our Stage 1 shape preserving
transformation of sketches to a uniform and regular set of points
with the baseline methods on ABCSurface dataset. RLSQ: [3, 8],
PU: [9], SN: [1], SK: Our proposed method.

Strokes Transf LSQ PN

VIPSS NKSR SK GT

Figure 6. Qualitative comparison of our Stage 2 surface fitting
from our shape preserving transformationwith the baseline meth-
ods on ABCSurface dataset. Tranf: Stage 1 network output for
given input, LSQ: [8], PN: [10], VIPSS: [6], NKSR: [5], SK:
Our proposed method.

VIPSS NKSR SF SK

Figure 7. Error maps corresponding to the reconstructions by the
baselines and our method. The error bar below each error map
shows the range of error. VIPSS: [6], NKSR: [5], SF: [12], SK:
Our method.

Figure 8. Additional examples of surface models created with our
method for sketches from 3D curated dataset [4]. We show input
sketch strokes and the predicted surface models overlaid with the
sketch strokes.

Figure 9. Additional results of creating different 3D models from
real-time 3D sketches with our Blender plugin.

Teapot Teacup Teaspoon
VIPSS 1878.0 1878.0 1878.0
NKSR 0.97 0.90 0.73

SF 240 230 200
SK 26.2 21.9 13.95

Table 4. Average running time (in seconds) for surface modelling
on the Utah tea set dataset [11] (Teapot, Teacup and Teaspoon
models). VIPSS: [6], NKSR: [5], SF: [12], SK: Our method.

3.2.2 Results of The Blender Plugin Frontend

We show additional examples of surface models created
from real-time 3D sketches with our Blender plugin fron-
tend in Figure 9.

3.3. User Study

Figures 10 and 11 show the pairs of sketch and surface mod-
els that we show to the participants in the user study.

4. Limitation
Our method is not able to successfully deal with cases
where the sketch strokes have sharp curves (see Figure 12).



Figure 10. Pairs of sketch and models shown to the participants
in Blender during the user trials.

Figure 11. Pairs of sketch and models shown to the participants
in Mobile AR during the user trials.

Figure 12. Our method does not produce correct patch fit for
strokes with sharp creases. The middle image shows the incor-
rect result produced from the sketch strokes in the first image, and
the final image shows the corrected result produced by splitting
the strokes at the crease.

This is due to the reason that multiple points are projected
to same point on the maximal projection plane.

This can be solved by splitting the strokes at the sharp
curvature and fit two different patches to them.
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