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Abstract

We study Policy-extended Value Function Approximator (PeVFA) in Reinforce-1

ment Learning (RL), which extends conventional value function approximator2

(VFA) to take as input not only the state (and action) but also an explicit policy3

representation. Such an extension enables PeVFA to preserve values of multi-4

ple policies at the same time and brings an appealing characteristic, i.e., value5

generalization among policies. We formally analyze the value generalization un-6

der Generalized Policy Iteration (GPI). From theoretical and empirical lens, we7

show that generalized value estimates offered by PeVFA may have lower initial8

approximation error to true values of successive policies, which is expected to9

improve consecutive value approximation during GPI. Based on above clues, we10

introduce a new form of GPI with PeVFA which leverages the value generalization11

along policy improvement path. Moreover, we propose a representation learning12

framework for RL policy, providing several approaches to learn effective policy em-13

beddings from policy network parameters or state-action pairs. In our experiments,14

we evaluate the efficacy of value generalization offered by PeVFA and policy15

representation learning in several OpenAI Gym continuous control tasks. For a16

representative instance of algorithm implementation, Proximal Policy Optimization17

(PPO) re-implemented under the paradigm of GPI with PeVFA achieves about 40%18

performance improvement on its vanilla counterpart in most environments.19

1 Introduction20

Reinforcement Learning (RL) has been widely considered as a promising way to learn optimal21

policies in many decision-making problems [35, 31, 53, 65, 47, 62, 16]. One fundamental element of22

RL is value function which defines the long-term evaluation of a policy. With function approximation23

(e.g., deep neural networks), a value function approximator (VFA) is able to approximate the values24

of a policy under large and continuous state spaces. As commonly recognized, most RL algorithms25

can be described as Generalized Policy Iteration (GPI) [55]. As illustrated on the left of Figure 1,26

at each iteration the VFA is trained to approximate the true values of current policy (i.e., policy27

evaluation), regarding which the policy is further improved (i.e., policy improvement). The value28

function approximation error hinders the effectiveness of policy improvement and then the overall29

optimality of GPI [5, 46]. Unfortunately, such errors are inevitable under function approximation. A30

large number of samples are usually required to ensure high-quality value estimates, resulting in the31

sample-inefficiency of deep RL algorithms. Therefore, this raises an urgent need for more efficient32

value approximation methods [61, 4, 12, 25].33

An intuitive idea to improve the efficiency value approximation is to leverage the knowledge on34

the values of previous encountered policies. However, a conventional VFA usually approximates35

the values of one policy and values learned from old policies are over-written gradually during36
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Figure 1: Generalized Policy Iteration (GPI) with function approximation. Left: GPI with con-
ventional value function approximator Vφ. Right: GPI with PeVFA Vθ(χπ) (Sec. 3) where extra
generalization steps exist. The subscripts of policy π and value function parameters φ, θ denote the
iteration number. The squiggle lines represent non-perfect approximation of true values.

the learning process. This means that the previously learned knowledge cannot be preserved and37

utilized with one conventional VFA. Thus, such limitations prevent the potentials to leverage the38

previous knowledge for future learning. In this paper, we study Policy-extended Value Function39

Approximator (PeVFA), which additionally takes an explicit policy representation as input in contrast40

to conventional VFA. Thanks to the policy representation input, PeVFA is able to approximate values41

for multiple policies and induces value generalization among policies. We formally analyze the42

generalization of approximate values among policies in a general form. From both theoretical and43

empirical lens, we show that the generalized value estimates can be closer to the true values of44

the successive policy, which can be beneficial to consecutive value approximation along the policy45

improvement path, called local generalization. Based on above clues, we introduce a new form46

of GPI with PeVFA (the right of Figure 1) that leverages the local generalization to improve the47

efficiency of consecutive value approximation along the policy improvement path.48

One key point of GPI with PeVFA is the representation of policy since it determines how PeVFA gen-49

eralizes the values. For this, we propose a framework to learn effective low-dimensional embedding50

of RL policy. We use network parameters or state-action pairs as policy data and encode them into51

low-dimensional embeddings; then the embeddings are trained to capture the effective information52

through contrastive learning and policy recovery. Finally, we evaluate the efficacy of GPI with PeVFA53

and our policy representations. In principle, GPI with PeVFA is general and can be implemented54

in different ways. As a practical instance, we re-implement Proximal Policy Optimization (PPO)55

with PeVFA and propose PPO-PeVFA algorithm. Our experimental results on several OpenAI Gym56

continuous control tasks demonstrate the effectiveness of both value generalization offered by PeVFA57

and learned policy representations, with an about 40% improvement in average returns achieved by58

our best variants on standard PPO in most tasks.59

We summarize our main contributions below. 1) We study the value generalization among policies60

induced by PeVFA. From both theoretical and empirical aspects, we shed the light on the situations61

where the generalization can be beneficial to the learning along policy improvement path. 2) We62

propose a framework for policy representation learning. To our knowledge, we make the first attempt63

to learn a low-dimensional embedding of over 10k network parameters for an RL policy. 3) We64

introduce GPI with PeVFA that leverages the value generalization in a general form. Our experimental65

results demonstrate the potential of PeVFA in deriving practical and more effective RL algorithms.66

2 Related Work67

Extensions of Conventional Value Function. Sutton et al. [56] propose General Value Functions68

(GVFs) as a general form of knowledge representation of rewards and arbitrary cumulants. Later,69

conventional value functions are extended to take extra inputs for different purposes of generalization.70

One notable work is Universal Value Function Approximator (UVFA) [45], which is proposed to71

generalize values among different goals for goal-conditioned RL. UVFA is further developed in72

[1, 37, 9] and influences the occurrence of other value function extensions in context-based Meta-RL73

[43, 29], Hierarchical RL [64] and multiagent RL [19, 14] and etc. Most of the above works study74

how to generalize the policy or value function among extrinsic factors, i.e., environments, tasks and75

opponents; while we mainly study the value generalization among policies along policy improvement76

path, an intrinsic learning process of the agent itself.77
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Policy Embedding and Representation. Although not well studied, representation (or embedding)78

learning for RL policies is involved in a few works [18, 14, 3]. The most common way to learn a79

policy representation is to extract from interaction experiences. As a representative, Grover et al. [14]80

propose learning the representation of opponent policy from interaction trajectories with a generative81

policy recovery loss and a discriminative triplet loss. These losses are later adopted in [64, 42].82

Another straightforward idea is to represent policy parameters. Network Fingerprint [17] is such a83

differentiable representation that uses the concatenation of the vectors of action distribution outputted84

by policy network on a set of probing states. The probing state set is co-optimized along with the85

primary learning objective, which can be non-trivial especially when the dimensionality of the set is86

high. Besides, some early attempts in learning low-dimensional embedding of policy parameters are87

studies in Evolutionary Algorithms [13, 44], mainly with the help of VAE [23]. Our work introduce a88

learning framework of policy representation including both above two perspectives.89

PVN and PVFs. Recently, several works study the generalization among policy space. Harb et al.90

[17] propose Policy Evaluation Network (PVN) to directly approximate the distribution of policy91

π’s objective function J(π) = Eρ0 [vπ(s0)] with initial state s0 ∼ ρ0. PVN takes as input Network92

Fingerprint (mentioned above) of policy network. After training on a pre-collected set of policies, a93

random initialized policy can be optimized in a zero-shot manner with the policy gradients of PVN by94

backpropagting through the differentiable policy input. We call such gradients GTPI for short below.95

Similar ideas are later integrated with task-specific context learning in multi-task RL [42], leveraging96

the generalization among policies and tasks for fast policy adaptation on new tasks. In PVN [17],97

as an early attempt, the generalization among policies is studied with small policy network and98

simple tasks; besides, the most regular online learning setting is not studied. Concurrent to our work,99

Faccio and Schmidhuber [10] propose a class of Parameter-based Value Functions (PVFs) that take100

vectorized policy parameters as inputs. Based on PVFs, new policy gradient algorithms are introduced101

in the form of a combination of conventional policy gradients and GTPI (i.e., by backpropagating102

through policy parameters in PVFs). Except for zero-shot policy optimization as conducted in PVN,103

PVFs are also evaluated for online policy learning. Due to directly taking parameters as input, PVFs104

suffer from the curse of dimensionality when the number of parameters is high. Besides, GTPI can105

be non-trivial to rein since policy parameter space are complex and extrapolation generalization106

error can be large when the value function is only trained on finite policies (usually much fewer than107

state-action samples) thus further resulting in erroneous policy gradients.108

Our work differs with PVFs from several aspects. First, we make use of learned policy representation109

rather than policy network parameters. Second, we do not resort to GTPI for the policy update110

in our algorithms but focus on utilizing value generalization for more efficient value estimation in111

GPI. Furthermore, we shed the light on two important problems — how value generalization among112

policies can happen formally and whether it is beneficial to learning or not — which are neglected in113

in previous works from both theoretical and empirical lens.114

3 Policy-extended Value Function Approximator115

In this section, we propose Policy-extended Value Function Approximator (PeVFA), an extension116

of conventional VFA that explicitly takes as input a policy representation. First, we introduce the117

formulation (Sec. 3.1), then we study value generalization among policies theoretically (Sec. 3.2)118

along with some empirical evidences (Sec. 3.3). Finally, we derive a new form of GPI (Sec. 3.4).119

3.1 Formulation120

Consider a Markov Decision Process (MDP) defined as 〈S,A, r,P, γ〉 where S is the state space, A121

is the action space, r is the (bounded) reward function, P is the transition function and γ ∈ [0, 1) is122

the discount factor. A policy π ∈ P (A)|S| defines the distribution over all actions for each state. The123

goal of an RL agent is to find an optimal policy π∗ that maximizes the expected long-term discounted124

return. The state-value function vπ(s) is defined as the expected discounted return obtained through125

following the policy π from a state s: vπ(s) = Eπ [
∑∞
t=0 γ

trt+1|s0 = s] for where rt+1 = r(st, at).126

We use V π to denote the vectorized form of value function.127

In a general form, we define policy-extended value function V : S × Π→ R over state and policy128

space: V(s, π) = vπ(s) for all s ∈ S and π ∈ Π. In this paper, we focus on V(s, π) and policy-129

extended action-value function Q(s, a, π) can be obtained similarly. We use V(π) to denote the value130
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Figure 2: Illustrations of value generalization among policies of PeVFA. Each circle denotes value
function (estimate) of a policy. (a) Global Generalization: values learned from known policies can be
generalized to unknown policies. (b) Local Generalization: values of previous policies (e.g., πt) can
be generalized to successive policies (e.g., πt+1) along policy improvement path.

vector for all states in the following. The key point is that PeVFA V is able to preserve the values of131

multiple policies. With function approximation, a PeVFA is expected to approximate the values of132

policies among policy space, i.e., {V π}π∈Π and then enable value generalization among policies.133

Formally, given a function g : Π→ X ⊆ Rn that maps any policy π to an n-dimensional represen-134

tation χπ = g(π) ∈ X , a PeVFA Vθ with parameter θ ∈ Θ is to minimize the approximation error135

over all possible states and policies generally:136

Fµ,p,ρ(θ, g,Π) =
∑
π∈Π

µ(π)‖Vθ(χπ)− V π‖p,ρ , (1)

where µ, ρ are distributions over policies and states respectively, ‖f‖p,ρ = (
∫
s
ρ(ds)|f(s)|p)1/p is137

ρ-weighted Lp-norm [26, 46] for any f : S → R. The policy distribution µ of interest depends on138

the scenario where value generalization is considered. As illustrated in Figure 2, we provide two139

value generalization scenarios. In the global generalization scenario, a uniform distribution over140

known policy set may be considered with a general purpose of value generalization for unknown141

policies. For the specific local generalization scenario along policy improvement path during GPI, a142

sophisticated distribution that adaptively weights recent policies more during the learning process143

may be more suitable in this case. In the following, we care more about the local generalization144

scenario and use uniform state distribution ρ and L2-norm for demonstration. The subscripts are145

omitted and we use ‖ · ‖ for clarity.146

3.2 Theoretical Analysis on Value Generalization among Policies147

In this part, we theoretically analyze the value generalization among policies induced by PeVFA. We148

start from a two-policy case and study whether the value approximation learned for one policy can be149

generalized to the other one. Later, we study the local generalization scenario (Figure 2(b)) and shed150

the light on the superiority of PeVFA for GPI. All the proofs are provided in Appendix A.151

For the convenience of demonstration, we use an identical policy representation function, i.e., χπ = π,152

and define the approximation loss of PeVFA Vθ for any policy π ∈ Π as fθ(π) = ‖Vθ(π)−V π‖ ≥ 0.153

We use the following definitions for a formal description of value approximation process with PeVFA154

and local property of loss function fθ that influences generalization [40, 63] respectively:155

Definition 1 (π-Value Approximation) We define a value approximation process Pπ : Θ → Θ156

with PeVFA as a γ-contraction mapping on the approximation loss for policy π, i.e., for θ̂ = Pπ(θ),157

we have fθ̂(π) ≤ γfθ(π) where γ ∈ [0, 1).158

Definition 2 (L-Continuity) We call fθ is L-continuous at policy π if fθ is Lipschitz continuous at159

π with a constant L ∈ [0,∞), i.e., |fθ(π) − fθ(π′)| ≤ L · d(π, π′) for π′ ∈ Π with some distance160

metric d for policy space Π.161

With Definition 1, the consecutive value approximation for the policies along policy improvement path162

during GPI can be described as: θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . , as the green arrows illustrated in163

Figure 1. One may refer to Appendix A.1 for a discussion on the rationality of the two definitions.164
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To start our analysis, we first study the generalized value approximation loss in a two-policy case165

where only the value of policy π1 is approximated by PeVFA as below:166

Lemma 1 For θ
Pπ1−−−→ θ̂, if fθ̂ is L̂-continuous at π1 and fθ(π1) ≤ fθ(π2), we have: fθ̂(π2) ≤167

γfθ(π2) +M(π1, π2, L̂), whereM(π1, π2, L̂) = L̂ · d(π1, π2).168

Corollary 1 Pπ1
is γg-contraction (γg ∈ [0, 1)) for π2 when fθ(π2) > L̂·d(π1,π2)

1−γ .169

Lemma 1 shows that the post-Pπ1
approximation loss for π2 is upper bounded by a generalized170

contraction of prior loss plus a locality margin termM which is related to π1, π2 and the locality171

property of fθ̂. In general, the form ofM depends on the local property assumed. Some higher-172

order variants are provided in Appendix A.2. For a step further, Corollary 1 reveals the condition173

where a contraction on value approximation loss for π2 is achieved when PeVFA is only trained to174

approximate the values of π1. Concretely, such a condition is apt to reach with tighter contraction for175

policy π1 is, closer two policies, or smoother approximation loss function fθ̂.176

Then we consider the local generalization scenario as illustrated in Figure 2(b). For any iteration t177

of GPI, the values of current policy πt are approximated by PeVFA, followed by a improved policy178

πt+1 whose values are to be approximated in the next iteration. The value generalization from each179

πt and πt+1 can be similarly considered as the two-policy case. In addition to the former results, we180

shed the light on the value generalization loss of PeVFA along policy improvement path below:181

Lemma 2 For θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . with γt for each Pπt , if fθt is Lt-continuous at πt182

for any t ≥ 0, we have fθt(πt+1) ≤ γtfθt−1(πt) +Mt, whereMt = Lt · d(πt, πt+1).183

Corollary 2 By induction, we have fθt(πt+1) ≤
∏t
i=0 γtfθ−1

(π0) +
∑t−1
i=0

∏t
j=i+1 γjMi +Mt .184

The above results indicate that the value generalization loss can be recursively bounded and has185

a upper bound formed by a repeated contraction on initial loss plus the accumulation of locality186

margins induced from each local generalization. An infinity-case discussion for Corollary 2 is in187

Appendix A.5. The next question is whether PeVFA with value generalization among policies is188

preferable to the conventional VFA. To this end, we introduce a desirable condition which reveals the189

superiority of PeVFA during consecutive value approximation along the policy improvement path:190

Theorem 1 During θ−1

Pπ0−−−→ θ0

Pπ1−−−→ θ1

Pπ2−−−→ . . . , for any t ≥ 0, if fθt(πt) + fθt(πt+1) ≤191

‖V πt − V πt+1‖, then fθt(πt+1) ≤ ‖Vθt(πt)− V πt+1‖.192

Theorem 1 shows that the generalized value estimates Vθt(πt+1) can be closer to the true values of193

policy πt+1 than Vθt(πt). Note that Vθt(πt) is the value approximation for πt which is equivalent194

to the counterpart Vφt for a conventional VFA as value generalization among policies does not195

exist. To consecutive value approximation along policy improvement path, this means that the value196

generalization of PeVFA has the potential to offer closer start points at each iteration. If such closer197

start points can often exist, we expect PeVFA to be preferable to conventional VFA since value198

approximation can be more efficient with PeVFA and it in turn facilitates the overall GPI process.199

However, the condition in Theorem 1 is not necessarily met in practice. Intuitively, it depends on the200

locality margins that may be related to function family and optimization method of PeVFA, as well201

as the scale of policy improvement. We leave these further theoretical investigations for future work.202

Instead, we empirically examine the existence of such desirable generalizations in the following.203

3.3 Empirical Evidences204

We empirically investigate the value generalization of PeVFA with didactic environments. In this205

section, PeVFA Vθ is parameterized by neural network and we use the concatenation of all weights206

and biases of the policy network as a straightforward representation χπ for each policy, called Raw207

Policy Representation (RPR). Experimental details are provided in Appendix B.208

First, we demonstrate the global generalization (illustrated in Figure 2(a)) in a continuous 2D Point209

Walker environment. We build the policy set Π with synthetic policies, each of which is a randomly210

initialized 2-layer tanh-activated neural network with 2 units for each layer. The size of Π is 20k and211

the behavioral diversity of synthetic policies is verified (see Figure 7(b) in Appendix). We divide Π212

into training set (i.e., known policies Π0) and testing set (i.e., unseen policies Π1). We rollout the213

5



6 4 2 0 2 4 6

Average true V values, i.e., empirical 
t

trt

6

4

2

0

2

4

6

Av
er

ag
e 

pr
ed

ict
ed

 V
 v

al
ue

s, 
i.e

., 
(

)

Training Policies
Testing Policies

(a) Global Generalization

0 10 20 30 40 50
Steps (2e4 steps)

19.4

29.9

79.3

128.6

178.0

227.3

276.7

326.0

375.4

Ap
pr

ox
im

at
io

n 
Lo

ss

InvertedPendulum-v1

VFA loss (before)
VFA loss (after)
PeVFA loss (before)
PeVFA loss (after)

45

92

229

366

503

639

776

913

1050

Av
g 

Re
tu

rn

Avg Return

0 10 20 30 40 50
Steps (4e4 steps)

31.2

89.3

209.8

330.4

450.9

571.5

692.0

812.6

933.1

Ap
pr

ox
im

at
io

n 
Lo

ss

Ant-v1

VFA loss (before)
VFA loss (after)
PeVFA loss (before)
PeVFA loss (after)

276

15

246

506

767

1028

1289

1549

1810

Av
g 

Re
tu

rn

Avg Return

(b) Local Generalization

Figure 3: Empirical evidences of two kinds of generalization of PeVFA. (a) Global generalization:
PeVFA shows comparable value estimation performance on testing policy set (red) after learning
on training policy set (blue). (b) Local generalization: PeVFA (Vθ(χπ)) shows lower losses than
conventional VFA (Vφ) before and after the value approximation training for successive policies
along policy improvement path. In (b), the left axis is for approximation loss (lower is better) and the
right axis is for average return as a reference of the policy learning process (green curve).

policies in the environment to collect trajectories, based on which we perform value approximation214

training. Our results show that a PeVFA trained on Π0 achieves reasonable generalization performance215

when evaluating on Π1. The average losses on training and testing set are 1.782 and 2.071 over 6216

trials. Figure 3(a) shows the value predictions for policies from training and testing set (100 for each).217

Next, we investigate the value generalization along policy improvement path, i.e., local generalization218

as in Figure 2(b). We use a 2-layer 8-unit policy network trained by standard PPO algorithm [50] in219

MuJoCo continuous control tasks. Parallel to the conventional value network Vφ(s) (i.e., VFA) in220

PPO, we set a PeVFA network Vθ(s, χπ) as a reference for the comparison on value approximation221

loss. Compared to Vφ, PeVFA Vθ(s, χπ) takes RPR as input and approximates the values of all222

historical policies ({πi}ti=0) in addition. We compare the value approximation losses of Vφ (red) and223

Vθ (blue) before (solid) and after (dashed) updating with on-policy samples collected by the improved224

policy πt+1 at each iteration. Figure 3(b) shows the results for InvertedPendulum-v1 and Ant-v1.225

Results for all 7 MuJoCo tasks can be found in Appendix B.2. By comparing approximation losses226

before updating (red and blue solid curves), we can observe that the approximation loss of Vθt(χπt+1
)227

is almost consistently lower than that of Vφt . This means that the generalized value estimates228

offered by PeVFA are usually closer to the true values of πt+1, demonstrating the consequence229

arrived in Theorem 1. For the dashed curves, it shows that PeVFA Vθt+1(χπt+1) can achieve lower230

approximation loss for πt+1 than conventional VFA Vφt+1 after the same number of training with the231

same on-policy samples. The empirical evidence above indicates that PeVFA can be preferable to232

the conventional VFA for consecutive value approximation. The generalized value estimates along233

policy improvement path have the potential to expedite the process of GPI.234

3.4 Reinforcement Learning with PeVFA235

Based on the results above, we expect to leverage the value generalization of PeVFA to facilitate236

RL. In Algorithm 1, we propose a general description of RL algorithm under the paradigm of237

GPI with PeVFA. For each iteration, the interaction experiences of current policy and the policy238

Algorithm 1 RL under the paradigm of GPI with PeVFA (V(s, χπ) is used for demonstration)
1: Initialize policy π0, policy representation model g, PeVFA V−1 and experience buffer D
2: for iteration t = 0, 1, . . . do
3: Rollout policy πt in the environment and obtain k trajectories Tt = {τi}ki=0
4: Get representation χπt = g(π) for policy πt and add experiences (χπt , Tt) in buffer D
5: if t % M = 0 then
6: Update PeVFA Vt−1(s, χπi) for previous policies with data {(χπi , Ti)}t−1

i=0
7: Update policy representation model g, e.g., with approaches provided in Sec. 4
8: end if
9: Update PeVFA Vt−1(s, χπt) for current policy χπt and set Vt ←− Vt−1

10: Update πt w.r.t Vt(s, χπt) by policy improvement algorithm and set πt+1 ←− πt
11: end for

6



Policy Params
(OPR)

Policy (𝑠, 𝑎)
Pairs (SPR)

PI 
Trans

MLP 𝜒𝜋

MLP
෤𝑎

𝑠
a

Data Source/Input

Policy Decoder

Policy Encoder

MLP

MLP 𝕍(𝑠, 𝜒𝜋)

PeVFA

Auxiliary Loss

Unsupervised
Learning

Contrastive 
Learning

(End-to-End)

MLP𝑠

MLP
MLP

(MLE)

gradients

Figure 4: The framework of policy representation training. Policy network parameters used for OPR
or policy state-action pairs used for SPR are fed into policy encoder with permutation-invariant (PI)
transformations followed by an MLP, producing the representation χπ . Afterwards, χπ can be trained
by gradients from the value approximation loss of PeVFA (i.e., End-to-End), as well as (optionally)
the auxiliary loss of policy recovery or the contrastive learning (i.e., InfoNCE) loss.

representation are stored in a buffer (line 3-4). At an interval of M iterations, PeVFA is trained via239

value approximation for previous policies with the stored data and the policy representation model240

is updated according to the method used (line 5-8). This part is unique to PeVFA for preservation241

and generalization of knowledge of historical policies. Next, value approximation for current policy242

is performed with PeVFA (line 9). A key difference here is that the generalized value estimates243

(i.e., Vt−1(χπt)) are used as start points. Afterwards, a successive policy is obtained from typical244

policy improvement (line 10). Algorithm 1 can be implemented in different ways and we propose an245

instance implemented based on PPO [50] in our experiments later. In the next section, we introduce246

our methods for policy representation learning.247

4 Policy Representation Learning248

To derive practical deep RL algorithms, one key point is policy representation, i.e., a low-dimensional249

embedding of RL policy. Intuitively, policy representation influences the approximation and gener-250

alization of PeVFA. Thus, it is of interest to find an effective policy representation based on which251

the superiority of PeVFA can be leveraged to improve RL algorithms. To our knowledge, policy252

representation is not well studied and it remains unclear on how to obtain an effective representation253

for an RL policy in a general case in practice. In previous section, we demonstrate the effectiveness254

of using policy parameters as a naive representation when policy network is small, called RPR.255

However, a usual policy network may have large number of parameters, thus making it inefficient256

and even irrational to use RPR for approximation and generalization [17, 10]. More generally, policy257

parameters of the policy we wish to represent may not be accessible.258

To this end, we propose a general framework of policy representation learning as illustrated in Figure259

4. The first thing to consider is data source, i.e., from which we can extract the information for an260

effective policy representation. Recall that the policy is a distribution over state and action space261

of high dimensionality. The features of such a distribution is not directly available. Therefore, we262

consider two kinds of data source below that indirectly contains the information of policies: 1) Surface263

Policy Representation (SPR): The first data source is state-action pairs (or trajectories [14]), since264

they reflect how policy may behave under such states. This data source is general since no explicit265

form of policy is assumed. In a geometric view, learning policy representation from state-action pairs266

can be viewed as capturing the features of policy via scattering sample points on the curved surface267

of policy distribution. 2) Origin Policy Representation (OPR): The other data source is parameters of268

policy since they determine the underlying form of policy distribution. Such a data source is often269

available during the learning process of deep RL algorithms when policy is parameterized by neural270

networks. Generally, we consider a policy network to be an MLP with well represented state features271

(e.g., features extracted by CNN for pixels or by LSTM for sequences) as input.272

The remaining question is how we extract the policy representation from the data sources mentioned273

above. As shown in Figure 4, we use permutation-invariant (PI) transformations followed by an274

MLP to encode the data of policy π into an embedding χπ for both SPR and OPR. For SPR, each275
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state-action pair of {(si, ai)}ki=1 is fed into a common MLP, followed by a Mean-Reduce operation276

on the outputted features across k. For OPR, we perform PI transformation (similar as done for277

state-action pairs) inner-layer weights and biases {(wi, bi)}hi=1 for each layer first, where h denotes278

the number of nodes in this layer and wi, bi is the income weight vector from previous layer and279

the bias of ith node; then we concatenate encoding of layers and obtain the OPR. A illustrative280

description for the encoding of OPR is in Figure 12 of Appendix.281

To train the policy embedding χπ obtained above, the most straightforward way is to backpropagate282

the value approximation loss of PeVFA in an End-to-End (E2E) fashion as illustrated on the lower-283

right of Figure 4. In addition, we provide two self-supervised training losses for both OPR and SPR,284

as illustrated on the upper-right of Figure 4. The first one is an auxiliary loss (AUX) of policy recovery285

[14], i.e., to recover the action distributions of π from χπ under different states. To be specific,286

an auxiliary policy decoder π̄(·|s, χπ) is trained through behavioral cloning, formally to minimize287

cross-entropy objective LAUX = −E(s,a) [log π̄(a|s, χπ)]. For the second one, we propose to train288

χπ by Contrastive Learning (CL) [54, 51]: policies are encouraged to be close to similar ones (i.e.,289

positive samples π+), and to be apart from different ones (i.e., negative samples π−) in representation290

space. For each policy, we construct positive samples by data augmentation on policy data, depending291

on SPR or OPR considered; and different policies along the policy improvement path naturally292

provide negative samples for each other. Finally, the embedding χπ is optimized through minimizing293

the InfoNCE loss [41] below: LCL = −E(π+,{π−})

[
log

exp(χTπWχπ+ )

exp(χTπWχπ+ )+
∑
π− exp(χTπWχπ− )

]
.294

Now, the training of policy representation model in Algorithm 1 can be performed with any com-295

bination of data sources and training losses provided above. A pseudo-code of the overall policy296

representation training framework and complete implementation details are provided in Appendix D.297

5 Experiments298

In this section, we conduct experimental study with focus on the following questions:299

Question 1 Can value generalization offered by PeVFA improve a deep RL algorithm in practice?300

Question 2 Can our proposed framework to learn effective policy representation?301

Our experiments are conducted in several OpenAI Gym continuous control tasks (one from Box2D302

and five from MuJoCo) [6, 58]. All experimental details and curves can be found in Appendix B.303

Algorithm Implementation. We use PPO [50] as the basic algorithm and propose a representative304

implementation of Algorithm 1, called PPO-PeVFA. PPO is a policy optimization algorithm that305

follows the paradigm of GPI (Figure 1, left). A value network Vφ(s) with parameters φ (i.e.,306

conventional VFA) is trained to approximate the value of current policy π; while π is optimized with307

respect to a surrogate objective [48] using advantages calculated by Vφ and GAE [49]. Compared with308

original PPO, PPO-PeVFA makes use of a PeVFA network Vθ(s, χπ) with parameters θ rather than309

the conventional VFA Vφ(s), and follows the training scheme as in Algorithm 1. Note PPO-PeVFA310

uses the same policy optimization method as original PPO and only differs at value approximation.311

Baselines and Variants. Except for original PPO as a default baseline, we use another two baselines:312

1) PPO-PeVFA with randomly generated policy representation for each policy, denoted by Ran PR;313

2) PPO-PeVFA with Raw Policy Representation (RPR), i.e., use the vector of all parameters of policy314

network as representation as adopted in PVFs [10]. Our variants of PPO-PeVFA differ at the policy315

representation used. In total, we consider 6 variants denoted by the combination of the policy data316

choice (i.e., OPR, SPR) and representation principle choice (i.e., E2E, CL, AUX).317

Experimental Details. For all baselines and variants, we use a normal-scale policy network with318

2 layers and 64 units for each layer, resulting in over 3k to 10k (e.g., Ant-v1) policy parameters319

depending on the environments. We do not assume the access to pre-collected policies. Thus the320

size of policy set increases from 1 (i.e., the initial policy) during the learning process, to about 1k to321

2 for a single trial. The dimensionality of all kinds of policy representation expect for RPR is set322

to 64. The buffer D maintains recent 200k steps of interaction experience and the policy data of323

corresponding policy. The number of interaction step of each trial is 1M for InvDouPend-v1 and324

LunarLander-v2, 4M for Ant-v1 and 2M for the others.325

Results. The overall experimental results are summarized in Table 1. In Figure 5, we provide326

aggregated results across all environments expect for InvDouPend-v1 and LunarLander-v2 (since327
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Table 1: Average returns (± half a std) over 10 trials for algorithms. Each result is the maximum
evaluation along the training process. Top two values for each environment are bold.

Benchmarks Origin Policy Representation (Ours) Surface Policy Representation (Ours)

Environments PPO Ran PR RPR E2E CL AUX E2E CL AUX

HalfCheetah-v1 2621 2470 2325 ± 399.27 3171 ± 427.63 3725 ± 348.55 3175 ± 517.52 2774 ± 233.39 3349 ± 341.42 3216 ± 506.39
Hopper-v1 1639 1226 1097 ± 213.47 2085 ± 310.91 2351 ± 231.11 2214 ± 360.78 2227 ± 297.35 2392 ± 263.93 2577 ± 217.73

Walker2d-v1 1505 1269 317 ± 152.68 1856 ± 305.51 2038 ± 315.51 2044 ± 316.32 1930.57 ± 456.02 2203 ± 381.95 1980 ± 325.54
Ant-v1 2835 2742 2143 ± 406.64 3581 ± 185.43 4019 ± 162.47 3784 ± 268.99 3173 ± 184.75 3632 ± 134.27 3397 ± 200.03

InvDouPend-v1 9344 9355 8856 ± 551.90 9357 ± 0.29 9355 ± 0.64 9355 ± 0.68 9355 ± 0.89 9356 ± 0.96 9355 ± 1.42
LunarLander-v2 219 226 -22 ± 35.08 238 ± 3.37 239 ± 3.70 234 ± 3.47 236 ± 3.13 234 ± 3.13 235 ± 5.70

most algorithms achieve near-optimal results), where all returns are normalized by the results of PPO328

in Table 1. Full learning curves are omitted and can be found in Appendix F.2.329
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Figure 5: Normalized averaged returns
aggregated over 4 MuJoCo tasks.
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Figure 6: A t-SNE visualization for
representations learned by PPO-PeVFA
OPR (E2E) in Ant-v1. In total, 6k poli-
cies from 5 trials (denoted by different
markers) are plotted, which are colored
according to average return.

To Question 1. From Table 1, we can find that both PPO-330

PeVFA w/ OPR (E2E) and PPO-PeVFA w/ SPR (E2E)331

outperforms PPO in all 6 tasks, and achieve over 20%332

improvement in Figure 5. This demonstrates the effec-333

tiveness of PeVFA. Moreover, the improvement is further334

enlarged (to about 40%) by CL and AUX for both OPR335

and SPR. This indicates that the superiority of PeVFA can336

be further utilized with better policy representation that337

offers a more suitable space for value generalization.338

To Question 2. In Table 1, consistent degeneration is339

observed for PPO-PeVFA w/ Ran PR due to the nega-340

tive effects on generalization caused by the randomness341

and disorder of policy representation. This phenomenon342

seems to be more severe for PPO-PeVFA w/ RPR due343

to the complexity of high-dimensional parameter space.344

In contrast, the improvement achieved by our proposed345

PPO-PeVFA variants shows that effective policy repre-346

sentation can be learned from policy parameters (OPR)347

and state-action pairs (SPR) though value approximation348

loss (i.e., E2E) and further improved when additional self-349

supervised representation learning is involved as CL and350

AUX. Overall, OPR slightly outperforms SPR as CL does351

over AUX. We hypothesize that it is due to the stochas-352

ticity of state-action pairs which serve as inputs of SPR353

and training samples for AUX. This reveals the space for354

future improvement. In addition, we visualize the learned355

representation in Figure 6. We can observe that policies356

from different trials are locally continuous and show dif-357

ferent modes of embedding trajectories due to random358

initialization and optimization; while a global evolvement359

among trials emerges with respect to policy performance.360

6 Conclusion and Future Work361

In this paper, we propose Policy-extended Value Function Approximator (PeVFA) and study value362

generalization among policies. We propose a new form of GPI based on PeVFA which is potentially363

preferable to conventional VFA for value approximation. Moreover, we propose a general framework364

to learn low-dimensional embedding of RL policy. Our experiments demonstrate the effectiveness of365

the generalization characteristic of PeVFA and our proposed policy representation learning methods.366

Our work opens up some research directions on value generalization among policies and policy367

representation. A possible future study on the theory of value generalization among policies is to368

consider the interplay between approximation error, policy improvement and local generalization369

during GPI with PeVFA. Besides, analysis on influence factors of value generalization among policies370

(e.g., policy representation, architecture of PeVFA) and other utilization of PeVFA are expected. For371

better policy representation, inspirations on OPR may be got from studies on Manifold Hypothesis of372

neural network; the selection of more informative state-action pairs for SPR is also worth research.373
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(a) Did you state the full set of assumptions of all theoretical results? [Yes]519

(b) Did you include complete proofs of all theoretical results? [Yes]520

3. If you ran experiments...521

(a) Did you include the code, data, and instructions needed to reproduce the main experimental522

results (either in the supplemental material or as a URL)? [No] Our experimental environment523

are public and standard. All the information needed to reproduce our results is provided in the524

main body and appendix. Code will be available publicly soon.525

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?526

[Yes] Partially in main body and all details can be found in the appendix document.527

(c) Did you report error bars (e.g., with respect to the random seed after running experiments528

multiple times)? [Yes]529

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,530

internal cluster, or cloud provider)? [Yes]531

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...532

(a) If your work uses existing assets, did you cite the creators? [Yes]533

(b) Did you mention the license of the assets? [Yes] We use a free education licence for students for534

MuJoCo.535

(c) Did you include any new assets either in the supplemental material or as a URL? [No]536

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-537

ing/curating? [N/A]538

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-539

tion or offensive content? [N/A]540

5. If you used crowdsourcing or conducted research with human subjects...541

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?542

[N/A]543

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)544

approvals, if applicable? [N/A]545

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on546

participant compensation? [N/A]547
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Appendix548

A Supplementary Materials for Theoretical Analysis549

A.1 More on Definition 1 and 2550

In Definition 1, we use Pπ for a formal description of value approximation process, i.e., the learning process551

of a parametrized PeVFA Vθ with parameters θ ∈ Θ to approximate the values of policy π. For a usual552

example, one can consider Pπ as multiple times of parameter update via gradient descent with respect to553

fθ(π) = ‖Vθ(π)− V π‖. Note that fθ(π) can be equivalent to a common value approximation loss function554

L(θ) = Es∼ρ(s)
(
Vθ(s, π)− V̂ π(s)

)2
with some unbiased estimates V̂ π from experiences stored, when the555

same state distribution ρ(s) is considered. Thus, with sufficient capacity of function approximation and certain556

number of training, we can expect a contraction of approximation loss for policy π obtained by Pπ .557

We use Definition 2 to characterize the local smoothness of approximation loss fθ near policy π with Lipschitz558

continuity. Consider a typical PeVFA Vθ parameterized by an MLP with finite weights, biases and non-linear559

activation. Such a Vθ is Lipschitz continuity with a bounded Lipschitz constant, as it is made up of function560

transformations that individually have bounded Lipschitz constants, e.g., weight matrix w of some layer has561

bounded Lipschitz constant to be the operator norm of matrix w and ReLU activation has Lipschitz constant of562

1. Further, easily we have for any π and π′,563

|fθ(π)− fθ(π′)| ≤ ‖Vθ(π)− Vθ(π′)‖+ ‖V π − V π
′
‖. (2)

As mentioned above, Vθ is Lipschitz continuity with a bounded Lipschitz constant; and the norm of true value564

vector of two policies is also finite. Thus, fθ in this case can also have a bounded Lipschitz constant L.565

A.2 Proof of Lemma 1566

Proof. For the clarity, we also use f and f̂ as abbreviations of fθ and fθ̂ in the following. Start from the567

L̂-continuity of f̂(θ) (recall Definition 2), we have the upper bound of f̂(π2) below:568

f̂(π2) ≤ f̂(π1) + L̂ · d(π, π′). (3)

The second term in Equation 3 is decided by the two policies we considered and a Lipschitz constant L̂. Moreover,569

the constant L̂ (i.e., locality property) is related to the parameters θ̂ of PeVFA. In general, we denote the above570

term asM(π1, π2, L̂) called locality margin. The locality marginM(π1, π2, L̂) can have different forms that571

depends on the specific locality property, for examples:572

M(π1, π2, L̂) =


L̂ · d(π1, π2) ¬

〈f̂ ′(π1), π2 − π1〉+
1

2
L̂ · d(π1, π2)2 ­

〈f̂ ′(π1), π2 − π1〉+
1

2
〈f̂ ′′(π1)(π2 − π1), π2 − π1〉+

1

6
L̂ · d(π1, π2)3 ®

¬, ­, ® correspond to Lipschitz Continuous, Lipschitz Gradients and Lipschitz Hessian [39], which are573

conisdered in previous works on generalization studies [22, 63].574

Further, apply the Definition 1 and consider the case f(π1) ≤ f(π2), Equation 3 can be further transformed as575

follows:576

f̂(π2) ≤ f̂(π1) +M(π1, π2, L̂)

≤ γf(π1) +M(π1, π2, L̂)

≤ γf(π2)︸ ︷︷ ︸
generalized contraction

+ M(π1, π2, L̂)︸ ︷︷ ︸
locality margin

,
(4)

which yields the generalization upper bound in Lemma 1. We note the first term of RHS of Equation 4 as577

generalized contraction term since it is from the contraction on f(π1) caused by the value approximation578

operator Pπ1 , and the second term as locality margin since it is determined by specific local property. �579

Remark 1 Since value approximation is only performed for π1, the condition fθ(π1) ≤ fθ(π2) can usually580

exist after a certain number of training; in turn, the complementary case fθ(π1) > fθ(π2) is acceptable since581

the unoptimized approximation loss is already lower than the optimized one.582
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A.3 Proof of Corollary 1583

Proof. Following Lemma 1, consider Lipschitz continuity for a concrete locality property of fθ̂ , we have,584

f̂(π2) ≤ γf(π2) + L̂ · d(π1, π2). (5)

Then we get the contraction condition of value generalization on π2 in Corollary 1, by letting the RHS of585

Equation 5 be smaller than f(π2):586

γf(π2) + L̂ · d(π1, π2) < f(π2)

(1− γ)f(π2) > L̂ · d(π1, π2)

f(π2) >
L̂ · d(π1, π2)

1− γ ≥ 0.

(6)

�587

Remark 2 From the generalization contraction condition provided in Corollary 1, we can find that: as i. γ → 0,588

or ii. d(π1, π2) → 0, or iii. L̂ → 0, the contraction condition is easier to achieve (or the contraction gets589

tighter), i.e., the generalization on unlearned policy π2 is better.590

In another word, the tighter the contraction on learned policy π1 is, the closer the two policies are, the smoother591

the approximation loss function f̂ is, the generalization on unlearned policy π2 is better.592

Corollary 1 provides the generalization contraction condition on f(π2), under the assumptions that Pπ1 is593

γ-contraction and f(π1) < f(π2) (as in Lemma 1). In below, we discuss a more general condition for594

generalization contraction on f(π2) which indicates more possible cases:595

Corollary 3 For θ
Pπ1−−−→ θ̂ and fθ̂ is L̂-continuous at π1, when f(π2) − γf(π1) > L̂ · d(π1, π2), we have596

that Pπ1 is also a γg-contraction for π2, i.e., fθ̂(π2) ≤ γgfθ(π2) with γg ∈ [0, 1).597

Proof. From Equation 4, we have f̂(π2) ≤ γf(π1) + L̂ · d(π1, π2). To yield the generalization contraction598

on f(π2), is to let599

f̂(π2) ≤ γf(π1) + L̂ · d(π1, π2) < f(π2), (7)

that is to let,600

f(π2)− γf(π1) > L̂ · d(π1, π2). (8)

�601

Since d(π1, π2) is constant in the two-policy case considered, the condition in Corollary 3 is associated to the602

value approximation losses on π1 and π2 before applying the value approximation operator Pπ , as well as the603

L̂-continuity of θ̂ after applying Pπ . We can find similar conclusions as mentioned in Remark 2. However,604

Corollary 3 indicates some more cases that the condition of generalization contraction can be satisfied. For605

example, it can happen in the complementary cases as we assumed in Lemma 1, i.e., 1) when f(π1) > f(π2),606

or 2) Pπ is not a γ-contraction on f(π1).607

A.4 Proof of Lemma 2608

Proof. Consider any t ≥ 0 and θt−1

Pπt−−−→ θt, due to fθt is Lt-continuous at πt, we have,609

fθt(πt+1) ≤ fθt(πt) + Lt · d(πt, πt+1), (9)

then due to the definition of the value approximation process Pπt ,610

fθt(πt+1) ≤ γtfθt−1(πt) + Lt · d(πt, πt+1),

= γtfθt−1(πt) +Mt,
(10)

whereMt = Lt · d(πt, πt+1). �611

Intuitively, such a recursive relation between the generalized approximation loss of two consecutive steps, i.e.,612

fθt−1(πt) and fθt(πt+1), are chained by the assumed continuity of the loss function fθt and the definition of613

value approximation process.614
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A.5 Proof of Corollary 2615

Proof. Consider the consecutive value approximation process θ−1

Pπ0−−−→ θ0
Pπ1−−−→ . . .

Pπt−1−−−−−→ θt−1

Pπt−−−→616

θt
Pπt+1−−−−−→ . . . , following the recursive relation in Lemma 2, we have the inequality below by induction,617

fθt(πt+1) ≤ γtfθt−1(πt) +Mt,

≤ . . .
≤ γt

(
γt−1

(
. . .
(
γ0fθ−1(π0) +M0

)
. . .
)
Mt−1

)
+Mt,

=

(
t∏
i=0

γt

)
fθ−1(π0)︸ ︷︷ ︸

¶

+

t−1∑
i=0

(
t∏

j=i+1

γj

)
Mi +Mt︸ ︷︷ ︸

·

.

(11)

whereMt = Lt · d(πt, πt+1). We use ¶ to denote the term for accumulated generalized contraction of initial618

approximation loss and use · to denote the term for accumulated locality margin. �619

Towards the infinity case i.e., t → ∞, if we assume that (i) maxt d(πt, πt+1) < ∞ and (ii)
∏h2
k=h1

γk =620

O( 1
(h2−h1+1)1+ε

), ∀0 < h1 ≤ h2 with some ε > 0, then limt→∞ fθt(πt+1) < ∞. That is because the621

sequence {Mi}ti=0 has a public upper bound Mmax = Lmax · maxt d(πt, πt+1) where Lmax denotes the622

upper bound of Lipschitz constant (recall the discussion in Appendix A.1), and by (ii)
∑t−1
i=0

(∏t
j=i+1 γj

)
=623

O(
∑t−1
i=0

1
(t−i+1)1+ε

) <∞.624

Note that we consider a really loose bound in the infinity case above withMmax, therefore the condition (ii) may625

be unnecessarily strict when the dynamics of Lt and d(πt, πt+1) are considered. Intuitively, the evolvement of626

Lt during learning process is related to function family and optimization method of θt; and for d(πt, πt+1), this627

is related to value approximation error (fθt(πt ) and policy improvement method (i.e., how πt is improved to be628

πt+1). We leave these further analysis for future work.629

A.6 Proof of Theorem 1630

Proof. By the condition in Theorem 1, we have631

fθt(πt) + fθt(πt+1) ≤ ‖V πt − V πt+1‖
≤ ‖Vθt(πt)− V

πt‖+ ‖Vθt(πt)− V
πt+1‖ = fθt(πt) + ‖Vθt(πt)− V

πt+1‖,
(12)

where the second inequality comes from Triangle Inequality. Then it is straightforward that632

fθt(πt+1)︸ ︷︷ ︸
generalizated VAD with PeVFA

≤ ‖Vθt(πt)− V
πt+1‖︸ ︷︷ ︸

conventional VAD

,
(13)

which means that with local generalization of values for successive policy πt+1, the value approximation distance633

(VAD) can be closer in contrast to the conventional one (RHS of Equation 13). �634

In practice, we consider that it is also possible for farther distance to exist, e.g., the condition in above Theorem 1635

is not satisfied. Moreover, under nonlinear function approximation, it is not necessary that a closer approximation636

distance (induced by Theorem 1) ensures easier approximation or optimization process. This can be associated637

to many factors, e.g., the underlying function space, the optimization landscape, the learning algorithm used638

and etc. In this paper, we provide a condition for potentially beneficial local generalization and we resort to639

empirical examination as shown in Sec. 3.3. Further investigation on the interplay between value generalization640

and policy learning especially under nonlinear function approximation is planned for future work.641

B Details of Empirical Evidence of Two Kinds of Generalization642

B.1 Global Generalization in 2D Point Walker643

Global generalization denotes the generalization scenario that values can generalize to unlearned policies644

(π′ ∈ Π1) from already learned policies (π ∈ Π0). We conduct the following experiments to demonstrate global645

generalization in a 2D continuous Point Walker environment with synthetic simple policies.646

Environment. We consider a point walker on a 2D continuous plane with:647

• state: (x, y, sin(θ), cos(θ), cos(x), cos(y)), where θ is the angle of the polar coordinates,648

• action: 2D displacement, a ∈ R2
[−1,1],649
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• a deterministic transition function that describes the locomotion of the point walker, depending on the650

current position and displacement issued by agent, i.e., 〈x′, y′〉 = 〈x, y〉+ a,651

• a reward function: rt =
ut+1−ut

10
with utility ut = x2t − y2t , as illustrated in Figure 7(a).652
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(a) Utility function heat map (b) Examples of synthetic policy population

Figure 7: 2D Point Walker. (a) The heat map of the utility function of the 2D plane. The darker
regions have higher utilities. (b) Demonstrative illustrations of trajectories generated by 30 synthetic
policies, showing diverse behaviors and patterns. Each subplot illustrates the trajectories generated in
50 episodes by a randomly synthetic policy, with different colors as separation. For each trajectory
(the same color in one subplot), transparency represents the dynamics along timesteps, i.e., fully
transparent and non-transparent denotes the positions at first and last timesteps.

Synthetic Policy. We build the policy sets Π = Π0 ∪ Π1 and Π0 ∩ Π1 = ∅ with synthetic policies. Each653

synthetic policy is a 2-layer tanh-activated neural policy network with 2 nodes for each layer. The weights are654

initialized by sampling from a uniform distribution U(−1, 1) and the biases are initialized by U(−0.2, 0.2).655

Each policy is deterministic, taking an environmental state as input and outputting a displacement in the plane.656

We find that the synthetic population generated by such a simple way can show diverse behaviors. Figure 7(b)657

shows the motion patterns of an example of such a synthetic population. Note that the synthetic policies are not658

trained in this experiment.659

Policy Dataset. We rollout each policy in environment to collect trajectories T = {τi}ki=0. For such small660

synthetic policies, it is convenient to obtain policy representation. Here we use the concatenation of all661

weights and biases of the policy network (26 in total) as representation χπ for each policy π, called raw policy662

representation (RPR). Therefore, combined with the trajectories collected, we obtain the policy dataset, i.e.,663

{(χπj , Tπj )}nj=0. In total, 20k policies are synthesized in our experiments and we collected 50 trajectories with664

horizon 10 for each policy.665

We separate the synthetic policies into training set (i.e., unknown policies Π0) and testing set (i.e., unseen666

policies Π1) in a proportion of 8 : 2. We set a PeVFA network Vθ(s, χπ) to approximate the values of training667

policies (i.e., π ∈ Π0), and then conduct evaluation on testing policies (i.e., π ∈ Π1). We use Monte Carlo668

return [55] of collected trajectories as approximation target (true value of policies) in this experiment. The669

network architecture of Vθ(s, χπ) is illustrated in Figure 8(a). The learning rate is 0.005, batch size is 256.670

K-fold validation is performed through shuffling training and testing sets.671

Figure 8(b) shows the curves of training loss and testing loss. The average losses on training and testing set are672

1.782 and 2.071 over 6 trials. Figure 2(a) plots the value predictions for policies from training and testing set (100673

for each). This demonstrates that a PeVFA trained with data collected by training set Π0 achieves reasonable674

value prediction of unseen testing policies in Π1. Our results indicate that value generalization can exist among675

policy space with a properly trained PeVFA. RPR can also be one alternative of policy representation when676

policy network is of small scale.677

B.2 Local Generalization in MuJoCo Continuous Control Tasks678

We demonstrate local generalization of PeVFA, especially to examine the existence of Theorem 1, i.e., PeVFA679

can induce closer approximation distance (i.e., lower approximation error) than conventional VFA along the680

policy improvement path.681

We use a 2-layer 8-unit policy network trained by PPO [50] algorithm in OpenAI MuJoCo continuous control682

tasks. As in previous section, using a very small policy network is for the convenience of training and acquisition683
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Figure 8: Global generalization of PeVFA on 2D Point Walker. (a) An illustration of architecture of
PeVFA network. FC is abbreviation for Fully-connected layer. (b) Training and testing losses. Data
shuffle sand network re-initialization are performed per 100 steps, i.e., 1e5 training times.

of policy representation in this demonstrative experiment. We use all weights and biases of the small policy684

network (also called raw policy representation, RPR), whose number is about 10 to 100 in our experiments,685

depending on the specific environment (i.e., the state and action dimensions). We train the small policy network686

as commonly done with PPO [50] and GAE [49]. The conventional value network Vφ(s) (VFA), is a 2-layer687

128-unit ReLU-activated MLP with state as input and value as output. Parallel to the conventional VFA in PPO,688

we set a PeVFA network Vθ(s, χπ) with RPR as additional input. The structure of PeVFA differs at the first689

hidden layer which has two input streams and each of them has 64 units, as illustrated in Figure 8(a), so that690

making VFA and PeVFA have similar scales of parameter number. In contrast to conventional VFA Vφ which691

approximates the value of current policy (e.g., Algorithm 2), PeVFA Vθ(s, χπ) has the capacity to preserve692

values of multiple policies and thus is additionally trained to approximate the values of all historical policies693

({πi}ti=0) along the policy improvement path (e.g., Algorithm 3). The learning rate of policy is 0.0001 and694

the learning rate of value function approximators (Vφ(s) and Vθ(s, χπ)) is 0.001. The training scheme of PPO695

policy here is the same as that described in Appendix F.1 and Table 2.696

Note that Vθ(χπ) does not interfere with PPO training here, and is only referred as a comparison with Vφ on697

the approximation error to the true values of successive policy πt+1. We use the MC returns of on-policy data698

(i.e., trajectories) collected by current successive policy as unbiased estimates of true values, similarly done699

in [61, 12]. Then we calculate the approximation error for VFA Vφ and PeVFA Vθ(χπ) to the approximation700

target before and after value network training of current iteration. Finally, we compare the approximation error701

between VFA and PeVFA to approximately examine local generalization and closer approximation target in702

Theorem 1. Complete results of local generalization across all 7 MuJoCo tasks are show in Figure 9. The703

results show that PeVFA consistently shows lower losses (i.e., closer to approximation target) across all tasks704

than conventional VFA before and after policy evaluation along policy improvement path, which demonstrates705

Theorem 1. Moreover, we also provide similar empirical evidence when policy is updated with larger learning706

rates in {0.0001, 0.001, 0.005}, as in Figure 10.707

A common observation across almost all results in Figure 9 and in Figure 10 is that the larger the extent of policy708

change (see the regions with a sheer slope on green curves), the higher the losses of conventional VFA tend709

to be (see the peaks of red curves), where the generalization tends to be better and more significant (see the710

blue curves). Since InvertedPendulum-v1 is a simple task while the complexity of the solution for Ant-v1 is711

higher, the difference between value approximation losses of PeVFA and VFA is more significant at the regions712

with fast policy improvement. Besides, the Raw Policy Representation (RPR) we used here does not necessarily713

induce a smooth and efficient policy representation space, among which policy values are easy to generalize714

and optimize. Thus, RPR may be sufficient for a good generalization in InvertedPendulum-v1 but may be not715

in Ant-v1. Overall, we think that the quantity of value approximation loss is related to several factors of the716

environment such as the reward scale, the extent of policy change, the complexity of underlying solution (e.g.,717

value function space) and some others. A further investigation on this can be interesting.718

C Generalized Policy Iteration with PeVFA719

C.1 Comparison between Conventional GPI and GPI with PeVFA720

A graphical comparison of conventional GPI and GPI with PeVFA is shown in Figure 1. Here we provide721

another comparison with pseudo-codes.722
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Figure 9: Complete empirical evidence of local generalization of PeVFA across 7 MuJoCo tasks.
The learning rate of policy and value function approximators are 0.0001 and 0.001 respectively.
Each plot has two vertical axes, the left one for approximation error (red and blue curves) and
the right one for average return (green curves). Red and blue denotes the approximation error of
conventional VFA (Vφ(s)) and of PeVFA (Vθ(s, χπ)) respectively; solid and dashed curves denote
the approximation error before and after the training for values of successive policy (i.e., policy
evaluation) with conventional VFA and PeVFA, averaged over 6 trials. The shaded region denotes
half a standard deviation of average evaluation. PeVFA consistently shows lower losses (i.e., closer
to approximation target) across all tasks than conventional VFA before and after policy evaluation
along policy improvement path, which demonstrates Theorem 1.

From the lens of Generalized Policy Iteration [55], for most model-free policy-based RL algorithms, the ap-723

proximation of value function and the update of policy through policy gradient theorem are usually conducted724

iteratively. Representative examples are REINFORCE [55], Advantage Actor-Critic [36], Deterministic Policy725

Gradient (DPG) [52] and Proximal Policy Optimization (PPO) [50]. With conventional value function (approxi-726

mator), policy evaluation is usually performed in an on-policy or off-policy fashion. We provide a general GPI727

description of model-free policy-based RL algorithm with conventional value functions in Algorithm 2.728

Note that we use subscript t− 1→ t (Line 13 in Algorithm 2) to let the updated value functions to correspond729

to the evaluated policy πt during policy evaluation process in current iteration.730

As a comparison, a new form of GPI with PeVFA is shown in Algorithm 3. Except for the different parameteriza-731

tion of value function, PeVFA can perform additionally training on historical policy experiences at each iteration732

(Line 7-8). This is naturally compatible with PeVFA since it develops the capacity of conventional value function733

to preserve the values of multiple policies. Such a training is to improve the value generalization of PeVFA734

among a policy set or policy space. Note that for value approximation of current policy πt (Line 10-14), the735

start points are generalized values of πt from historical approximation, i.e., Vt−1(s, χπt) and Qt−1(s, a, χπt).736

In another word, this is the place where local generalization steps (illustrated in Figure 2(b)) are. One may737

compare with conventional start points (V πt−1(s) and Qπt−1(s, a), Line 13 in Algorithm 2) and see the difference,738
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Figure 10: Empirical evidence of local generalization of PeVFA on InvertedPendulum-v1 and Ant-v1
with different learning rates of policy, i.e., {0.0001, 0.001, 0.005}. Results are averaged over 6 trials.

Algorithm 2 Generalized policy iteration for model-free policy-based RL algorithm with conventional
value functions (V π(s) or Qπ(s, a))

1: Initialize policy π0 and V π−1(s) or Qπ−1(s, a)
2: Initialize experience buffer D
3: for iteration t = 0, 1, 2, . . . do
4: Rollout policy πt in the environment and obtain trajectories Tt = {τi}ki=0
5: Add experiences Tt in buffer D
6: if on-policy update then
7: Prepare training samples from rollout trajectories Tt
8: else if off-policy update then
9: Prepare training samples by sampling from buffer D

10: end if
11: Calculate approximation target {yi}i from training samples (e.g., with MC or TD)
12: # Generalized Policy Evaluation
13: Update V πt−1(s) or Qπt−1(s, a) with {(si, yi)}i or {(si, ai, yi)}i, i.e., V πt ←− V πt−1 or

Qπt ←− Qπt−1
14: # Generalized Policy Improvement
15: Update policy πt with regard to V πt (s) or Qπt (s, a) through some policy gradient theorem,

i.e., πt+1 ←− πt
16: end for

e.g., V πt−1(s) ⇔ V πt−1(s) ⇔ Vt−1(s, χπt−1) is different with Vt−1(s, χπt), where⇔ is used to denote an739

equivalence in definition. As discussed in Sec. 3.3 and 3.4, we suggest that such local generalization steps help740

to reduce approximation error and thus improve efficiency during the learning process.741

C.2 More Discussions on GPI with PeVFA742

Off-Policy Learning. Off-policy Value Estimation [55] denotes to evaluate the values of some target policy743

from data collected by some behave policy. As commonly seen in RL (also shown in Line 6-10 in Algorithm744

2), different algorithms adopt on-policy or off-policy methods. For GPI with PeVFA, especially for the value745

estimation of historical policies (Line 8 in Algorithm 3), on-policy and off-policy methods can also be considered746

here. One interesting thing is, in off-policy case, one can use experiences from any policy for the learning747

of another one, which can be appealing since the high data efficiency of value estimation of each policy can748

20



Algorithm 3 Generalized policy iteration of model-free policy-based RL algorithm with PeVFAs
(V(s, χπ) or Q(s, a, χπ))

1: Initialize policy π0 and PeVFA V−1(s, χπ) or Q−1(s, a, χπ)
2: Initialize experience buffer D
3: for iteration t = 0, 1, 2, . . . do
4: Rollout policy πt in the environment and obtain trajectories Tt = {τi}ki=0
5: Get the policy representation χπt for policy πt (from policy network parameters or policy

rollout experiences)
6: Add experiences (χπt , Tt) in buffer D
7: # Value approximation training for historical policies {πi}t−1

i=0
8: Update PeVFA Vt−1(s, χπi) or Qt−1(s, a, χπi) with all historical policy experiences
{(χπi , Ti)}t−1

i=0
9: # Conventional value approximation training for current policy πt

10: if on-policy update then
11: Update PeVFA Vt−1(s, χπt) or Qt−1(s, a, χπt) for πt with on-policy experiences

(χπt , Tt)
12: else if off-policy update then
13: Update PeVFA Vt−1(s, χπt) or Qt−1(s, a, χπt) for πt with off-policy experiences χπt

and {Ti}ti=0 from experience buffer D
14: end if
15: Vt ←− Vt−1 or Qt ←− Qt−1

16: Update policy πt with regard to Vt(s, χπt) or Qt(s, a, χπt) through some policy gradient
theorem, i.e., πt+1 ←− πt

17: end for

strengthen value generalization among themselves with PeVFA, which further improve the value estimation749

process.750

Convergence of GPI with PeVFA. Convergence of GPI is usually discussed in some ideal cases, e.g., with751

small and finite state action spaces and with sufficient function approximation ability. In this paper, we focus on752

the comparison between conventional VFA and PeVFA in value estimation, i.e., Policy Evaluation, and we make753

no assumption on the Policy Improvement part. We conjecture that with the same policy improvement algorithm754

and sufficient function approximation ability, GPI with conventional VFA and GPI with PeVFA finally converge755

to the same policy. Moreover, based on Theorem 1 and our empirical evidence in Sec. 3.3, GPI with PeVFA can756

be more efficient in some cases: with local generalization, it could take less experiences (training) for PeVFA to757

reach the same level of approximation error than conventional VFA, or with the same amount of experience758

(training), PeVFA could achieve lower approximation error than conventional VFA. We believe that a deeper759

dive in convergence analysis is worth further investigation.760

PeVFA with TD Value Estimation. In this paper, we propose PPO-PeVFA as a representative instance of761

re-implementing DRL algorithms with PeVFA. Our theoretical results and algorithm 3 proposed under the762

general policy iteration (GPI) paradigm are suitable for TD value estimation as well in principle. One potential763

thing that deserves further investigation is that, it can be a more complex generalization problem since the764

approximation target of TD learning is moving (in contrast to the stationary target when unbiased Monte Carlo765

estimates are used). The non-stationarity induced by TD is recognized to hamper the generalization performance766

in RL as pointed out in recent work [21]. Further study on PeVFA with TD learning (e.g., TD3 and SAC) is767

planned in the future as mentioned in Sec. 6.768

D Policy Representation Learning Details769

D.1 Policy Geometry770

A policy π ∈ Π = P(A)S , defines the behavior (action distribution) of the agent under each state. For a more771

intuitive view, we consider the geometrical shape of a policy: all state s ∈ S and all action a ∈ A are arranged772

along the x-axis and y-axis of a 2-dimensional plane, and the probability (density) π(a|s) is the value of z-axis773

over the 2-dimensional plane. Note that for finite state space and finite action space (discrete action space), the774

policy can be viewed as a |S| × |A| table with each entry in it is the probability of the corresponding state-action775

case. Without loss of generality, we consider the continuous state and action space and the policy geometry here.776

Illustrations of policy geometry examples are shown in Figure 11.777
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Figure 11(a) shows the policy geometry in a general case, where the policy can be defined arbitrarily. Generally,778

the policy geometry can be any possible geometrical shape (s.t. ∀s ∈ S,
∑
a∈A π(a|s) = 1). This means that779

the policy geometry is not necessarily continuous or differentiable in a general case. Specially, one can imagine780

that the geometry of a deterministic policy consists of peak points (z = 1) for each state and other flat regions781

(z = 0). Figure 11(b) shows an example of synthetic continuous policy which can be viewed as a 3D curved782

surface. In Deep RL, a policy may usually be modeled as a deep neural network. Assume that the neural policy783

is a function that is almost continuous and differentiable everywhere, the geometry of such a neural policy can784

also be continuous and differentiable almost everywhere. As shown in Figure 11(c), we provide a demo of neural785

policy by smoothing an arbitrary policy along both state and action axes.786
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Figure 11: Examples of policy geometry. (a) An arbitrary policy, where p(s, a) is sampled
from N (0, 1) for a joint space of 40 states and 40 actions and then normalized along action axis.
States are squeezed into the range of [−1, 1] for clarity. (b) A synthetic continuous policy with
p(s, a) = (1 − a5 + s5) exp(−s2 − a2) for a joint space of s ∈ [−2, 2] and a ∈ [−2, 2] (each of
which are discretized into 40 ones) and then normalized along action axis. (c) A general demo of
neural network policy, generated from an arbitrary policy (as in (a)) over a joint space of 200 states
and 100 actions with some smoothing skill. States are squeezed into the range of [−1, 1] for clarity
and the probability masses of actions under each state are normalized to sum into 1.

D.2 Implementation Details of Surface Policy Representation (SPR) and Origin Policy787

Representation (OPR)788

Here we provide a detailed description of how to encode different policy data for Surface Policy Representation789

(SPR) and Origin Policy Representation (OPR) we introduced in Sec. 4.790

Encoding of State-action Pairs for SPR. Given a set of state-action pairs {si, ai}ni=1 (with size [n, s_dim+791

a_dim]) generated by policy π (i.e., ai ∼ π(·|si)), we concatenate each state-action pair and obtain an792

embedding of it by feeding it into an MLP, resulting in a stack of state-action embedding with size [n, e_dim].793

After this, we perform a mean-reduce operator on the stack and obtain an SPR with size [1, e_dim]. A similar794

permutation-invariant transformation is previously adopted to encode trajectories in [14].795

Encoding of Network Parameters for OPR. We propose a novel way to learn low-dimensional embedding796

from policy network parameters directly. To our knowledge, we are the first to learn policy embedding from797

neural network parameters in RL. Note that latent space of neural networks are also studied in differentiable798

Network Architecture Search (NAS) [32, 33], where architecture-level embedding are usually considered. In799

contrast, OPR cares about parameter-level embedding with a given architecture.800

Consider a policy network to be an MLP with well-represented state (e.g., CNN for pixels, LSTM for sequences)801

as input and deterministic or stochastic policy output. We compress all the weights and biases of the MLP to802

obtain an OPR that represents the decision function. The encoding process of an MLP with two hidden layers803

is illustrated in Figure 12. The main idea is to perform permutation-invariant transformation for inner-layer804

weights and biases for each layer first. For each unit of some layer, we view the unit as a non-linear function of805

all outputs, determined by weights, a bias term and activation function. Thus, the whole layer can be viewed806

as a batch of operations of previous outputs, e.g., with the shape [ht, ht−1 + 1] for t ≥ 1 and t = 0 is also for807

the input layer. Note that we neglect activation function in the encoding since we consider the policy network808

structure is given. That is also why we call OPR as parameter-level embedding in contrast to architecture-level809

enbedding in NAS (mentioned in the last paragraph). We then feed the operation batch in an MLP and perform810

mean-reduce to outputs. Finally we concatenate encoding of layers and obtain the OPR.811

We use permutation-invariant transformation for OPR because that we suggest the operation batch introduced812

in the last paragraph can be permutation-invariant. Actually, our encoding shown in Figure 12 is not strict to813

obtain permutation-invariant representation since inter-layer dependencies are not included during the encoding814
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process. We also tried to incorporate the order information during OPR encoding and we found similar results815

with the way we present in Figure 12, which we adopt in our experiments.816
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Figure 12: An illustration for policy encoder of Origin Policy Representation (OPR) for a two-layer
MLP. h1, h2 denotes the numbers of hidden units for the first and second hidden layers respectively.
The main idea is to perform permutation-invariant transformation for inner-layer weights and biases
for each layer first and then concatenate encoding of layers.

Towards more sophisticated RL policy that operates images. Our proposed two policy representations (i.e.,817

OPR and SPR) can basically be applied to encode policies that operate images, with the support of advanced818

image-based state representation. For OPR, a policy network with image input usually has a pixel feature819

extractor like Convolutional Neural Networks (CNNs) followed by a decision model (e.g., an MLP). With820

effective features extracted, the decision model can be of moderate (or relatively small) scale. Recent works on821

unsupervised representation learning like MoCo [20], SimCLR [7], CURL [54] also show that a linear classifier822

or a simple MLP which takes compact representation of images learned in an unsupervised fashion is capable of823

solving image classification and image-based continuous control tasks. In another direction, it is promising to824

develop more efficient even gradient-free OPR, for example using the statistics of network parameters in some825

way instead of all parameters as similarly considered in [60].826

For SPR, to encode state-action pairs (or sequences) with image states can be converted to the encoding in827

the latent space. The construction of latent space usually involves self-supervised representation learning, e.g.,828

image reconstruction, dynamics prediction. A similar scenario can be found in recent model-based RL like829

Dreamer [16], where the imagination is efficiently carried out in the latent state space rather than among original830

image observations.831

Overall, we believe that there remain more effective approaches to represent RL policy to be developed in the832

future in a general direction of OPR and SPR, which are expected to induce better value generalization in a833

different RL problems.834

D.3 Data Augmentation for SPR and OPR in Contrastive Learning835

Data augmentation is studied to be an important component in contrastive learning in deep RL recently [24, 28].836

Contrastive learning usually resorts to data augmentation to build positive samples. Data augmentation is837

typically performed on pixel inputs (e.g., images) problems [20, 7]. In our work, we train policy representation838

with contrastive learning where data augmentation is performed on policy data. For SPR, i.e., state-action pairs839

as policy data, there is no need to perform data augmentation since different batches of randomly sampled840

state-action pairs naturally forms positive samples, since they all reflect the behavior of the same policy. A841

similar idea can also be found in [11] when dealing with task context in Meta-RL.842
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For OPR, i.e., policy network parameters as policy data, it is unclear how to perform data augmentation on them.843

In this work, we consider two kinds of data augmentation for policy network parameters as shown in Figure 13.844

We found similar results for both random mask and noise corruption, and we use random mask as default data845

augmentation in our experiments.846

Input Hidden Output Input Hidden Output Input Hidden Output

Original Random Mask Noise Corruption

Figure 13: Examples of data augmentation on policy network parameters for Origin Policy Repre-
sentation (OPR). Left: an example of original policy network. Middle: dropout-like random masks
are performed on original policy network, where gray dashed lines represent the weights masked out.
Right: randomly selected weights are corrupted by random noises, denoted by orange lines.

As an unsupervised representation learning method, contrastive Learning encourages policies to be close to847

similar ones (i.e., positive samples π+) and to be apart from different ones (i.e., negative samples π−) in policy848

representation space. The policy representation network is then trained with InfoNCE loss [41], i.e., to minimize849

the cross-entropy loss below:850

LCL = −E
[
log

exp(χTπWχπ+)

exp(χTπWχπ+) +
∑
π− exp(χTπWχπ−)

]

D.4 Pseudo-code of Policy Representation Learning Framework851

The pseudo-code of the overall framework of policy representation learning is in Algorithm 4. The policy852

representation learning is conducted base on a policy dataset, which stores the policy data, i.e., interaction853

trajectories generated by policies and the parameters of policy networks. Such a dataset can be obtained in854

different ways, e.g., pre-collected, online collected and etc. In our experiments, we do not assume the access855

to pre-collected or given policy data; instead, we use the data of all historical policies met along the policy856

improvement path during the online learning process.857

Different kinds of policy data (i.e., state-action pairs or policy parameters) are used depending on the policy858

representation adopted (i.e., SPR or OPR). For policy representation learning, the value function approximation859

loss (E2E) is used as a default choice of training loss in our framework. In addition, the auxiliary loss (AUX) of860

policy recovery and contrastive learning (CL) serve as another two options to be optimized for representation861

learning. Note that in Line 21, the positive samples χ
π+
i

is obtained from a momentum policy encoder [20] with862

another augmentation for corresponding policy data, while negative samples χ
π−i

are other policy embeddings863

in the same batch, i.e., χ
π−i
∈ B\{χπi}.864

D.5 Criteria of A Good Policy Representation865

To answer the question: what is a good representation for RL policy ought to be? We assume the following866

criteria:867

• Dynamics. Intuitively, a good policy representation should contain the information of how the policy868

influences the environment (dynamics and rewards).869

• Consistency. A good policy representation should keep the consistency among both policy space and870

presentation space. Concretely, the policy representation should be distinguishable, i.e., different871

policies also differ among their representation. In contrast, the representation of similar polices should872

lay on the close place in the representation space.873

• Geometry. Additionally, from the lens of policy geometry as shown in Appendix D.1, a good policy874

representation should be an reflection of policy geometry. It should show a connection to the policy875

geometry or be interpretable from the geometric view.876

From the perspective of above criteria, SPR follows Dynamics and Geometry while OPR may render them in877

an implicit way since network parameters determine the nonlinear function of policy. Auxiliary loss for policy878
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Algorithm 4 A Framework of Policy Representation Learning
Input: policy dataset D = {(πi, ωi,Dπi)}ni=1, consisting of policy πi, policy parameters ωi and
state-action pairs Dπi = {(sj , aj)}mj=1

1: Initialize the policy encoder gα with parameters α
2: Initialize the policy decoder (or master policy) (network) π̄β(a|s, χπ) for SPR and the weight

matrix W for ORP respectively
3: for iteration i = 0, 1, 2, . . . do
4: Sample a mini-batch of policy data B from D
5: # Encode and obtain the policy embedding χπi with SPR or OPR
6: if Use OPR then
7: if Use Contrastive Learning then
8: Perform data augmentation on each wi ∈ B
9: end if

10: χπi = gOPR
α (ωπi) for each (πi, ωi, ·) ∈ B

11: else if Use SPR then
12: χπi = gSPR

α (Bi) where Bi is a mini-batch of state-action pairs sampled from Dπi , for
each (πi, ·,Dπi) ∈ B

13: end if
14: # Train policy encoder gα in different ways (i.e., AUX or CL)
15: if Use Auxiliary Loss (AUX) then
16: Sample a mini-batch of state-action pairs B = (si, ai)

b
i=1 from Dπi for each πi

17: Compute the auxiliary loss, LAux = −
∑

(si,ai)∈B log π̄α(ai|si, χπi)
18: Update parameters α, β to minimize LAux

19: end if
20: if Use Contrastive Learning (CL) then

21: Calculate contrastive loss, LCL = −
∑
χπi∈B

log
exp(χTπi

Wχ
π
+
i

)

exp(χTπi
Wχ

π
+
i

)+
∑
π
−
i

exp(χTπi
Wχ

π
−
i

)
,

where χπ+
i
, χπ−i

are positive and negative samples
22: Update parameters α,W to minimize LCL

23: end if
24: # Train policy encoder gα with the PeVFA approximation loss (E2E)
25: Calculate the value approximation loss of PeVFA, LVal
26: Update parameters α to minimize LVal
27: end for

recovery (AUX) is a learning objective to acquire Dynamics; Contrastive Learning (CL) is used to impose879

Consistency.880

Based on the above thoughts, we hypothesize the reasons of several findings as shown in the comparison881

in Table 1. First, AUX naturally overlaps with SPR and OPR to some degree for Dynamics while CL is882

relatively complementary to SPR and OPR for Consistency. This may be the reason why CL improves the E2E883

representation more than AUX in an overall view. Second, the noise of state-action samples for SPR may be884

the reason to OPR’s slightly better overall performance than that of SPR (similar results are also found in our885

visualizations as in Figure 19).886

Moreover, the above criteria are mainly considered from an unsupervised or self-supervised perspective. However,887

a sufficiently good representation of all the above properties may not be necessary for a specific downstream888

generalization or learning problem which utilizes the policy representation. A problem-specific learning signal,889

e.g., the value approximation loss in our paper (E2E representation), can be efficient since it is to extract the890

most relevant information in policy representation for the problem. A recent work [59] also studies the relation891

between self-supervised representation and downstream tasks from the lens of mutual information. Therefore,892

we suggest that a trade-off between good unsupervised properties and efficient problem-specific information of893

policy representation should be considered when using policy representation in a specific problem.894
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E Complete Background and Detailed Related Work895

E.1 Reinforcement Learning896

Markov Decision Process. We consider a Markov Decision Process (MDP) defined as 〈S,A, r,P, γ, ρ0〉897

with S the state space, A the action space, r the reward function, P the transition function, γ ∈ [0, 1) the898

discount factor and ρ0 the initial state distribution. A policy π ∈ Π = P (A)|S|, defines the distribution over899

all actions for each state. The agent interacts with the environment with its policy, generating the trajectory900

s0, a0, r1, s1, a1, r2, ..., st, at, rt+1, ..., where rt+1 = r(st, at). An RL agent seeks for an optimal policy that901

maximizes the expected long-term discounted return, J(π) = Es0∼ρ0,a∼π
[∑∞

t=0 γ
trt+1

]
.902

Value Function. Almost all RL algorithms involve value functions [55], which estimate how good a state or903

a state-action pair is conditioned on a given policy. The state-value function vπ(s) is defined in terms of the904

expected return obtained through following the policy π from a state s:905

vπ(s) = Eπ

[
∞∑
t=0

γtrt+1|s0 = s

]
for all s ∈ S.

Similarly, action-value function is defined for all state-action pairs as qπ(s, a) =906

Eπ
[∑∞

t=0 γ
trt+1|s0 = s, a0 = a

]
. Typically, value functions are learned through Monte Carlo (MC)907

or Temporal Difference (TD) algorithms [55].908

Bellman equations defines the recursive relationships among value functions. The Bellman Expectation equation909

of vπ(s) has a matrix form as below [55]:910

V π = rπ + γPπV π = (I − γPπ)−1rπ, (14)

where V π is a |S|-dimensional vector, Pπ is the state-to-state transition matrix Pπ(s′|s) =911 ∑
a∈A π(a|s)P(s′|s, a) and rπ is the vector of expected rewards rπ(s) =

∑
a∈A π(a|s)r(s, a). Equation 14912

indicates that value function is determined by policy π and environment models (i.e., P and r. For a conventional913

value function, all of them are modeled implicitly within a table or a function approximator, i.e., a mapping from914

only states (and actions) to values.915

Generalized Policy Iteration. Sutton and Barto [55] consider most RL algorithms can be described in the916

paradigm of Generalized Policy Iteration (GPI). In recent decade, RL algorithms usually resort to function917

approximation (e.g., deep neural networks) to deal with large and continuous state space. An illustration of918

GPI with function approximation is on the left of Figure 1. We use θ to denote the parameters of parameterized919

value functions. Without loss of generality, we do not plot the parameters of policy since it is not necessary920

for parameterized policy to exist, e.g., value-based RL algorithms [35]. For policy evaluation, value function921

approximators are updated in finite times to approximate the true values (i.e., Vθ(s) → vπ(s), Qθ(s, a) →922

qπ(s, a)), yet can never be perfect. For policy improvement, the policy are improved with respected to the923

approximated value functions in an implicit (e.g., value-based RL) or explicit way (policy-based RL). In deep924

RL, perfect policy evaluation and effective policy improvement are non-trivial to obtain with complex non-linear925

function approximation from deep neural networks, thus most convergence and optimality results in conventional926

RL usually no longer hold. From these two aspects, many works study how to improve the value function927

approximation [61, 4, 27] and to propose more effective policy optimization or search algorithms [48, 50, 15].928

E.2 A Unified View of Extensions of Conventional Value Function from the Vector Form of929

Bellman Equation930

Recall the vector form of Bellman equation (Equation 14), it indicates that value function is a function of policy931

π and environmental models (i.e., P and r). In conventional value functions and approximators, only state (and932

action) is usually taken as input while other components in Equation 14 are modeled implicitly. Beyond state933

(and action), consider explicit representation of some of components in Equation 14 during value estimation934

can develop the ability of conventional value functions in different ways, to solve challenging problems, e.g.,935

goal-conditioned RL [45, 1], Hierarchical RL [37, 64], opponent modeling and ad-hoc team [19, 14, 57], and936

context-based Meta-RL [43, 29].937

Most extensions of conventional VFA mentioned above are proposed for the purpose of value generalization938

(among different space). Therefore, we suggest such extensions are derived from the same start point (i.e.,939

Equation 14) and differ at the objective to represent and take as additional input explicitly of conventional value940

functions. We provide a unified view of such extensions below:941

• Goal-conditioned RL and context-based meta-RL usually focus on a series of tasks with similar goals942

and environment models (i.e., P and r). With goal representation as input, usually a subspace of943

state space [45, 1], a value function approximation (VFA) can generalize values among goal space.944

Similarly, with context representation [43, 11, 42], values generalize in meta tasks.945
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• Opponent modeling, ad-hoc team [19, 14, 57] seek to generalize among different opponents or946

teammates in a Multiagent System, with learned representation of opponents. This can be viewed as947

a special case of value generalization among environment models since from one agent view, other948

opponents are part of the environment which also determines the dynamics and rewards. In multiagent949

case, one can expand and decompose the corresponded joint policy in Equation 14 to see this.950

• Hierarchical RL is also a special case of value generalization among environment models. In goal-951

reaching fashioned Hierarchical HRL [37, 30, 38], high-level controllers (policy) issue goals for952

low-level controls at an abstract temporal scale, while low-level controls take goals also as input and953

aim to reach the goals. For low-level policies, a VFA with a given or learned goal representation space954

can generalize values among different goals, similar to the goal-conditioned RL case as discussed955

above. Another perspective is to view the separate learning process of hierarchical policies for different956

levels as a multiagent learning system. Recently, a work [64] follows this view and extends high-level957

policy with representation of low-level learning.958

The common thing of above is that, they learn a representation of the environment (we call external variables).959

In contrast, we study value generalization among agent’s own policies in this paper, which cares about internal960

variables, i.e., the learning dynamics inside of the agent itself.961

Relation between PeVFA Value Approximation and Context-based Meta-RL. For a given MDP, performing962

a policy in the MDP actually induces a Markov Reward Process (MRP) [55]. One can view the policy and963

actions are absorbed in the transition function of MRP. A value function defines the expected long-term returns964

starting from a state. Therefore, different policies induces different MRPs and PeVFA value approximation965

can be considered as a meta prediction task. In analogy to context-based Meta-RL where a task context is966

learned to capture the underlying transition function and reward function of a MDP (i.e., task), one can view967

policy representation as the context of corresponding MRP, since it is the underlying variable that determines the968

transition function of MRPs.969

E.3 A Review of Works on Policy Representation/Embedding Learning970

Recent years, a few works involve representation or embedding learning for RL policy [18, 14, 3, 42, 64, 17].971

We provide a brief review and summary for above works below.972

The most common way to learn a policy representation is to extract from interaction trajectories through973

policy recovery (i.e., behavioral cloning). For Multiagent Opponent Modeling [14], a policy representation974

is learned from interaction episodes (i.e., state-action trajectories) through a generative loss and discriminate975

loss. Generative loss is the same as the policy recovery auxiliary loss; discriminate loss is a triplet loss that976

minimize the representation distance of the same policy and maximize those of different ones, which has the977

similar idea of Contrastive Learning [41, 54]. Such opponent policy representations are used for prediction978

of interaction outcomes for ad-hoc teams and are taken in policy network for some learning agent to facilitate979

the learning when cooperating or competing with unknown opponents. More recently, in Hierarchical RL980

[64], a representation is learned to model the low-level policy through generative loss mentioned above. The981

low-level policy representation is taken in high-level policy to counter the non-stationarity issue of co-learning982

of hierarchical policies. Later, Raileanu et al. [42] resort to almost the same method and the learned policy983

representation is taken in their proposed PDVF. Along with a task context, the policy for a specific task can984

be optimized in policy representation space, inducing a fast adaptation in new tasks. In summary, such a985

representation learning paradigm can be considered as Surface Policy Representation (SPR) for policy data986

encoding (trajectories as a special form of state-action pairs) plus policy recovery auxiliary loss (AUX) as we987

introduced in Sec. 4.988

A recent work [17] proposes Policy Evaluation Network (PVN) to approximate objective function J(π). We989

consider PVN as an predecessor of PDVF we mentioned above since offline policy optimization is also conducted990

in learned representation space in a single task after similarly well training the PVN on many policies. The991

authors propose Network Fingerprint to represent policy network. To circumvent the difficulty of representing the992

parameters directly, policy network outputs (policy distribution) under a set of probing states are concatenated993

and then taken as policy representation. Such probing states are randomly sampled for initialization and994

also optimized with gradients through PVN and policies, like a search in joint state space. In principle, we995

also consider this as a special instance of SPR, because network fingerprint follows the idea of reflecting the996

information of how policy can behave under some states. Intuitively from a geometric view, this can be viewed997

as using the concatenation of several representative (as denoted by the probing states) cross-sections in policy998

surface (e.g., Figure 11) to represent a policy. For another view, one can imagine an equivalent case between999

SPR and network fingerprint, when state-action pairs of a deterministic policy are processed in SPR and a1000

representation consisting of a number of actions under some key states or representative states is used in network1001

fingerprint. Two potential issues may exist for network fingerprint. First, the dimensionality of representation1002

is proportional to the number of probing states (i.e., n|A|), where a dilemma exists: more probing states are1003

more representative while dimensionality can increase correspondingly. Second, it can be non-trivial and even1004
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unpractical to optimize probing states in the case with relatively state space of high dimension, which introduces1005

additional computational complexity and optimization difficulty.1006

In another concurrent work [10], a class of Parameter-based Value Functions (PVFs) are proposed. Instead of1007

learning or designing a representation of policy, PVFs simply parse all the policy weights as inputs to the value1008

function (i.e., Raw Policy Representation as also mentioned in our paper), even in the nonlinear case. Apparently,1009

this can result in a unnecessarily large representation space which increase the difficulty of approximation and1010

generalization. The issues of naively flattening the policy into a vector input are also pointed out in PVN [17].1011

Others, several works in Policy Adaptation and Transfer [18, 3], Gaussian policy embedding representations are1012

construct through Variantional Inference.1013

F Experimental Details and Complete Results1014

F.1 Experimental Details1015

Environment. We conduct our experiments on commonly adopted OpenAI Gym1 continuous control tasks1016

[6, 58]. We use the OpenAI Gym with version 0.9.1, the mujoco-py with version 0.5.4 and the MuJoCo products1017

with version MJPRO131. Our codes are implemented with Python 3.6 and Tensorflow.1018

Resources and Equipment Used. Our experiments are mainly conducted on a NVIDIA GeForce RTX 20801019

Ti with 11 GB memory. A single run of PPO-PeVFA usually takes 3-4 hours with about 6 trials are running1020

simultaneously on the same GPU.1021

Implementation. We use Proximal Policy Optimization (PPO) [50] with Generalized Advantage Estimator1022

(GAE) [49] as our baseline algorithm. Recent works [8, 2] point out code-level optimizations influence the1023

performance of PPO a lot. For a fair comparison and clear evaluation, we perform no code-level optimization1024

in our experiments, e.g., state standardization, reward scaling, gradient clipping, parameter sharing and etc.1025

Our proposed algorithm PPO-PeVFA is implemented based on PPO, which only differs at the replacement1026

for conventional value function network with PeVFA network. Policy network is a 2-layer MLP with 641027

units per layer and ReLU activation, outputting a Gaussian policy, i.e., a tanh-activated mean along with a1028

state-independent vector-parameterized log standard deviation. For PPO, the conventional value network Vφ(s)1029

(VFA) is a 2-layer 128-unit ReLU-activated MLP with state as input and value as output. For PPO-PeVFA, the1030

PeVFA network Vθ(s, χπ) takes as input state and policy representation χπ which has the dimensionality of 64,1031

with the structure illustrated in Figure 8(a). We do not use parameter sharing between policy and value function1032

approximators for more clear evaluation.1033

Training and Evaluation. We use Monte Carlo returns for value approximation. In contrast to conventional1034

VFA Vφ which approximates the value of current policy (e.g., Algorithm 2), PeVFA Vθ(s, χπ) is additionally1035

trained to approximate the values of all historical policies ({πi}ti=0) along the policy improvement path (e.g.,1036

Algorithm 3). The policy network parameterized by ω is then updated with following loss function:1037

LPPO(ω) = −Eπ
ω−

[
min

(
ρtÂ(st, at), clip(ρt, 1− ε, 1 + ε)Â(st, at)

)]
, (15)

where Â(st, at) is advantage estimation of old policy πω− , which is calculated by GAE based on conventional1038

VFA Vφ or PeVFA Vθ(s, χπ) respectively, and ρt = πω(at,st)
π
ω− (at,st)

is the importance sampling ratio. Note that1039

both PPO and PPO-PeVFA update the policy according to Equation 15 and only differ at advantage estimation1040

based on conventional VFA Vφ or PeVFA Vθ(s, χπ). This ensures that the performance difference comes only1041

from different approximation of policy values. Common learning parameters for PPO and PPO-PeVFA are1042

shown in Table 2. For each iteration, we update value function approximators first and then the policy with1043

updated values. Such a training scheme is used for both PPO and PPO-PeVFA. For evaluation, we evaluate1044

the learning algorithm every 20k time steps, averaging the returns of 10 episodes. Fewer evaluation points are1045

selected and smoothed over neighbors and then plotted in our learning curves below.1046

Details for PPO-PeVFA. For PeVFA, the training process also involves value approximation of historical1047

policies and learning of policy representation. Training details are shown in Table 3. PeVFA Vθ(s, χπ) is1048

trained every 10 steps with a batch of 64 samples from an experience buffer with size of 200k steps. Policy1049

representation model is trained at intervals of 10 or 20 steps depending on OPR or SPR adopted. Due to 1k - 2k1050

policies are collected in total in each trial, a relatively small batch size of policy is used. For OPR, Random1051

Mask (Figure 13) is performed on all weights and biases of policy network except for the output layer (i.e., mean1052

and log-std). For SPR, two buffers of state-action pairs are maintained for each policy: a small one is sampled1053

for calculating SPR and the relatively larger one is sampled for auxiliary training (policy recovery).1054

1http://gym.openai.com/
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Table 2: Common hyperparameter choices of PPO and PPO-PeVFA.

Hyperparameters for PPO & PPO-PeVFA

Policy Learning Rate 10−4

Value Learning Rate 10−3

Clipping Range Parameter (ε) 0.2
GAE Parameter (λ) 0.95

Discount Factor (γ) 0.99
On-policy Samples Per Iteration 5 episodes or 2000 time steps

Batch Size 128
Actor Epoch 10
Critic Epoch 10

Optimizer Adam

Table 3: Training details for PPO-PeVFA, including value approximation of historical policies and
policy representation learning. CL is abbreviation for Contrastive Learning and AUX is for auxiliary
loss of policy recovery. In our experiments, grid search is performed for the best hyperparamter
configuration regarding terms with multiple alternatives (i.e., {}).

Value Approximation for Historical Policies

Value Learning Rate 10−3

Training Frequency Every 10 time steps
Batch Size 64

Experience Buffer Size 200k (steps)

Policy Representation Learning

Training Frequency Every {10, 20} time steps
Policy Num Per Batch {16, 32}

SPR s, a Pair Num {200, 500}
CL Learning Rate {10−3, 5 ·10−4}

CL Momentum {5·10−2, 10−2, 5·10−3}
CL Mask Ratio for OPR {0.1, 0.2}

CL Sample Ratio for SPR 0.8
AUX Learning Rate 10−3

AUX Batch Size {128, 256}

F.2 Complete Learning Curves for Evaluation Results in Table 11055

Corresponding to Table 1, an overall view of learning curves of all variants of PPO-PeVFA as well as baseline1056

algorithms are shown in Figure 17. One can refer to Figure 14 for a clearer view of the effects of PeVFA (with1057

E2E policy representation), and Figure 15, 16 for the effects of self-supervised policy representations, i.e., CL1058

and AUX.1059

F.3 Visualization of Learned Policy Representation1060

To show how the learned representation is like in a low-dimensional space, we visualize the learned representation1061

of policies encountered during the learning process.1062

Visualization Design. We record all policies on the policy improvement path during the learning process of a1063

PPO-PeVFA agent. For each trial in our experiments in MuJoCo continuous control tasks, about 1k - 2k policies1064

are collected. We run 5 trials and 5k - 12k policies are collected in total for each task. We also store the policy1065

representation model at intervals for each trial, and we use last three checkpoints to compute the representation1066

of each policy collected. For each policy collected during 5 trials, its representation for visualization is obtained1067

by averaging the results of 3 checkpoints of each trial and then concatenating the results from 5 trials. Finally,1068

we plot 2D embedding of policy representations prepared above through t-SNE [34] and Principal Component1069

Analysis (PCA) in sklearn2.1070

2https://scikit-learn.org/stable/index.html
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Figure 14: Evaluations of PPO-PeVFA with end-to-end (E2E) trained OPR and SPR in MuJoCo
continuous control tasks. The results demonstrate the effectiveness of PeVFA and two kinds of policy
representation, answering the Question 1. The results are average returns and the shaded region
denotes half a standard deviation over 10 trials.

Results and Analysis. Visualizations of OPR and SPR learned in an end-to-end fashion in HalfCheetah-v1 and1071

Ant-v1 are in Figure 18 and 19. We use different types of markers to distinguish policies from different trials to1072

see how policy evolves in representation space from different random initialization. Moreover, we provide two1073

views: performance view and process view, to see how policies are aligned in representation space regarding1074

performance and ‘age’ of policies respectively.1075

Visualization of OPR trained in end-to-end fashion is shown in Figure 18. From the performance view, it is1076

obvious that policies of poor and good performances are aligned from left to right in t-SNE representation space1077

and are aligned at two distinct directions in PCA representation space. An evolvement of policies from different1078

trials can be observed in subplot (b) and (d). Thus, policies from different trials are locally continuous; while1079

policies are globally consistent in representation space with respect to policy performance. Moreover, we can1080

observe multimodality for policies with comparable performance. This means that the obtained representation1081

not only reflects optimality information but also maintains the behavioral characteristic of policy.1082

Parallel to OPR, end-to-end trained SPR is visualized in Figure 19. A more obvious multimodality can be1083

observed in both t-SNE and PCA space: policies from different trials start from the same region and then1084

diverge during the following learning process. Different from OPR, SPR shows more distinction among different1085

trials since SPR is a more direct reflection of policy behavior (dynamics property as mentioned in Sec. D.5).1086

Another thing is, policies from different trials forms wide ‘strands’ especially in t-SNE representation space.1087

We conjecture that it is because SPR is a more stochastic way to obtain representation as random selected1088

state-action pairs are used.1089
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Figure 15: Evaluations of PPO-PeVFA with OPR and SPR trained through contrastive learning (CL)
in MuJoCo continuous control tasks. The results are average returns and the shaded region denotes
half a standard deviation over 10 trials.
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Figure 16: Evaluations of PPO-PeVFA with OPR and SPR trained through auxiliary loss of policy
recovery (AUX) in MuJoCo continuous control tasks. The results are average returns and the shaded
region denotes half a standard deviation over 10 trials.
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Figure 17: An overall view of performance evaluations of different algorithms in MuJoCo continuous
control tasks. The results are average returns and the shaded region denotes half a standard deviation
over 10 trials.
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(a) Performance View in HalfCheetah-v1
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(b) Process View in HalfCheetah-v1
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(c) Performance View in Ant-v1
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(d) Process View in Ant-v1

Figure 18: Visualizations of end-to-end (E2E) learned Origin Policy Representation (OPR) for
policies collected during 5 trials (denoted by different kinds of markers). In total, about 6k policies
are plotted for HalfCheetah-v1 (a-b) and 12k for Ant-v1 (c-d). In each subplot, t-SNE and PCA
2D embeddings are at left and right respectively. In performance view, each policy (i.e., marker) is
colored by its performance evaluation (averaged return). In process view, each policy is colored by
its corresponding iteration ID during GPI process.
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(a) Performance View in HalfCheetah-v1
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(c) Performance View in Ant-v1
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(d) Process View in Ant-v1

Figure 19: Visualizations of end-to-end (E2E) learned Surface Policy Representation (SPR) for
policies collected during 5 trials (denoted by different kinds of markers). In performance view, each
policy (i.e., marker) is colored by its performance evaluation (averaged return). In process view, each
policy is colored by its corresponding iteration ID during GPI process.
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