
Convergence Analysis of Sequential Federated
Learning on Heterogeneous Data

Yipeng Li and Xinchen Lyu ∗

National Engineering Research Center for Mobile Network Technologies
Beijing University of Posts and Telecommunications

Beijing, 100876, China
{liyipeng, lvxinchen}@bupt.edu.cn

Abstract

There are two categories of methods in Federated Learning (FL) for joint training
across multiple clients: i) parallel FL (PFL), where clients train models in a paral-
lel manner; and ii) sequential FL (SFL), where clients train models in a sequential
manner. In contrast to that of PFL, the convergence theory of SFL on heteroge-
neous data is still lacking. In this paper, we establish the convergence guarantees
of SFL for strongly/general/non-convex objectives on heterogeneous data. The
convergence guarantees of SFL are better than that of PFL on heterogeneous data
with both full and partial client participation. Experimental results validate the
counterintuitive analysis result that SFL outperforms PFL on extremely heteroge-
neous data in cross-device settings.

1 Introduction

Federated Learning (FL) (McMahan et al., 2017) is a popular distributed machine learning paradigm,
where multiple clients collaborate to train a global model. To preserve data privacy and security, data
must be kept in clients locally cannot be shared with others, causing one severe and persistent issue,
namely “data heterogeneity”. In cross-device FL, where data is generated and kept in massively dis-
tributed resource-constrained devices (e.g., IoT devices), the negative impact of data heterogeneity
would be further exacerbated (Jhunjhunwala et al., 2023).

There are two categories of methods in FL to enable distributed training across multiple clients (Qu
et al., 2022): i) parallel FL (PFL), where models are trained in a parallel manner across clients with
synchronization at intervals, e.g., Federated Averaging (FedAvg) (McMahan et al., 2017); and ii)
sequential FL (SFL), where models are trained in a sequential manner across clients, e.g., Cyclic
Weight Transfer (CWT) (Chang et al., 2018). However, both categories of methods suffer from the
“client drift” (Karimireddy et al., 2020), i.e., the local updates on heterogeneous clients would drift
away from the right direction, resulting in performance degradation.

Motivation. Recently, SFL (more generally, the sequential training manner, see Algorithm 1) has
attracted much attention in the FL community (Lee et al., 2020). Specifically, SFL demonstrates
advantages on training speed (in terms of training rounds) (Zaccone et al., 2022) and small datasets
(Kamp et al., 2023), and both are crucial for cross-device FL. Furthermore, the sequential manner
has played a great role in Split learning (SL) (Gupta and Raskar, 2018; Thapa et al., 2022), an
emerging distributed learning technology at the edge side (Zhou et al., 2019), where the full model
is split into client-side and server-side portions to alleviate the excessive computation overhead for
resource-constrained devices. Appendix A will show that the convergence theory in this work is also
applicable to SL.

∗Xinchen Lyu is the corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Convergence theory is critical for analyzing the learning performance of algorithms on heteroge-
neous data in FL. So far, there are numerous works to analyze the convergence of PFL (Li et al.,
2019; Khaled et al., 2020; Koloskova et al., 2020) on heterogeneous data. However, the convergence
theory of SFL on heterogeneous data, given the complexity of its sequential training manner, has not
been well investigated in the literature, with only limited preliminary empirical studies Gao et al.
(2020, 2021). This paper aims to establish the convergence guarantees for SFL and compare the
convergence results of PFL and SFL.

Setup. In the following, we provide some preliminaries about SFL and PFL.

Problem formulation. The basic FL problem is to minimize a global objective function:

min
x∈Rd

{
F (x) :=

1

M

M∑
m=1

(Fm(x) := Eξ∼Dm
[fm(x; ξ)])

}
,

where Fm, fm and Dm denote the local objective function, the loss function and the local dataset of
client m (m ∈ [M]), respectively. In particular, whenDm has finite data samples {ξim : i ∈ [|Dm|]},
the local objective function can also be written as Fm(x) = 1

|Dm|
∑|Dm|

i=1 fm(x; ξim).

Update rule of SFL. At the beginning of each training round, the indices π1, π2, . . . , πM are sampled
without replacement from {1, 2, . . . ,M} randomly as the clients’ training order. Within a round,
each client i) initializes its model with the latest parameters from its previous client; ii) performs
K steps of local updates over its local dataset; and iii) passes the updated parameters to the next
client. This process continues until all clients finish their local training. Let x(r)

m,k denote the local
parameters of the m-th client (i.e., client πm) after k local steps in the r-th round, and x(r) denote
the global parameter in the r-th round. With SGD (Stochastic Gradient Descent) as the local solver,
the update rule of SFL is as follows:

Local update : x
(r)
m,k+1 = x

(r)
m,k − ηg

(r)
πm,k, initializing as x(r)

m,0 =

{
x(r) , m = 1

x
(r)
m−1,K , m > 1

Global model : x(r+1) = x
(r)
M,K

where g
(r)
πm,k := ∇fπm

(x
(r)
m,k; ξ) denotes the stochastic gradient of Fπm

regarding parameters x(r)
m,k

and η denotes the learning rate. See Algorithm 1. Notations are summarized in Appendix C.1.

Update rule of PFL. Within a round, each client i) initializes its model with the global parameters;
ii) performs K steps of local updates; and iii) sends the updated parameters to the central server.
The server will aggregate the local parameters to generate the global parameters. See Algorithm 2

In this work, unless otherwise stated, we use SFL and PFL to represent the classes of algorithms that
share the same update rule as Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Sequential FL

Output: x̄(R): weighted average on x(r)

1 for training round r = 0, 1, . . . , R− 1 do
2 Sample a permutation π1, π2, . . . , πM

of {1, 2, . . . ,M}
3 for m = 1, 2, . . . ,M in sequence do

4 x
(r)
m,0 =

{
x(r) , m = 1

x
(r)
m−1,K , m > 1

5 for local step k = 0, . . . ,K − 1 do
6 x

(r)
m,k+1 = x

(r)
m,k − ηg

(r)
πm,k

7 Global model: x(r+1) = x
(r)
M,K

Algorithm 2: Parallel FL

Output: x̄(R): weighted average on x(r)

1 for training round r = 0, 1, . . . , R− 1 do
2 for m = 1, 2, . . . ,M in parallel do
3 x

(r)
m,0 = x(r)

4 for local step k = 0, . . . ,K − 1 do
5 x

(r)
m,k+1 = x

(r)
m,k − ηg

(r)
m,k

6 Global model: x(r+1) =
1

M

M∑
m=1

x
(r)
m,K

2

2 Contributions

Brief literature review. The most relevant work is the convergence of PFL and Random Reshuf-
fling (SGD-RR). There are a wealth of works that have analyzed the convergence of PFL on data
heterogeneity (Li et al., 2019; Khaled et al., 2020; Karimireddy et al., 2020; Koloskova et al., 2020;
Woodworth et al., 2020b), system heterogeneity (Wang et al., 2020), partial client participation (Li
et al., 2019; Yang et al., 2021; Wang and Ji, 2022) and other variants (Karimireddy et al., 2020;
Reddi et al., 2021). In this work, we compare the convergence bounds between PFL and SFL (see
Subsection 3.3) on heterogeneous data.

SGD-RR (where data samples are sampled without replacement) is deemed to be more practical than
SGD (where data samples are sample with replacement), and thus attracts more attention recently.
Gürbüzbalaban et al. (2021); Haochen and Sra (2019); Nagaraj et al. (2019); Ahn et al. (2020);
Mishchenko et al. (2020) have proved the upper bounds and Safran and Shamir (2020, 2021); Rajput
et al. (2020); Cha et al. (2023) have proved the lower bounds of SGD-RR. In particular, the lower
bounds in Cha et al. (2023) are shown to match the upper bounds in Mishchenko et al. (2020). In
this work, we use the bounds of SGD-RR to exam the tightness of that of SFL (see Subsection 3.2).

Recently, the shuffling-based method has been applied to FL (Mishchenko et al., 2022; Yun et al.,
2022; Cho et al., 2023; Malinovsky et al., 2023). The most relevant works are FL with cyclic client
participation (Cho et al., 2023) and FL with shuffling client participation (Malinovsky et al., 2023).
The detailed comparisons are given in Appendix B.

Challenges. The theory of SGD is applicable to SFL on homogeneous data, where SFL can be
reduced to SGD. However, the theory of SGD can be no longer applicable to SFL on heterogeneous
data. This is because for any pair of indices m and k (except m = 1 and k = 0) within a round, the
stochastic gradient is not an (conditionally) unbiased estimator of the global objective:

E [∇fπm
(xm,k; ξ) | x] ̸= ∇F (xm,k) .

In general, the challenges of establishing convergence guarantees of SFL mainly arise from (i) the
sequential training manner across clients and (ii) multiple local steps of SGD at each client.

Sequential training manner across clients (vs. PFL). In PFL, local model parameters are updated
in parallel within each round and synchronized at the end of the round. In this case, the local
updates across clients are mutually independent when conditional on all the randomness prior to
the round. However, in SFL, client’s local updates additionally depend on the randomness of all
previous clients. This makes bounding the client drift of SFL more complex than that of PFL.

Multiple local steps of SGD at each client (vs. SGD-RR). SGD-RR samples data samples without
replacement and then performs one step of gradient descent (GD) on each data sample. Similarly,
SFL samples clients without replacement and then performs multiple steps of SGD on each local
objective (i.e., at each client). In fact, SGD-RR can be regarded as a special case of SFL. Thus, the
derivation of convergence guarantees of SFL is also more complex than that of SGD-RR.

Contributions. The main contributions are as follows:

• We derive convergence guarantees of SFL for strongly convex, general convex and non-convex
objectives on heterogeneous data with the standard assumptions in FL in Subsection 3.2.

• We compare the convergence guarantees of PFL and SFL, and find a counterintuitive compari-
son result that the guarantee of SFL is better than that of PFL (with both full participation and
partial participation) in terms of training rounds on heterogeneous data in Subsection 3.3.

• We validate our comparison result with simulations on quadratic functions (Subsection 4.1)
and experiments on real datasets (Subsection 4.2). The experimental results exhibit that SFL
outperforms PFL on extremely heterogeneous data in cross-device settings.

3 Convergence theory

We consider three typical cases for convergence theory, i.e., the strongly convex case, the general
convex case and the non-convex case, where all local objectives F1, F2, . . . , FM are µ-strongly con-
vex, general convex (µ = 0) and non-convex.

3

3.1 Assumptions
We assume that (i) F is lower bounded by F ∗ for all cases and there exists a minimizer x∗ such that
F (x∗) = F ∗ for strongly and general convex cases; (ii) each local objective function is L-smooth
(Assumption 1). Furthermore, we need to make assumptions on the diversities: (iii) the assumptions
on the stochasticity bounding the diversity of {fm(·; ξim) : i ∈ [|Dm|]} with respect to i inside each
client (Assumption 2); (iv) the assumptions on the heterogeneity bounding the diversity of local
objectives {Fm : m ∈ [M]} with respect to m across clients (Assumptions 3a, 3b).
Assumption 1 (L-Smoothness). Each local objective function Fm is L-smooth, m ∈ {1, 2, . . . ,M},
i.e., there exists a constant L > 0 such that ∥∇Fm(x)−∇Fm(y)∥ ≤ L ∥x− y∥ for all x,y ∈ Rd.

Assumptions on the stochasticity. Since both Algorithms 1 and 2 use SGD (data samples are chosen
with replacement) as the local solver, the stochastic gradient at each client is an (conditionally)
unbiased estimate of the gradient of the local objective function: Eξ∼Dm [fm(x; ξ)|x] = ∇Fm(x).
Then we use Assumption 2 to bound the stochasticity, where σ measures the level of stochasticity.
Assumption 2. The variance of the stochastic gradient at each client is bounded:

Eξ∼Dm

[
∥∇fm(x; ξ)−∇Fm(x)∥2

∣∣∣x] ≤ σ2, ∀m ∈ {1, 2, . . . ,M} (1)

Assumptions on the heterogeneity. Now we make assumptions on the diversity of the local objective
functions in Assumption 3a and Assumption 3b, also known as the heterogeneity in FL. Assump-
tion 3a is made for non-convex cases, where the constants β and ζ measure the heterogeneity of
the local objective functions, and they equal zero when all the local objective functions are identical
to each other. Further, if the local objective functions are strongly and general convex, we use one
weaker assumption 3b as Koloskova et al. (2020), which bounds the diversity only at the optima.
Assumption 3a. There exist constants β2 and ζ2 such that

1
M

∑M
m=1 ∥∇Fm(x)−∇F (x)∥2 ≤ β2 ∥∇F (x)∥2 + ζ2 (2)

Assumption 3b. There exists one constant ζ2∗ such that

1
M

∑M
m=1 ∥∇Fm(x∗)∥2 = ζ2∗ (3)

where x∗ ∈ argminx∈Rd F (x) is one global minimizer.

3.2 Convergence analysis of SFL
Theorem 1. For SFL (Algorithm 1), there exist a constant effective learning rate η̃ := MKη and
weights wr, such that the weighted average of the global parameters x̄(R) := 1

WR

∑R
r=0 wrx

(r)

(WR =
∑R

r=0 wr) satisfies the following upper bounds:

Strongly convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate 1
µR ≤

η̃ ≤ 1
6L and weights wr = (1− µη̃

2)−(r+1), such that it holds that

E
[
F (x̄(R))− F (x∗)

]
≤ 9

2
µD2 exp

(
−µη̃R

2

)
+

12η̃σ2

MK
+

18Lη̃2σ2

MK
+

18Lη̃2ζ2∗
M

(4)

General convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate η̃ ≤ 1
6L

and weights wr = 1, such that it holds that

E
[
F (x̄(R))− F (x∗)

]
≤ 3D2

η̃R
+

12η̃σ2

MK
+

18Lη̃2σ2

MK
+

18Lη̃2ζ2∗
M

(5)

Non-convex: Under Assumptions 1, 2, 3a, there exist a constant effective learning rate η̃ ≤ 1
6L(β+1)

and weights wr = 1, such that it holds that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 3A

η̃R
+

3Lη̃σ2

MK
+

27L2η̃2σ2

8MK
+

27L2η̃2ζ2

8M
(6)

where D :=
∥∥x(0) − x∗

∥∥ for the convex cases and A := F (x(0))− F ∗ for the non-convex case.

4

The effective learning rate η̃ := MKη is used in the upper bounds as Karimireddy et al. (2020);
Wang et al. (2020) did. All these upper bounds consist of two parts: the optimization part (the
first term) and the error part (the last three terms). Setting η̃ larger can make the optimization part
vanishes at a higher rate, yet cause the error part to be larger. This implies that we need to choose an
appropriate η̃ to achieve a balance between these two parts, which is actually done in Corollary 1.
Here we choose the best learning rate with a prior knowledge of the total training rounds R, as done
in the previous works (Karimireddy et al., 2020; Reddi et al., 2021).
Corollary 1. Applying the results of Theorem 1. By choosing a appropriate learning rate (see the
proof of Theorem 1 in Appendix D), we can obtain the convergence bounds for SFL as follows:

Strongly convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate 1
µR ≤

η̃ ≤ 1
6L and weights wr = (1− µη̃

2)−(r+1), such that it holds that

E
[
F (x̄(R))− F (x∗)

]
= Õ

(
σ2

µMKR
+

Lσ2

µ2MKR2
+

Lζ2∗
µ2MR2

+ µD2 exp

(
− µR

12L

))
(7)

General convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate η̃ ≤ 1
6L

and weights wr = 1, such that it holds that

E
[
F (x̄(R))− F (x∗)

]
= O

(
σD√
MKR

+

(
Lσ2D4

)1/3
(MK)1/3R2/3

+

(
Lζ2∗D

4
)1/3

M1/3R2/3
+

LD2

R

)
(8)

Non-convex: Under Assumptions 1, 2, 3a, there exist a constant effective learning rate η̃ ≤ 1
6L(β+1)

and weights wr = 1, such that it holds that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
= O

((
Lσ2A

)1/2
√
MKR

+

(
L2σ2A2

)1/3
(MK)1/3R2/3

+

(
L2ζ2A2

)1/3
M1/3R2/3

+
LβA

R

)
(9)

where O omits absolute constants, Õ omits absolute constants and polylogarithmic factors, D :=∥∥x(0) − x∗
∥∥ for the convex cases and A := F (x(0))− F ∗ for the non-convex case.

Convergence rate. By Corollary 1, for sufficiently large R, the convergence rate is determined by
the first term for all cases, resulting in convergence rates of Õ(1/MKR) for strongly convex cases,
O(1/

√
MKR) for general convex cases and O(1/

√
MKR) for non-convex cases.

SGD-RR vs. SFL. Recall that SGD-RR can be seen as one special case of SFL, where one step of
GD is performed on each local objective Fm (i.e, K = 1 and σ = 0). The bound of SFL turns to
Õ
(

Lζ2
∗

µ2MR2 + µD2 exp
(
−µR

L

))
when K = 1 and σ = 0 for the strongly convex case. Then let us

borrow the upper bound from Mishchenko et al. (2020)’s Corollary 1,

(Strongly convex) E
[
∥x(R) − x∗∥2

]
= Õ

(
Lζ2∗

µ3MR2
+D2 exp

(
−µMR

L

))
.

As we can see, the bound of SGD-RR only has an advantage on the second term (marked in red),
which can be omitted for sufficiently large R. The difference on the constant µ is because their
bound is for E

[
∥x(R) − x∗∥2

]
(see Stich (2019b)). Furthermore, our bound also matches the lower

bound Ω
(

Lζ2
∗

µ2MR2

)
of SGD-RR suggested by Cha et al. (2023)’s Theorem 3.1 for sufficiently large

R. For the general convex and non-convex cases, the bounds of SFL (when K = 1 and σ = 0)
also match that of SGD-RR (see Mishchenko et al. (2020)’s Theorems 3, 4). These all suggest our
bounds are tight. Yet a specialized lower bound for SFL is still required.

Effect of local steps. Two comments are included: i) It can be seen that local updates can help the
convergence with proper learning rate choices (small enough) by Corollary 1. Yet this increases
the total steps (iterations), leading to a higher computation cost. ii) Excessive local updates do not
benefit the dominant term of the convergence rate. Take the strongly convex case as an example.
When σ2

µMKR ≤
Lζ2

∗
µ2MR2 , the latter turns dominant, which is unaffected by K. In other words,

when the value of K exceed Ω̃
(
σ2/ζ2∗ · µ/L ·R

)
, increasing local updates will no longer benefit

the dominant term of the convergence rate. Note that the maximum value of K is affected by σ2/ζ2∗ ,
µ/L and R. This analysis follows Reddi et al. (2021); Khaled et al. (2020).

5

3.3 PFL vs. SFL on heterogeneous data

Table 1: Upper bounds in the strongly convex case with absolute constants and polylogarithmic
factors omitted. All results are for heterogeneous settings.

Method Bound (D =
∥∥x(0) − x∗

∥∥)

SGD (Stich, 2019b) σ2

µMKR + LD2 exp
(
−µR

L

)
(1)

PFL
(Karimireddy et al., 2020) σ2

µMKR + Lσ2

µ2KR2 + Lζ2

µ2R2 + µD2 exp
(
−µR

L

)
(2)

(Koloskova et al., 2020) σ2
∗

µMKR +
Lσ2

∗
µ2KR2 +

Lζ2
∗

µ2R2 + LKD2 exp
(
−µR

L

)
(3)

Theorem 2 σ2

µMKR + Lσ2

µ2KR2 +
Lζ2

∗
µ2R2 + µD2 exp

(
−µR

L

)
SFL

Theorem 1 σ2

µMKR + Lσ2

µ2MKR2 +
Lζ2

∗
µ2MR2 + µD2 exp

(
−µR

L

)
(1)

SGD with a large mini-batch size. We get the bound in the table by replacing σ2 in the Stich (2019b)’s
result with σ2

MK
. See Woodworth et al. (2020b) for more details about Minibatch SGD.

(2)
Karimireddy et al. (2020) use 1

M

∑M
m=1 ∥∇Fm(x)∥2 ≤ B2 ∥∇F (x)∥+G2 to bound the heterogeneity,

which is equivalent to Assumption 3a. The global learning rate is not considered in this work.
(3)

Koloskova et al. (2020) use σ2
∗ := 1

M

∑M
m=1 E

[
∥∇fm(x∗; ξ)−∇Fm(x∗)∥2

]
to bound the stochastic-

ity, which is weaker than Assumption 3b.

Unless otherwise stated, our comparison is in terms of training rounds, which is also adopted in
Gao et al. (2020, 2021). This comparison (running for the same total training rounds R) is fair
considering the same total computation cost for both methods.

Convergence results of PFL. We summarize the existing convergence results of PFL for the strongly
convex case in Table 1. Here we slightly improve the convergence result for strongly convex cases
by combining the works of Karimireddy et al. (2020); Koloskova et al. (2020). Besides, we note that
to derive a unified theory of Decentralized SGD, the proofs of Koloskova et al. (2020) are different
from other works focusing on PFL. So we reproduce the bounds for general convex and non-convex
cases based on Karimireddy et al. (2020). All our results of PFL are in Theorem 2 (see Appendix E).

The convergence guarantee of SFL is better than PFL on heterogeneous data. Take the strongly
convex case as an example. According to Table 1, the upper bound of SFL is better than that of
PFL, with an advantage of 1/M on the second and third terms (marked in red). This benefits from
its sequential and shuffling-based training manner. Besides, we can also note that the upper bounds
of both PFL and SFL are worse than that of Minibatch SGD.

Partial client participation. In the more challenging cross-device settings, only a small fraction of
clients participate in each round. Following the works (Li et al., 2019; Yang et al., 2021), we provide
the upper bounds of PFL and SFL with partial client participation as follows:

PFL: Õ
(

σ2

µSKR
+

ζ2∗
µR

M − S

S(M − 1)
+

Lσ2

µ2KR2
+

Lζ2∗
µ2R2

+ µD2 exp

(
−µR

L

))
(10)

SFL: Õ
(

σ2

µSKR
+

ζ2∗
µR

(M − S)

S(M − 1)
+

Lσ2

µ2SKR2
+

Lζ2∗
µ2SR2

+ µD2 exp

(
−µR

L

))
(11)

where S clients are selected randomly without replacement. There are additional terms (marked in
blue) for both PFL and SFL, which is due to partial client participation and random sampling (Yang
et al., 2021). It can be seen that the advantage of 1/S (marked in red) of SFL also exists, similar to
the full client participation setup.

6

4 Experiments

We run experiments on quadratic functions (Subsection 4.1) and real datasets (Subsection 4.2) to
validate our theory. The main findings are i) in extremely heterogeneous settings, SFL performs
better than PFL, ii) while in moderately heterogeneous settings, this may not be the case.

4.1 Experiments on quadratic functions

According to Table 1, SFL outperforms PFL on heterogeneous settings (in the worst case). Here
we show that the counterintuitive result (in contrast to Gao et al. (2020, 2021)) can appear even for
simple one-dimensional quadratic functions (Karimireddy et al., 2020).

Results of simulated experiments. As shown in Table 2, we use four groups of experiments with
various degrees of heterogeneity. To further catch the heterogeneity, in addition to Assumption 3b,
we also use bounded Hessian heterogeneity in Karimireddy et al. (2020):

max
m

∥∥∇2Fm(x)−∇2F (x)
∥∥ ≤ δ .

Choosing larger values of ζ∗ and δ means higher heterogeneity. The experimental results of Table 2
are shown in Figure 1. When ζ∗ = 0 and δ = 0, SFL outperforms PFL (Group 1). When ζ∗ = 1
and δ = 0, the heterogeneity has no bad effect on the performance of PFL while hurts that of SFL
significantly (Group 2). When the heterogeneity continues to increase to δ > 0, SFL outperforms
PFL with a faster rate and better result (Groups 3 and 4). This in fact tells us that the comparison
between PFL and SFL can be associated with the data heterogeneity, and SFL outperforms PFL
when meeting high data heterogeneity, which coincides with our theoretical conclusion.

Limitation and intuitive explanation. The bounds (see Table 1) above suggest that SFL outperforms
PFL regardless of heterogeneity (the value of ζ∗), while the simulated results show that it only
holds in extremely heterogeneous settings. This inconsistency is because existing theoretical works
(Karimireddy et al., 2020; Koloskova et al., 2020) with Assumptions 3a, 3b may underestimate the
capacity of PFL, where the function of global aggregation is omitted. In particular, Wang et al.
(2022) have provided rigorous analyses showing that PFL performs much better than the bounds
suggest in moderately heterogeneous settings. Hence, the comparison turns vacuous under this
condition. Intuitively, PFL updates the global model less frequently with more accurate gradients
(with the global aggregation). In contrast, SFL updates the global model more frequently with less
accurate gradients. In homogeneous (gradients of both are accurate) and extremely heterogeneous
settings (gradients of both are inaccurate), the benefits of frequent updates become dominant, and
thus SFL outperforms PFL. In moderately heterogeneous settings, it’s the opposite.

Table 2: Settings of simulated experiments. Each group has two local objectives (i.e., M = 2) and
shares the same global objective. The heterogeneity increases from Group 1 to Group 4.

Group 1 Group 2 Group 3 Group 4

Settings
{
F1(x) =

1
2x

2

F2(x) =
1
2x

2

{
F1(x) =

1
2x

2 + x

F2(x) =
1
2x

2 − x

{
F1(x) =

2
3x

2 + x

F2(x) =
1
3x

2 − x

{
F1(x) = x2 + x

F2(x) = −x
ζ∗, δ ζ∗ = 0, δ = 0 ζ∗ = 1, δ = 0 ζ∗ = 1, δ = 1

3 ζ∗ = 1, δ = 1

0 2 4 6 8 10
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um PFL, K=2

PFL, K=10
SFL, K=2
SFL, K=10

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

Figure 1: Simulations on quadratic functions. It displays the experimental results from Group 1 to
Group 4 in Table 2 from left to right. Shaded areas show the min-max values.

7

4.2 Experiments on real datasets

Extended Dirichlet strategy. This is to generate arbitrarily heterogeneous data across clients by
extending the popular Dirichlet-based data partition strategy (Yurochkin et al., 2019; Hsu et al.,
2019). The difference is to add a step of allocating classes (labels) to determine the number of
classes per client (denoted by C) before allocating samples via Dirichlet distribution (with concen-
trate parameter α). Thus, the extended strategy can be denoted by ExDir(C,α). The implementation
is as follows (with more details deferred to Appendix G.1):

• Allocating classes: We randomly allocate C different classes to each client. After assigning the
classes, we can obtain the prior distribution qc for each class c.

• Allocating samples: For each class c, we draw pc ∼ Dir(αqc) and then allocate a pc,m propor-
tion of the samples of class c to client m. For example, qc = [1, 1, 0, 0, . . . ,] means that the
samples of class c are only allocated to the first 2 clients.

Experiments in cross-device settings. We next validate the theory in cross-device settings
(Kairouz et al., 2021) with partial client participation on real datasets.

Setup. We consider the common CV tasks training VGGs (Simonyan and Zisserman, 2014) and
ResNets (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) and CINIC-10 (Darlow et al.,
2018). Specifically, we use the models VGG-9 (Lin et al., 2020) and ResNet-18 (Acar et al.,
2021). We partition the training sets of CIFAR-10 into 500 clients / CINIC-10 into 1000 clients
by ExDir(1, 10.0) and ExDir(2, 10.0); and spare the test sets for computing test accuracy. As both
partitions share the same parameter α = 10.0, we use C = 1 (where each client owns samples from
one class) and C = 2 (where each client owns samples from two classes) to represent them, respec-
tively. Note that these two partitions are not rare in FL (Li et al., 2022). They are called extremely
heterogeneous data and moderately heterogeneous data respectively in this paper. We fix the number
of participating clients to 10 and the mini-batch size to 20. The local solver is SGD with learning
rate being constant, momentem being 0 and weight decay being 1e-4. We apply gradient clipping to
both algorithms (Appendix G.2) and tune the learning rate by grid search (Appendix G.3).

-2.5-2.0-1.5-1.0-0.5
0

20

40

60

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

10

20

30

C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

10

20

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

C = 2, K = 50

Figure 2: Test accuracies after training
VGG-9 on CIFAR-10 for 1000 training
rounds with different learning rates.

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-9, C = 1

SFL, K=1
SFL, K=5
SFL, K=20

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-9, C = 2

SFL, K=1
SFL, K=5
SFL, K=20

Figure 3: Effect of local steps.

The best learning rate of SFL is smaller than that of PFL.
We have the following observations from Figure 2: i) the
best learning rates of SFL is smaller than that of PFL (by
comparing PFL and SFL), and ii) the best learning rate of
SFL becomes smaller as data heterogeneity increases (by
comparing the top row and bottom row). These observa-
tions are critical for hyperparameter selection.

Effect of local steps. Figure 3 is aimed to study the effects
of local steps. In both plots, it can be seen that the perfor-
mance of SFL improves as K increases from 1 to 5. This
validates the theoretical conclusion that local steps can
help the convergence of SFL even on heterogeneous data.
Then, the performance of SFL deteriorates as K increases
from 5 to 10, whereas the upper bound of SFL always di-
minishes as long as K increases. This is because when
K exceeds one threshold, the dominant term of the up-
per bound will be immune to its change as stated in Sub-
section 3.2. Then, considering “catastrophic forgetting”
(Kirkpatrick et al., 2017; Sheller et al., 2019) problems in
SFL, it can be expected to see such phenomenon.

SFL outperforms PFL on extremely heterogeneous data.
The test accuracy results for various tasks are collected
in Table 3. When C = 1 (extremely heterogeneous), the
performance of SFL is better than that of PFL across all
tried settings. When C = 2 (moderately heterogeneous), PFL can achieve the close or even slightly
better performance than SFL in some cases (e.g., CIFAR-10/C = 2/K = 50). This is consistent
with our observation and analysis in Subsection 4.1. Notably, on the more complicated dataset
CINIC-10, SFL shows better for all settings, which may be due to higher heterogeneity.

8

Table 3: Test accuracy results in cross-device settings. We run PFL and SFL for 4000 training
rounds on CIFAR-10 and CINIC-10. Results are computed across three random seeds and the last
100 training rounds. The better results (with larger than 2% test accuracy gain) between PFL and
SFL in each setting are marked in bold.

Setup C = 1 C = 2

Dataset Model Method K = 5 K = 20 K = 50 K = 5 K = 20 K = 50

CIFAR-10
VGG-9 PFL 67.61±4.02 62.00±4.90 45.77±5.91 78.42±1.47 78.88±1.35 78.01±1.50

SFL 78.43±2.46 72.61±3.27 68.86±4.19 82.56±1.68 82.18±1.97 79.67±2.30

ResNet-18 PFL 52.12±6.09 44.58±4.79 34.29±4.99 80.27±1.52 82.27±1.55 79.88±2.18

SFL 83.44±1.83 76.97±4.82 68.91±4.29 87.16±1.34 84.90±3.53 79.38±4.49

CINIC-10
VGG-9 PFL 52.61±3.19 45.98±4.29 34.08±4.77 55.84±0.55 53.41±0.62 52.04±0.79

SFL 59.11±0.74 58.71±0.98 56.67±1.18 60.82±0.61 59.78±0.79 56.87±1.42

ResNet-18 PFL 41.12±4.28 33.19±4.73 24.71±4.89 57.70±1.04 55.59±1.32 46.99±1.73

SFL 60.36±1.37 51.84±2.15 44.95±2.97 64.17±1.06 58.05±2.54 56.28±2.32

5 Conclusion

In this paper, we have derived the convergence guarantees of SFL for strongly convex, general con-
vex and non-convex objectives on heterogeneous data. Furthermore, we have compared SFL against
PFL, showing that the guarantee of SFL is better than PFL on heterogeneous data. Experimental
results validate that SFL outperforms PFL on extremely heterogeneous data in cross-device settings.

Future directions include i) lower bounds for SFL (this work focuses on the upper bounds of SFL),
ii) other potential factors that may affect the performance of PFL and SFL (this work focuses on data
heterogeneity) and iii) new algorithms to facilitate our findings (no new algorithm in this work).

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China
under Grant 2021YFB2900302, in part by the National Science Foundation of China under Grant
62001048, and in part by the Fundamental Research Funds for the Central Universities under Grant
2242022k60006.

We thank the reviewers in NeurIPS 2023 for the insightful suggestions. We thank Sai Praneeth
Karimireddy for helping us clear some doubts when proving the bounds.

References
Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and

Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
B7v4QMR6Z9w.

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. Sgd with shuffling: optimal rates without component
convexity and large epoch requirements. Advances in Neural Information Processing Systems,
33:17526–17535, 2020.

Ghadir Ayache and Salim El Rouayheb. Private weighted random walk stochastic gradient descent.
IEEE Journal on Selected Areas in Information Theory, 2(1):452–463, 2021.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter lower bounds for shuffling sgd: Random
permutations and beyond. arXiv preprint arXiv:2303.07160, 2023.

Ken Chang, Niranjan Balachandar, Carson Lam, Darvin Yi, James Brown, Andrew Beers, Bruce
Rosen, Daniel L Rubin, and Jayashree Kalpathy-Cramer. Distributed deep learning networks

9

https://openreview.net/forum?id=B7v4QMR6Z9w
https://openreview.net/forum?id=B7v4QMR6Z9w

among institutions for medical imaging. Journal of the American Medical Informatics Associa-
tion, 25(8):945–954, 2018.

Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu, Satyen Kale, and Tong Zhang. On the conver-
gence of federated averaging with cyclic client participation. arXiv preprint arXiv:2302.03109,
2023.

Edwige Cyffers and Aurélien Bellet. Privacy amplification by decentralization. In International
Conference on Artificial Intelligence and Statistics, pages 5334–5353. PMLR, 2022.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa, Kyuyeon Kim, Seyit A
Camtep, Hyoungshick Kim, and Surya Nepal. End-to-end evaluation of federated learning and
split learning for internet of things. In 2020 International Symposium on Reliable Distributed
Systems (SRDS), pages 91–100. IEEE, 2020.

Yansong Gao, Minki Kim, Chandra Thapa, Sharif Abuadbba, Zhi Zhang, Seyit Camtepe, Hyoung-
shick Kim, and Surya Nepal. Evaluation and optimization of distributed machine learning tech-
niques for internet of things. IEEE Transactions on Computers, 2021.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, 186:49–84, 2021.

Jeff Haochen and Suvrit Sra. Random shuffling beats sgd after finite epochs. In International
Conference on Machine Learning, pages 2624–2633. PMLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedexp: Speeding up federated averaging
via extrapolation. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=IPrzNbddXV.

Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on Optimization, 20
(3):1157–1170, 2010.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Michael Kamp, Jonas Fischer, and Jilles Vreeken. Federated learning from small datasets. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hDDV1lsRV8.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identi-
cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pages 4519–4529. PMLR, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

10

https://openreview.net/forum?id=IPrzNbddXV
https://openreview.net/forum?id=hDDV1lsRV8
https://openreview.net/forum?id=hDDV1lsRV8

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized sgd with changing topology and local updates. In International Confer-
ence on Machine Learning, pages 5381–5393. PMLR, 2020.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jin-woo Lee, Jaehoon Oh, Sungsu Lim, Se-Young Yun, and Jae-Gil Lee. Tornadoaggregate:
Accurate and scalable federated learning via the ring-based architecture. arXiv preprint
arXiv:2012.03214, 2020.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE),
pages 965–978. IEEE, 2022.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2019.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Grigory Malinovsky, Samuel Horváth, Konstantin Burlachenko, and Peter Richtárik. Federated
learning with regularized client participation. arXiv preprint arXiv:2302.03662, 2023.

Xianghui Mao, Kun Yuan, Yubin Hu, Yuantao Gu, Ali H Sayed, and Wotao Yin. Walkman: A
communication-efficient random-walk algorithm for decentralized optimization. IEEE Transac-
tions on Signal Processing, 68:2513–2528, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pages 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
with vast improvements. Advances in Neural Information Processing Systems, 33:17309–17320,
2020.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and federated random
reshuffling. In International Conference on Machine Learning, pages 15718–15749. PMLR,
2022.

Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. Sgd without replacement: Sharper rates
for general smooth convex functions. In International Conference on Machine Learning, pages
4703–4711. PMLR, 2019.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Liangqiong Qu, Yuyin Zhou, Paul Pu Liang, Yingda Xia, Feifei Wang, Ehsan Adeli, Li Fei-Fei, and
Daniel Rubin. Rethinking architecture design for tackling data heterogeneity in federated learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10061–10071, 2022.

Shashank Rajput, Anant Gupta, and Dimitris Papailiopoulos. Closing the convergence gap of
sgd without replacement. In International Conference on Machine Learning, pages 7964–7973.
PMLR, 2020.

S Sundhar Ram, A Nedić, and Venugopal V Veeravalli. Incremental stochastic subgradient algo-
rithms for convex optimization. SIAM Journal on Optimization, 20(2):691–717, 2009.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
LkFG3lB13U5.

Itay Safran and Ohad Shamir. How good is sgd with random shuffling? In Conference on Learning
Theory, pages 3250–3284. PMLR, 2020.

11

https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5

Itay Safran and Ohad Shamir. Random shuffling beats sgd only after many epochs on ill-conditioned
problems. Advances in Neural Information Processing Systems, 34:15151–15161, 2021.

Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon Bakas. Multi-
institutional deep learning modeling without sharing patient data: A feasibility study on brain
tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018,
Granada, Spain, September 16, 2018, Revised Selected Papers, Part I 4, pages 92–104. Springer,
2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Con-
ference on Learning Representations, 2019a. URL https://openreview.net/forum?id=
S1g2JnRcFX.

Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019b.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019.

Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit A Camtepe. Advancements
of federated learning towards privacy preservation: from federated learning to split learning. In
Federated Learning Systems, pages 79–109. Springer, 2021.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 8485–8493, 2022.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. The Journal of Machine Learning Research, 22(1):9709–9758,
2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the
unreasonable effectiveness of federated averaging with heterogeneous data. arXiv preprint
arXiv:2206.04723, 2022.

Shiqiang Wang and Mingyue Ji. A unified analysis of federated learning with arbitrary client par-
ticipation. Advances in Neural Information Processing Systems, 35:19124–19137, 2022.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pages 10334–10343. PMLR, 2020a.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020b.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker partici-
pation in non-IID federated learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=jDdzh5ul-d.

Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local SGD with shuffling: Tight
convergence bounds and beyond. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=LdlwbBP2mlq.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional conference on machine learning, pages 7252–7261. PMLR, 2019.

Riccardo Zaccone, Andrea Rizzardi, Debora Caldarola, Marco Ciccone, and Barbara Caputo.
Speeding up heterogeneous federated learning with sequentially trained superclients. In 2022
26th International Conference on Pattern Recognition (ICPR), pages 3376–3382. IEEE, 2022.

12

https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=jDdzh5ul-d
https://openreview.net/forum?id=LdlwbBP2mlq

Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, and Zenglin Xu. Fedlab: A flexible federated
learning framework. arXiv preprint arXiv:2107.11621, 2021.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradi-
ent descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012, 2017.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
arXiv preprint arXiv:1803.06573, 2018.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving
the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):
1738–1762, 2019.

13

Appendix

A Applicable to Split Learning 15

B Related work 17

C Notations and technical lemmas 19
C.1 Notations . 19
C.2 Basic identities and inequalities . 19
C.3 Technical lemmas . 20

D Proofs of Theorem 1 23
D.1 Strongly convex case . 24

D.1.1 Finding the recursion . 24
D.1.2 Bounding the client drift with Assumption 3b 26
D.1.3 Tuning the learning rate . 27
D.1.4 Proof of strongly convex case of Theorem 1 and Corollary 1 29

D.2 General convex case . 30
D.2.1 Tuning the learning rate . 30
D.2.2 Proof of general convex case of Theorem 1 and Corollary 1 31

D.3 Non-convex case . 31
D.3.1 Bounding the client drift with Assumption 3a 32
D.3.2 Proof of non-convex case of Theorem 1 and Corollary 1 34

E Proofs of Theorem 2 35
E.1 Strongly convex case . 36

E.1.1 Find the per-round recursion . 36
E.1.2 Bounding the client drift with Assumption 3b 38
E.1.3 Proof of strongly convex case of Theorem 2 39

E.2 General convex case . 40
E.2.1 Proof of general convex case of Theorem 2 and Corollary 2 40

E.3 Non-convex case . 40
E.3.1 Bounding the client drift with Assumption 3a 42
E.3.2 Proof of non-convex case of Theorem 2 43

F Simulations on quadratic functions 44

G More experimental details 45
G.1 Extended Dirichlet partition . 45
G.2 Gradient clipping. 46
G.3 Grid search . 49
G.4 More experimental results . 50

14

A Applicable to Split Learning

Split Learning is proposed to address the computation bottleneck of resource-constrained devices,
where the full model is split into two parts: the client-side model (front-part) and the server-side
model (back-part). There are two typical algorithms in SL, i.e., Sequential Split Learning (SSL)2

(Gupta and Raskar, 2018) and Split Federated Learning (SplitFed)3 (Thapa et al., 2022). The
overviews of these four paradigms are illustrated in Figure 4

Communication

data

Client
smashed

data

loss

Server...

gradientclient-side model

data

Client

...

Communication

Server

Avg

Client

full model

...

Client

data
loss

data
loss

Client

Client

SSL

PFL

data

Client

smashed
data

gradient

server-side modeldata

Client

Communication

loss

loss

client-side model

Main Server

...

Avg
...

Avg

Fed Server ...

SplitFed

... Communication

Client

full model

Client

data
loss

data
loss

SFL

Client

Client

Sequential
Manner

Parallel
Manner

Figure 4: Overviews of paradigms in FL and SL. The top row shows the FL algorithms, SFL and
PFL. The bottom row shows the SL algorithms, SSL and SplitFed.

Training process of SSL. Each client keeps one client-side model and the server keeps one server-
side model. Thus, each client and the server can collaborate to complete the local training of a full
model (over the local data kept in clients). Each local step of local training includes the following
operations: 1) the client executes the forward pass on the local data, and sends the activations of
the cut-layer (called smashed data) and labels to the server; 2) the server executes the forward pass
with received the smashed data and computes the loss with received labels; 3) the server executes
the backward pass and send the gradients of the smashed data to the client; 4) the client executes
the backward pass with the received gradients. After finishing the local training, the client sends the
updated parameters of its client-side model to the next client. This process continues until all clients
complete their local training. See the bottom-left subfigure and Algorithms 3, 4. For clarity, we
adjust the superscripts and subscripts in this section, and provide the required notations in Table 4.

Training process of SplitFed. Each client keeps one client-side model and the server keeps (named as
main server) keeps multiple server-side models, whose quantity is the same as the number of clients.
Thus, each client and its corresponding server-side model in the main server can complete the local
training of a full model in parallel. The local training operations of each client in SplitFed are
identical to that in SSL. After the local training with the server, clients send the updated parameters
to the fed server, one server introduced in SplitFed to achieve the aggregation of client-side models.
The fed server aggregates the received parameters and sends the aggregated (averaged) parameters
to the clients. The main server also aggregates the parameters of server-side models it kept and
updates them accordingly. See the bottom-right subfigure and Thapa et al. (2021)’s Algorithm 2.

Applicable to SL. According to the complete training process of SSL and SplitFed, we can conclude
the relationships between SFL and SSL, and, PFL and SplitFed as follows:

• SSL and SplitFed can be viewed as the practical implementations of SFL and PFL respectively
in the context of SL.

• SSL and SplitFed share the same update rules with SFL (Algorithm 1) and PFL (Algorithm 2)
respectively, and hence, the same convergence results.

2In SSL, client-side model parameters can be synchronized in two modes, the peer-to-peer mode and cen-
tralized mode. In the peer-to-peer mode, parameters are sent to the next client directly, while in the centralized
mode, parameters are relayed to the next client through the server. This paper considers the peer-to-peer mode.

3There are two versions of SplitFed and the first version is considered in this paper by default.

15

Table 4: Additional notations for Section A.

Symbol Description

τm, k number, index of local update steps (when training) with client πm

x
(r,k)
m /x(r,k)

c,m /x(r,k)
s,m

full/client-side/server-side local model parameters (x(r,k)
m = [x

(r,k)
c,m ;x

(r,k)
s,m])

after k local updates with client πm in the r-th round

X
(r,k)
m /Y (r,k)

m /Ŷ (r,k)
m

features/labels/predictors
after k local updates with client πm in the r-th round

x(r)/x(r)
c /x(r)

s full/client-side/server-side global model parameters in the r-th round

A
(r,k)
m

smashed data (activation of the cut layer)
after k local updates with client πm in the r-th round

ℓπm
loss function with client πm

∇ℓπm(x
(r,k)
s,m ;A

(r,k)
m) gradients of the loss regarding x

(r,k)
s,m on input A(r,k)

m

∇ℓπm
(A

(r,k)
m ;x

(r,k)
s,m) gradients of the loss regarding A

(r,k)
m on parameters x(r,k)

s,m

∇ℓπm
(x

(r,k)
c,m ;X

(r,k)
m) gradients of the loss regarding x

(r,k)
c,m on input X(r,k)

m

Algorithm 3: Sequential Split Learning (Server-side operations)

Main Server executes:

1 Initialize server-side global parameters x(0)
s

2 for round r = 0, . . . , R− 1 do
3 Sample a permutation π1, π2, . . . , πM of {1, 2, . . . ,M} as clients’ update order
4 for m = 1, 2, . . . ,M in sequence do

5 Initialize server-side local parameters: x(r,0)
s,m ←

{
x
(r)
s , m = 1

x
(r,τm−1)
s,m−1 , m > 1

6 for local update step k = 0, . . . , τm − 1 do
7 Receive (A(r,k)

m , Y (r,k)
m) from client m // Com.

8 Execute forward passes with smashed data A
(r,k)
m

9 Calculate the loss with (Ŷ (r,k)
m , Y (r,k)

m)
10 Execute backward passes and compute∇ℓπm

(x
(r,k)
s,m ;A

(r,k)
m)

11 Send ∇ℓπm
(A

(r,k)
m ;x

(r,k)
s,m) to client m // Com.

12 Update server-side parameters: x(r,k+1)
s,m ← x

(r,k)
s,m − η∇ℓπm(x

(r,k)
s,m ;A

(r,k)
m)

Algorithm 4: Sequential Split Learning (Client-side operations)

Client πm executes:

1 Request the latest client-side parameters from the previous client // Com.

2 Initialize client-side parameters: x(r,0)
c,m ←

{
x
(r)
c , m = 1

x
(r,τm−1)
c,m−1 , m > 1

3 for local update step k = 0, . . . , τm − 1 do
4 Execute forward passes with data features X(r,k)

m

5 Send (A(r,k)
m , Y (r,k)

m) to the server // Com.

6 Receive ∇ℓπm(A
(r,k)
m ;x

(r,k)
s,m) // Com.

7 Execute backward passes and compute∇ℓπm
(x

(r,k)
c,m ;X

(r,k)
m)

8 Update client-side parameters: x(r,k+1)
c,m ← x

(r,k)
c,m − η∇ℓπm

(x
(r,k)
c,m ;X

(r,k)
m)

16

B Related work

Convergence of PFL. The convergence of PFL (also known as Local SGD, FedAvg) has devel-
oped rapidly recently, with weaker assumptions, tighter bounds and more complex scenarios. Zhou
and Cong (2017); Stich (2019a); Khaled et al. (2020); Wang and Joshi (2021) analyzed the conver-
gence of PFL on homogeneous data. Li et al. (2019) derived the convergence guarantees for PFL
with the bounded gradients assumption on heterogeneous data. Yet this assumption has been shown
too stronger (Khaled et al., 2020). To further catch the heterogeneity, Karimireddy et al. (2020);
Koloskova et al. (2020) assumed the variance of the gradients of local objectives is bounded either
uniformly (Assumption 3a) or on the optima (Assumption 3b). Moreover, Li et al. (2019); Karim-
ireddy et al. (2020); Yang et al. (2021) also consider the convergence with partial client participation.
The lower bounds of PFL are also studied in Woodworth et al. (2020a,b); Yun et al. (2022). There
are other variants in PFL, which show a faster convergence rate than the vanilla one (Algorithm 2),
e.g., SCAFFOLD (Karimireddy et al., 2020).

Convergence of SGD-RR. Random Reshuffling (SGD-RR) has attracted more attention recently,
as it (where data samples are sampled without replacement) is more common in practice than its
counterpart algorithms SGD (where data samples are sample with replacement). Early works (Gür-
büzbalaban et al., 2021; Haochen and Sra, 2019) prove the upper bounds for strongly convex and
twice-smooth objectives. Subsequent works (Nagaraj et al., 2019; Ahn et al., 2020; Mishchenko
et al., 2020) further prove upper bounds for strongly convex, convex and non-convex cases. The
lower bounds of SGD-RR are also investigated in the quadratic case Safran and Shamir (2020, 2021)
and the strongly convex case (Rajput et al., 2020; Cha et al., 2023). In particular, the lower bounds
in Cha et al. (2023) are shown to match the upper bounds in Mishchenko et al. (2020) for the both
strongly convex and general convex cases. These works have reached a consensus that SGD-RR is
better than SGD a least when the number of epochs (passes over the data) is large enough. In this
paper, we use the bounds of SGD-RR to exam the tightness of our bounds of SFL.

There are also works studying the randomized incremental gradient methods are also relevant (Ram
et al., 2009; Johansson et al., 2010; Ayache and El Rouayheb, 2021; Mao et al., 2020; Cyffers and
Bellet, 2022), which consider a single update at each client and focus on random walks.

Shuffling-based methods in FL. Recently, shuffling-based methods have appeared in FL
(Mishchenko et al., 2022; Yun et al., 2022; Cho et al., 2023). Mishchenko et al. (2022) gave the
convergence result of Federated Random Reshuffling (FedRR) as a application to Federated Learn-
ing of their theory for Proximal Random Reshuffling (ProxRR). Yun et al. (2022) analyzed the
convergence of Minibatch RR and Local RR, the variants of Minibatch SGD and Local SGD (Local
SGD is equivalent to PFL in this work), where clients perform SGD-RR locally (in parallel) instead
of SGD. Both FedRR and Local RR are different from SFL from the algorithm perspective. See Yun
et al. (2022)’s Appendix A for comparison.

The most relevant works are FL with cyclic client participation (Cho et al., 2023) and FL with
shuffling client participation (Malinovsky et al., 2023) (we note them when preparing this version).

<latexit sha1_base64="mLU2suTf7mDw/obXito+uOgWRXI=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquiHosevFYxX5Au5RsNm1Ds9klmYh16S/x4kERr/4Ub/4b03YP2vpg4PHeDDPzwlRwDZ737RRWVtfWN4qbpa3tnd2yu7ff1IlRlDVoIhLVDolmgkvWAA6CtVPFSBwK1gpH11O/9cCU5om8h3HKgpgMJO9zSsBKPbfcBfYI2V1iZIQn2O+5Fa/qzYCXiZ+TCspR77lf3SihJmYSqCBad3wvhSAjCjgVbFLqGs1SQkdkwDqWShIzHWSzwyf42CoR7ifKlgQ8U39PZCTWehyHtjMmMNSL3lT8z+sY6F8GGZepASbpfFHfCAwJnqaAI64YBTG2hFDF7a2YDokiFGxWJRuCv/jyMmmeVv3zqn97Vqld5XEU0SE6QifIRxeohm5QHTUQRQY9o1f05jw5L8678zFvLTj5zAH6A+fzB0xTktk=</latexit>

Round 1
<latexit sha1_base64="rq3qlY4avt4j14G7po7lY4fv87M=">AAAB+HicbVBNSwMxEM36WetHVz16CRbBU9ktoh6LXjxWsR/QLiWbTdvQbHZJJmJd+ku8eFDEqz/Fm//GtN2Dtj4YeLw3w8y8MBVcg+d9Oyura+sbm4Wt4vbO7l7J3T9o6sQoyho0EYlqh0QzwSVrAAfB2qliJA4Fa4Wj66nfemBK80TewzhlQUwGkvc5JWClnlvqAnuE7C4xMsITXO25Za/izYCXiZ+TMspR77lf3SihJmYSqCBad3wvhSAjCjgVbFLsGs1SQkdkwDqWShIzHWSzwyf4xCoR7ifKlgQ8U39PZCTWehyHtjMmMNSL3lT8z+sY6F8GGZepASbpfFHfCAwJnqaAI64YBTG2hFDF7a2YDokiFGxWRRuCv/jyMmlWK/55xb89K9eu8jgK6Agdo1PkowtUQzeojhqIIoOe0St6c56cF+fd+Zi3rjj5zCH6A+fzB03Xkto=</latexit>

Round 2
<latexit sha1_base64="wVYPeqXvwlosMjJjl/NDB13PF14=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquinosevFYxX5Au5RsNm1Ds8mSzIp16S/x4kERr/4Ub/4b03YPWn0w8Hhvhpl5YSK4Ac/7cgpLyyura8X10sbm1nbZ3dltGpVqyhpUCaXbITFMcMkawEGwdqIZiUPBWuHoauq37pk2XMk7GCcsiMlA8j6nBKzUc8tdYA+Q3apURniCT3puxat6M+C/xM9JBeWo99zPbqRoGjMJVBBjOr6XQJARDZwKNil1U8MSQkdkwDqWShIzE2Szwyf40CoR7ittSwKeqT8nMhIbM45D2xkTGJpFbyr+53VS6F8EGZdJCkzS+aJ+KjAoPE0BR1wzCmJsCaGa21sxHRJNKNisSjYEf/Hlv6R5XPXPqv7NaaV2mcdRRPvoAB0hH52jGrpGddRAFKXoCb2gV+fReXbenPd5a8HJZ/bQLzgf309bkts=</latexit>

Round 3

<latexit sha1_base64="u8+dHhH1J9zbq8n86bDqVZBG1tE=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBahgpSkiLosunFZwT6gjWUynbRDJw9mJmoJ+RU3LhRx64+482+ctFlo64GBwzn3cs8cN+JMKsv6Ngorq2vrG8XN0tb2zu6euV9uyzAWhLZIyEPRdbGknAW0pZjitBsJin2X0447uc78zgMVkoXBnZpG1PHxKGAeI1hpaWCW+z5WY9dLHtP7pDo5rZ+kA7Ni1awZ0DKxc1KBHM2B+dUfhiT2aaAIx1L2bCtSToKFYoTTtNSPJY0wmeAR7WkaYJ9KJ5llT9GxVobIC4V+gUIz9fdGgn0pp76rJ7OkctHLxP+8Xqy8SydhQRQrGpD5IS/mSIUoKwINmaBE8akmmAimsyIyxgITpesq6RLsxS8vk3a9Zp/X7NuzSuMqr6MIh3AEVbDhAhpwA01oAYEneIZXeDNS48V4Nz7mowUj3zmAPzA+fwB6oZQS</latexit>

w(k,2)
<latexit sha1_base64="9n5crrdTFimdi15XBG2p5odg8ZM=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSJUkJKIqMuiG5cV7APaWibTSTt0MgkzE7WE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOF3GmtON8W0vLK6tr64WN4ubW9s6uvVdqqjCWhDZIyEPZ9rCinAna0Exz2o4kxYHHacsbX2d+64FKxUJxpycR7QV4KJjPCNZG6tulboD1yPOTx/Q+qYxP3OO0b5edqjMFWiRuTsqQo963v7qDkMQBFZpwrFTHdSLdS7DUjHCaFruxohEmYzykHUMFDqjqJdPsKToyygD5oTRPaDRVf28kOFBqEnhmMkuq5r1M/M/rxNq/7CVMRLGmgswO+TFHOkRZEWjAJCWaTwzBRDKTFZERlphoU1fRlODOf3mRNE+r7nnVvT0r167yOgpwAIdQARcuoAY3UIcGEHiCZ3iFNyu1Xqx362M2umTlO/vwB9bnD3kblBE=</latexit>

w(k,1)
<latexit sha1_base64="K0akdoK/7hlmEwPhgdAyEKa3564=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSJUkJKIqMuiG5cV7APaWibTSTt0MgkzE7WE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOF3GmtON8W0vLK6tr64WN4ubW9s6uvVdqqjCWhDZIyEPZ9rCinAna0Exz2o4kxYHHacsbX2d+64FKxUJxpycR7QV4KJjPCNZG6tulboD1yPOTx/Q+qYxPnOO0b5edqjMFWiRuTsqQo963v7qDkMQBFZpwrFTHdSLdS7DUjHCaFruxohEmYzykHUMFDqjqJdPsKToyygD5oTRPaDRVf28kOFBqEnhmMkuq5r1M/M/rxNq/7CVMRLGmgswO+TFHOkRZEWjAJCWaTwzBRDKTFZERlphoU1fRlODOf3mRNE+r7nnVvT0r167yOgpwAIdQARcuoAY3UIcGEHiCZ3iFNyu1Xqx362M2umTlO/vwB9bnD3eVlBA=</latexit>

w(k,0) w(k,K)
<latexit sha1_base64="6mKsdXSChkhDrIXG0VXPh7hDfgg=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQQUpSBV0W3QhuKtgHNLFMppN26CQTZiZKCVm58VfcuFDErd/gzr9x0mahrQcGDueee+fe40WMSmVZ30ZhYXFpeaW4Wlpb39jcMrd3WpLHApMm5oyLjockYTQkTUUVI51IEBR4jLS90WVWb98TISkPb9U4Im6ABiH1KUZKSz1z3wmQGnp+8pDeJZXRscO1OxuWXKdHac8sW1VrAjhP7JyUQY5Gz/xy+hzHAQkVZkjKrm1Fyk2QUBQzkpacWJII4REakK6mIQqIdJPJGSk81Eof+lzoFyo4UX93JCiQchx42pktLWdrmfhfrRsr/9xNaBjFioR4+pEfM6g4zDKBfSoIVmysCcKC6l0hHiKBsNLJlXQI9uzJ86RVq9on1drNabl+kcdRBHvgAFSADc5AHVyBBmgCDB7BM3gFb8aT8WK8Gx9Ta8HIe3bBHxifP8WDmU8=</latexit>

w(k+1,0) = w(k,K), after the kth cycle-epoch of K rounds
<latexit sha1_base64="jjGb446OLKZEtYAijgPoU+z5III=">AAACZXicbVBNbxMxEPUuXyFQSAviwgGLCKkVabRbkOCCVMEFiUuRSFspm0ZeZ7ZrxWuv7FkgMuZHcuPKhb+BN9lDP3iSpac3b2Y8L6+lsJgkv6P4xs1bt+/07vbv3d968HCwvXNsdWM4TLiW2pzmzIIUCiYoUMJpbYBVuYSTfPmhrZ98BWOFVl9wVcOsYudKFIIzDNJ88COrGJZ54b75M7e7fJmOkj3/7rI4ynQY0W5wn/yeH/3MEL6jYwWCoVgC9cszh6XfyJSvuIR9qDUvqS6ov9jdWYxu1ML6+WCYjJM16HWSdmRIOhzNB7+yheZNBQq5ZNZO06TGmWMGRdjp+1ljoWZ8yc5hGqhiFdiZW6fk6YugLGihTXgK6Vq92OFYZe2qyoOzPd9erbXi/2rTBou3MydU3SAovllUNJKipm3kdCEMcJSrQBg3IvyV8pIZxkN+th9CSK+efJ0cH4zTV+ODz6+Hh++7OHrkKXlOdklK3pBD8pEckQnh5E/Ui7ajnehvvBU/jp9srHHU9TwilxA/+wcYN7q0</latexit>

Figure 5: Illustration of FL with cyclic client participation with M = 12 clients divided into K = 3
groups. In each training round, N = 2 clients are selected for training from the client group. All
groups are traversed once in a cycle-epoch consisting of K training rounds. (Cho et al., 2023).

Discussion about FL with cyclic client participation. Cho et al. (2023) consider the scenario where
the total M clients are divided into K non-overlapping client groups such that each group contains
M/K clients. In each training round, the sever selects a subset of N clients from a group without
replacement for training in this round. One example is shown in Figure 5. As said in the paragraph
“Cyclic Client Participation (CyCP)” in their Section 3 (Problem Formulation), the groups’ training

17

order of FL with cyclic client participation is pre-determined and fixed. In contrast, the clients’
training order of SFL (precisely, Algorithm 1) will be shuffled at the beginning of each round.

It can be verified by Cho et al. (2023)’s Theorem 2. Letting K = 1 and N = M/K = M and
K = M and N = M/K = 1, we get the bounds for PFL and SFL, respectively:

PFL: Õ
(

Lσ2

µ2MKR
+

L2ζ2

µ3M2R2

)
where we have omitted the optimization term and changed their notations to ours (change α to 0, γ
to ζ, ν to ζ, T to R).

SFL: Õ
(

Lσ2

µ2KR
+

L2ζ2

µ3R2
+

L2ζ2

µ3M2R2

)
where we have omitted the optimization term and changed their notations to ours (change α to ζ, γ
to 0, ν to ζ, T to MR). As we can see, we do not see a clear advantage of SFL like ours.

Figure 6: Visualization of FL with shuffling client participation for 6 clients, each with 3 datapoints.
Two clients are sampled in each communication round (Malinovsky et al., 2023).

Discussion about FL with shuffling client participation. At the beginning of each meta epoch, FL
with shuffling client participation partition all M clients into M/C cohorts, each with size C. These
cohorts are obtained using the without replacement sampling of clients. Each meta epoch contains
R = M/C communication rounds. At each communication round, clients in a cohort participate in
the training process. One example is shown in Figure 6. It is noteworthy that SGD-RR is used as
the local solver in Malinovsky et al. (2023) while SGD is used in this paper.

Letting C = 1, R = M , T = R in their Theorem 6.1, we can get the bounds for SFL:

SFL (Malinovsky et al., 2023): O
(
1

µ
· LMK2η2ζ2∗ +D2 exp (−µMKRη)

)
with η ≤ 1

L

SFL (Theorem 1): O
(
LMK2η2ζ2∗ + µD2 exp (−µMKRη)

)
with η ≤ 1

LMK

where we only considered the heterogeneity terms (let σ2
⋆ = 0 for Malinovsky et al. (2023) and

σ = 0 for ours) and changed their notations to ours (change γ to η, N to K, σ̃⋆ to ζ∗). Their bound
almost matches ours, with some differences on the constants µ, L and restrictions on η, which is
caused by using different local solvers. However, their results are limited to the case where the
number of local steps equals the size of the local dataset. It is still uncertain whether their results for
SGD-RR can be generalized to situations with varying numbers of local steps.

18

C Notations and technical lemmas

C.1 Notations

Table 5 summarizes the notations appearing in this paper.

Table 5: Summary of key notations.

Symbol Description

R, r number, index of training rounds
M,m number, index of clients
K, k number, index of local update steps
S number of participating clients
π {π1, π2, . . . , πM} is a permutation of {1, 2, . . . ,M}
η learning rate (or stepsize)
η̃ effective learning rate (η̃ := MKη in SFL and η̃ := Kη in PFL)
µ µ-strong convexity constant
L L-smoothness constant (Asm. 1)
σ upper bound on variance of stochastic gradients at each client (Asm. 2)
β, ζ constants in Asm. 3a to bound heterogeneity everywhere
ζ∗ constants in Asm. 3b to bound heterogeneity at the optima

F/Fm global objective/local objective of client m
x(r) global model parameters in the r-th round
x
(r)
m,k local model parameters of the m-th client after k local steps in the r-th round

g
(r)
πm,k g

(r)
πm,k := ∇fπm

(x
(r)
m,k; ξ) denotes the stochastic gradients of Fπm

regarding x
(r)
m,k

ExDir(C,α) Extended Dirichlet strategy with parameters C and α (see Sec. G.1)

C.2 Basic identities and inequalities

These identities and inequalities are mostly from Zhou (2018); Khaled et al. (2020); Mishchenko
et al. (2020); Karimireddy et al. (2020); Garrigos and Gower (2023).

For any random variable x, letting the variance can be decomposed as

E
[
∥x− E [x]∥2

]
= E

[
∥x∥2

]
− ∥E [x]∥2 (12)

In particular, its version for vectors with finite number of values gives

1

n

n∑
i=1

∥xi − x̄∥2 =
1

n

n∑
i=1

∥xi∥2 −

∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

(13)

where vectors x1, . . . ,xn ∈ Rd are the values of x and their average is x̄ = 1
n

∑n
i=1 xi.

Jensen’s inequality. For any convex function h and any vectors x1, . . . ,xn we have

h

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

h(xi). (14)

As a special case with h(x) = ∥x∥2, we obtain∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥xi∥2 . (15)

19

Smoothness and general convexity, strong convexity. There are some useful inequalities with
respect to L-smoothness (Assumption 1), convexity and µ-strong convexity. Their proofs can be
found in Zhou (2018); Garrigos and Gower (2023).

Bregman Divergence associated with function h and arbitrary x, y is denoted as

Dh(x,y) := h(x)− h(y)− ⟨∇h(y),x− y⟩
When the function h is convex, the divergence is strictly non-negative. A more formal definition can
be found in Orabona (2019). One corollary (Chen and Teboulle, 1993) called three-point-identity is,

Dh(z,x) +Dh(x,y)−Dh(z,y) = ⟨∇h(y)−∇h(x), z − x⟩
where x,y, z is three points in the domain.

Let h be L-smooth. With the definition of Bregman divergence, a consequence of L-smoothness is

Dh(x,y) = h(x)− h(y)− ⟨∇h(y),x− y⟩ ≤ L

2
∥x− y∥2 (16)

Further, If h is L-smooth and lower bounded by h∗, then

∥∇h(x)∥2 ≤ 2L (h(x)− h∗) . (17)

If h is L-smooth and convex (The definition of convexity can be found in Boyd et al. (2004)), then

Dh(x,y) ≥
1

2L
∥∇h(x)−∇h(y)∥2 . (18)

The function h : Rd → R is µ-strongly convex if and only if there exists a convex function g :

Rd → R such that h(x) = g(x) + µ
2 ∥x∥

2.

If h is µ-strongly convex, it holds that
µ

2
∥x− y∥2 ≤ Dh(x,y) (19)

C.3 Technical lemmas

Lemma 1 (Karimireddy et al. (2020)). Let {ξi}ni=1 be a sequence of random variables. And the
random sequence {xi}ni=1 satisfy that xi ∈ Rd is a function of ξi, ξi−1, . . . , ξ1 for all i. Sup-
pose that the conditional expectation is Eξi [xi| ξi−1, . . . ξ1] = ei (i.e., the vectors {xi − ei}
form a martingale difference sequence with respect to {ξi}), and the variance is bounded by

Eξi

[
∥xi − ei∥2

∣∣∣ ξi−1, . . . ξ1

]
≤ σ2. Then it holds that

E

∥∥∥∥∥
n∑

i=1

(xi − ei)

∥∥∥∥∥
2
 =

n∑
i=1

E
[
∥xi − ei∥2

]
≤ nσ2 (20)

Proof. This conclusion has appeared in Stich and Karimireddy (2019)’s Lemma 15, Karimireddy
et al. (2020)’s Lemma 4 (separating mean and variance) and Wang et al. (2020)’s Lemma 2, which
is useful for bounding the stochasticity.

E

∥∥∥∥∥
n∑

i=1

(xi − ei)

∥∥∥∥∥
2
 =

n∑
i=1

E
[
∥xi − ei∥2

]
+

n∑
i=1

n∑
j ̸=i

E
[
(xi − ei)

⊤(xj − ej)
]

Without loss of generality, we can assume that i < j. Then the cross terms in the preceding equation
can be computed by the law of total expectation:

E
[
(xi − ei)

⊤(xj − ej)
]
= E

[
E
[
(xi − ei)

⊤(xj − ej)|ξi, . . . , ξ1
]]

= E
[
(xi − ei)

⊤ E[(xj − ej)|ξi, . . . , ξ1]︸ ︷︷ ︸
=0

]
= 0

20

Here E[(xj − ej)|ξi, . . . , ξ1] = 0 can be proved by mathematical induction and the law of total
expectation. Then,

E

∥∥∥∥∥
n∑

i=1

(xi − ei)

∥∥∥∥∥
2
 =

n∑
i=1

E
[
∥xi − ei∥2

]
=

n∑
i=1

E
[
E
[
∥xi − ei∥2

∣∣∣ ξi−1, . . . , ξ1

]]
≤ nσ2,

which is the claim of this lemma. Note that since Eξi [xi| ξi−1, . . . ξ1] = ei, the conditional expec-
tation ei is not deterministic but a function of ξi−1, . . . , ξ1.

Lemma 2 (Karimireddy et al. (2020)). The following holds for any L-smooth and µ-strongly convex
function h, and any x,y, z in the domain of h:

⟨∇h(x), z − y⟩ ≥ h(z)− h(y) +
µ

4
∥y − z∥2 − L ∥z − x∥2 . (21)

Proof. Using the three-point-identity, we get

⟨∇h(x), z − y⟩ = Dh(y,x)−Dh(z,x) + h(z)− h(y)

Then, we get the following two inequalities using smoothness and strong convexity of h:

⟨∇h(x), z − y⟩ ≥ µ

2
∥y − x∥2 − L

2
∥z − x∥2 + h(z)− h(y)

Further, using Jensen’s inequality (i.e., ∥y − z∥2 ≤ 2(∥x− z∥2 + ∥y − x∥2)), we have
µ

2
∥y − x∥2 ≥ µ

4
∥y − z∥2 − µ

2
∥x− z∥2 .

Combining all the inequalities together we have

⟨∇h(x), z − y⟩ ≥ h(z)− h(y) +
µ

4
∥y − z∥2 − L+ µ

2
∥z − x∥2

≥ h(z)− h(y) +
µ

4
∥y − z∥2 − L ∥z − x∥2 ▷ µ ≤ L

which is the claim of this lemma.

Lemma 3 (Simple Random Sampling). Let x1,x2, . . . ,xn be fixed units (e.g., vectors). The popu-
lation mean and population variance are give as

x := 1
n

∑n
i=1 xi ζ2 := 1

n

∑n
i=1 ∥xi − x∥2

Draw s ∈ [n] = {1, 2, . . . , n} random units xπ1
,xπ2

, . . .xπs
randomly from the population. There

are two possible ways of simple random sampling, well known as “sampling with replacement
(SWR)” and “sampling without replacement (SWOR)”. For these two ways, the expectation and
variance of the sample mean xπ := 1

s

∑s
p=1 xπp

satisfies

SWR : E[xπ] = x E
[
∥xπ − x∥2

]
=

ζ2

s
(22)

SWOR: E[xπ] = x E
[
∥xπ − x∥2

]
=

n− s

s(n− 1)
ζ2 (23)

Proof. The proof of this lemma is mainly based on Mishchenko et al. (2020)’s Lemma 1 (A lemma
for sampling without replacement) and Wang et al. (2020)’s Appendix G (Extension: Incorporating
Client Sampling). Since the probability of each unit being selected equals 1

n in each draw, we can
get the expectation and variance of any random unit xπp at the p-th draw:

E
[
xπp

]
=

n∑
i=1

xi · Pr(xπp
= xi) =

n∑
i=1

xi ·
1

n
= x,

Var(xπp
) = E

[∥∥xπp
− x

∥∥2] = n∑
i=1

∥xi − x∥2 · Pr(xπp
= xi) =

n∑
i=1

∥xi − x∥2 · 1
n
= ζ2,

21

where the preceding equations hold for both sampling ways. Thus, we can compute the expectations
of the sample mean for both sampling ways as

E [xπ] = E

[
1

s

s∑
p=1

xπp

]
=

1

s

s∑
p=1

E
[
xπp

]
= x,

which indicates that the sample means for both ways are unbiased estimators of the population mean.
The variance of the sample mean can be decomposed as

E ∥xπ − x∥2 = E

∥∥∥∥∥1s
s∑

p=1

(xπp
− x)

∥∥∥∥∥
2

=
1

s2

s∑
p=1

Var(xπp
) +

1

s2

s∑
p=1

s∑
q ̸=p

Cov(xπp
,xπq

)

Next, we deal with these two ways separately:

• SWR: It holds that Cov(xπp
,xπq

) = 0, ∀p ̸= q since xπp
, xπq

are independent for SWR. Thus,

we can get E ∥xπ − x∥2 = 1
s2

∑s
p=1 Var(xπp

) = ζ2

s .

• SWOR: For p ̸= q, we have

Cov(xπp
,xπq

) = E
[〈
xπp
− x,xπq

− x
〉]

=
n∑

i=1

n∑
j ̸=i

⟨xi − x,xj − x⟩ · Pr(xπp
= xi,xπq

= xj),

Since there are n(n− 1) possible combinations of (xπp ,xπq) and each has the same probability,
we get Pr(xπp

= xi,xπq
= xj) =

1
n(n−1) . As a consequence, we have

Cov(xπp
,xπq

) =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

[⟨xi − x,xj − x⟩]

=
1

n(n− 1)

∥∥∥∥∥
n∑

i=1

(xi − x)

∥∥∥∥∥
2

− 1

n(n− 1)

n∑
i=1

∥xi − x∥2

= − ζ2

n− 1
(24)

Thus we have E ∥xπ − x∥2 = ζ2

s −
s(s−1)

s2 · ζ2

n−1 = (n−s)
s(n−1)ζ

2.

When n is infinite (or large enough), we get (E∥xπ−x∥2)SWOR

(E∥xπ−x∥2)SWR
≈ 1− s

n . This constant has appeared in
Karimireddy et al. (2020)’s Lemma 7 (one round progress) and Woodworth et al. (2020b)’s Section
7 (Using a Subset of Machines in Each Round).

Lemma 4. Under the same conditions of Lemma 3, use the way “sampling without replacement”

and let bm,k(i) =

{
K − 1, i ≤ m− 1

k − 1, i = m
. Then for S ≤M (M ≥ 2), it holds that

S∑
m=1

K−1∑
k=0

E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(xπi − x)

∥∥∥∥∥∥
2
 ≤ 1

2
S2K3ζ2 (25)

Proof. Let us focus on the term in the following:

E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(xπi − x)

∥∥∥∥∥∥
2
 = E

∥∥∥∥∥K
m−1∑
i=1

(xπi − x) + k (xπm − x)

∥∥∥∥∥
2


= K2E

∥∥∥∥∥
m−1∑
i=1

(xπi
− x)

∥∥∥∥∥
2
+ k2E

[
∥xπm

− x∥2
]
+ 2KkE

[〈
m−1∑
i=1

(xπi
− x) , (xπm

− x)

〉]
(26)

22

For the first term on the right hand side in (26), using (23), we have

K2E

∥∥∥∥∥
m−1∑
i=1

(xπi − x)

∥∥∥∥∥
2
 (23)

=
(m− 1)(M − (m− 1))

M − 1
K2ζ2.

For the second term on the right hand side in (26), we have

k2E
[
∥xπm

− x∥2
]
= k2E

[
∥xπm

− x∥2
]
= k2ζ2.

For the third term on the right hand side in (26), we have

2KkE

[〈
m−1∑
i=1

(xπi − x) , (xπm − x)

〉]
= 2Kk

m−1∑
i=1

E [⟨xπi − x,xπm − x⟩] (24)
= −2(m− 1)

M − 1
Kkζ2,

where we use (24) in the last equality, since i ∈ {1, 2, . . . ,m− 1} ≠ m. With these three preceding
equations, we get

E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(xπi
− x)

∥∥∥∥∥∥
2
 =

(m− 1)(M − (m− 1))

M − 1
K2ζ2 + k2ζ2 − 2(m− 1)

M − 1
Kkζ2

Then summing the preceding terms over m and k, we can get

S∑
m=1

K−1∑
k=0

E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(xπi − x)

∥∥∥∥∥∥
2


=
MK3ζ2

M − 1

S∑
m=1

(m− 1)− K3ζ2

M − 1

S∑
m=1

(m− 1)2 + Sζ2
K−1∑
k=0

k2 − 2Kζ2

M − 1

S∑
m=1

(m− 1)

K−1∑
k=0

k

Then applying the fact that
∑K−1

k=1 k = (K−1)K
2 and

∑K−1
k=1 k2 = (K−1)K(2K−1)

6 , we can simplify
the preceding equation as

M∑
m=1

K−1∑
k=0

E

∥∥∥∥∥∥
m∑
i=1

bm,k(i)∑
j=0

(xπi
− x)

∥∥∥∥∥∥
2

=
1

2
SK2(SK − 1)− 1

6
SK(K2 − 1)− 1

M − 1
(S − 1)S

(
1

6
(2S − 1)K − 1

2

)
≤ 1

2
S2K3ζ2,

which is the claim of this lemma.

D Proofs of Theorem 1

In this section, we provide the proof of Theorem 1 for the strongly convex, general convex and
non-convex cases in D.1, D.2 and D.3, respectively.

In the following proof, we consider the partial client participation setting. So we assume that π =
{π1, π2, . . . , πM} is a permutation of {1, 2, . . . ,M} in a certain training round and only the first S
selected clients {π1, π2, . . . , πS}will participate in this round. Without otherwise stated, we use E[·]
to represent the expectation with respect to both types of randomness (i.e., sampling data samples ξ
and sampling clients π).

23

D.1 Strongly convex case

D.1.1 Finding the recursion

Lemma 5. Let Assumptions 1, 2, 3b hold and assume that all the local objectives are µ-strongly
convex. If the learning rate satisfies η ≤ 1

6LSK , then it holds that

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ (1− µSKη
2

)
E
[∥∥∥x(r) − x∗

∥∥∥2]+ 4SKη2σ2 + 4S2K2η2
M − S

S(M − 1)
ζ2∗

− 2

3
SKηE

[
DF (x

(r),x∗)
]
+

8

3
Lη

S∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

m,k − x(r)
∥∥∥2] (27)

Proof. According to Algorithm 1, the overall model updates of SFL after one complete training
round (with S clients selected for training) is

∆x = x(r+1) − x(r) = −η
S∑

m=1

K−1∑
k=0

g
(r)
πm,k ,

where g
(r)
πm,k = ∇fπm(x

(r)
m,k; ξ) is the stochastic gradient of Fπm regarding the vector x(r)

m,k. Thus,

E [∆x] = −η
S∑

m=1

K−1∑
k=0

E [∇Fπm
(xm,k)]

In the following, we focus on a single training round, and hence we drop the superscripts r for a
while, e.g., writing xm,k to replace x(r)

m,k. Specially, we would like to use x to replace x(r)
1,0. Without

otherwise stated, the expectation is conditioned on x(r).

We start by substituting the overall updates:

E
[
∥x+∆x− x∗∥2

]
= ∥x− x∗∥2 + 2E [⟨x− x∗,∆x⟩] + E

[
∥∆x∥2

]
= ∥x− x∗∥2 − 2η

S∑
m=1

K−1∑
k=0

E [⟨∇Fπm(xm,k),x− x∗⟩] + η2E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2
 (28)

We can apply Lemma 2 with x = xm,k, y = x∗, z = x and h = Fπm for the second term on the
right hand side in (28):

− 2η

S∑
m=1

K−1∑
k=0

E [⟨∇Fπm
(xm,k),x− x∗⟩]

≤ −2η
S∑

m=1

K−1∑
k=0

E
[
Fπm(x)− Fπm(x∗) +

µ

4
∥x− x∗∥2 − L ∥xm,k − x∥2

]
≤ −2SKηDF (x,x

∗)− 1

2
µSKη ∥x− x∗∥2 + 2Lη

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
(29)

24

For the third term on the right hand side in (28), using Jensen’s inequality, we have

E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2


≤ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(gπm,k −∇Fπm
(xm,k))

∥∥∥∥∥
2
+ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm
(xm,k)−∇Fπm

(x))

∥∥∥∥∥
2


+ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm
(x)−∇Fπm

(x∗))

∥∥∥∥∥
2
+ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

∇Fπm
(x∗)

∥∥∥∥∥
2
 (30)

Seeing the data sample ξm,k, the stochastic gradient gπm,k, the gradient ∇Fπm
(ξm,k) as ξi, xi, ei

in Lemma 1 respectively and applying the result of Lemma 1, the first term on the right hand side in
(30) can be bounded by 4SKσ2. For the second term on the right hand side in (30), we have

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm
(xm,k)−∇Fπm

(x))

∥∥∥∥∥
2
 (15)
≤ 4SK

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm

(xm,k)−∇Fπm
(x)∥2

]
Asm. 1
≤ 4L2SK

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
For the third term on the right hand side in (30), we have

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm(x)−∇Fπm(x∗))

∥∥∥∥∥
2
 (15)
≤ 4SK

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm(x)−∇Fπm(x∗)∥2

]
(18)
≤ 8LSK

S∑
m=1

K−1∑
k=0

E
[
DFπm

(x,x∗)
]

= 8LS2K2DF (x,x
∗), (31)

where the last inequality is because E
[
DFπm

(x,x∗)
]
= DF (x,x

∗). The forth term on the right
hand side in (30) can be bounded by Lemma 3 as follows:

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

∇Fπm(x∗)

∥∥∥∥∥
2
 (23)
≤ 4S2K2 M − S

S(M − 1)
ζ2∗ .

With the preceding four inequalities, we can bound the third term on the right hand side in (28):

E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2


≤ 4SKσ2 + 4L2SK

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
+ 8LS2K2DF (x,x

∗) + 4S2K2 M − S

S(M − 1)
ζ2∗

(32)

Then substituting (29) and (32) into (28), we have

E
[
∥x+∆x− x∗∥2

]
≤
(
1− µSKη

2

)
∥x− x∗∥2 + 4SKη2σ2 + 4S2K2η2

M − S

S(M − 1)
ζ2∗

− 2SKη(1− 4LSKη)DF (x,x
∗) + 2Lη(1 + 2LSKη)

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
≤
(
1− µSKη

2

)
∥x− x∗∥2 + 4SKη2σ2 + 4S2K2η2

M − S

S(M − 1)
ζ2∗

− 2

3
SKηDF (x,x

∗) +
8

3
Lη

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
,

25

where we use the condition that η ≤ 1
6LSK in the last inequality. The claim of this lemma follows

after recovering the superscripts and taking unconditional expectation.

D.1.2 Bounding the client drift with Assumption 3b

Similar to the “client drift” in PFL (Karimireddy et al., 2020), we define the client drift in SFL:

Er :=

S∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

m,k − x(r)
∥∥∥2] (33)

Lemma 6. Let Assumptions 1, 2, 3b hold and assume that all the local objectives are µ-strongly
convex. If the learning rate satisfies η ≤ 1

6LSK , then the client drift is bounded:

Er ≤
9

4
S2K2η2σ2 +

9

4
S2K3η2ζ2∗ + 3LS3K3η2E

[
DF (x

(r),x∗)
]

(34)

Proof. According to Algorithm 1, the model updates of SFL from x(r) to x
(r)
m,k is

x
(r)
m,k − x(r) = −η

m∑
i=1

bm,k(i)∑
j=0

g
(r)
πi,j

with bm,k(i) :=

{
K − 1, i ≤ m− 1

k − 1, i = m
. In the following, we focus on a single training round, and

hence we drop the superscripts r for a while, e.g., writing xm,k to replace x(r)
m,k. Specially, we would

like to use x to replace x
(r)
1,0. Without otherwise stated, the expectation is conditioned on x(r).

We use Jensen’s inequality to bound the term E
[
∥xm,k − x∥2

]
= η2E

[∥∥∥∑m
i=1

∑bm,k(i)
j=0 gπi,j

∥∥∥2]:

E
[
∥xm,k − x∥2

]
≤ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(gπi,j −∇Fπi
(xi,j))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(∇Fπi
(xi,j)−∇Fπi

(x))

∥∥∥∥∥∥
2


+ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(∇Fπi
(x)−∇Fπi

(x∗))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

∇Fπi
(x∗)

∥∥∥∥∥∥
2


Applying Lemma 1 to the first term and Jensen’s inequality to the second, third terms on the right
hand side in the preceding inequality respectively, we can get

E
[
∥xm,k − x∥2

]
≤ 4η2

m∑
i=1

bm,k(i)∑
j=0

E
[
∥gπi,j −∇Fπi

(xi,j)∥2
]
+ 4η2Bm,k

m∑
i=1

bm,k(i)∑
j=0

E
[
∥∇Fπi

(xi,j)−∇Fπi
(x)∥2

]

+ 4η2Bm,k

m∑
i=1

bm,k(i)∑
j=0

E
[
∥∇Fπi(x)−∇Fπi(x

∗)∥2
]
+ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

∇Fπi(x
∗)

∥∥∥∥∥∥
2
 (35)

where Bm,k :=
∑m

i=1

∑bm,k(i)
j=0 1 = (m− 1)K + k. The first term on the right hand side in (35) is

bounded by 4Bm,kη
2σ2. For the second term on the right hand side in (35), we have

E
[
∥∇Fπi

(xi,j)−∇Fπi
(x)∥2

] Asm. 1
≤ L2E

[
∥xi,j − x∥2

]

26

For the third term on the right hand side in (35), we have

E
[
∥∇Fπi(x)−∇Fπi(x

∗)∥2
] (18)
≤ 2LE

[
DFπi

(x,x∗)
]
= 2LDF (x,x

∗) (36)

As a result, we can get

E
[
∥xm,k − x∥2

]
≤ 4Bm,kη

2σ2 + 4L2η2Bm,k

m∑
i=1

b(i)∑
j=0

E
[
∥xi,j − x∥2

]
+ 8Lη2B2m,kDF (x,x

∗)

+ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

∇Fπi(x
∗)

∥∥∥∥∥∥
2


Then, returning to Er :=
∑S

m=1

∑K−1
k=0 E

[
∥xm,k − x∥2

]
, we have

Er ≤ 4η2σ2
S∑

m=1

K−1∑
k=0

Bm,k + 4L2η2
S∑

m=1

K−1∑
k=0

Bm,k

m∑
i=1

bm,k(i)∑
j=0

E
[
∥xi,j − x∥2

]

+ 8Lη2
S∑

m=1

K−1∑
k=0

B2m,kDF (x,x
∗) + 4η2

S∑
m=1

K−1∑
k=0

E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

∇Fπi
(x∗)

∥∥∥∥∥∥
2


Applying Lemma 4 with xπi = ∇Fπi(x
∗) and x = ∇F (x∗) = 0 and the fact that

S∑
m=1

K−1∑
k=0

Bm,k =
1

2
SK(SK − 1) ≤ 1

2
S2K2,

S∑
m=1

K−1∑
k=0

B2m,k =
1

3
(SK − 1)SK(SK − 1

2) ≤
1

3
S3K3,

we can simplify the preceding inequality:

Er ≤ 2S2K2η2σ2 + 2L2S2K2η2Er +
8

3
LS3K3η2DF (x,x

∗) + 2S2K3η2ζ2∗

After rearranging the preceding inequality, we get

(1− 2L2S2K2η2)Er ≤ 2S2K2η2σ2 + 2S2K3η2ζ2∗ +
8

3
LS3K3η2DF (x,x

∗)

Finally, using the condition that η ≤ 1
6LSK , which implies 1− 2L2S2K2η2 ≥ 8

9 , we have

Er ≤
9

4
S2K2η2σ2 +

9

4
S2K3η2ζ2∗ + 3LS3K3η2DF (x,x

∗).

The claim follows after recovering the superscripts and taking unconditional expectations.

D.1.3 Tuning the learning rate

Here we make a clear version of Karimireddy et al. (2020)’s Lemma 1 (linear convergence rate)
based on Stich (2019b); Stich and Karimireddy (2019)’s works.

Lemma 7 (Karimireddy et al. (2020)). Two non-negative sequences {rt}t≥0, {st}t≥0, which satis-
fies the relation

rt+1 ≤ (1− aγt)rt − bγtst + cγ2
t , (37)

for all t ≥ 0 and for parameters b > 0, a, c ≥ 0 and non-negative learning rates {γt}t≥0 with
γt ≤ 1

d , ∀t ≥ 0, for a parameter d ≥ a, d > 0.

27

Selection of weights for average. Then there exists a constant learning rate γt = γ ≤ 1
d and the

weights wt := (1− aγ)−(t+1) and WT :=
∑T

t=0 wt, making it hold that:

ΨT =
b

WT

T∑
t=0

stwt ≤ 3ar0(1− aγ)(T+1) + cγ ≤ 3ar0 exp [−aγ(T + 1)] + cγ. (38)

Tuning the learning rate carefully. By tuning the learning rate in (38), for (T +1) ≥ 1
2aγ , we have

ΨT = Õ
(
ar0 exp

(
−aT

d

)
+

c

aT

)
. (39)

Proof. We start by rearranging (37) and multiplying both sides with wt:

bstwt ≤
wt(1− aγ)rt

γ
− wtrt+1

γ
+ cγwt =

wt−1rt
γ

− wtrt+1

γ
+ cγwt .

By summing from t = 0 to t = T , we obtain a telescoping sum:

b

WT

T∑
t=0

stwt ≤
1

γWT
(w0(1− aγ)r0 − wT rT+1) + cγ ,

and hence

ΨT =
b

WT

T∑
t=0

stwt ≤
b

WT

T∑
t=0

stwt +
wT rT+1

γWT
≤ r0

γWT
+ cγ (40)

Note that the proof of Stich (2019b)’s Lemma 2 used WT ≥ wT = (1−aγ)−(T+1) to estimate WT .
It is reasonable given that wT is extremely larger than all the terms wt (t < T) when T is large. Yet
Karimireddy et al. (2020) goes further, showing that WT can be estimated more precisely:

WT =

T∑
0

wt = (1− aγ)−(T+1)
T∑

t=0

(1− aγ)t = (1− aγ)−(T+1)

(
1− (1− aγ)T+1

aγ

)
When (T + 1) ≥ 1

2aγ , (1− aγ)T+1 ≤ exp(−aγ(T + 1)) ≤ e−
1
2 ≤ 2

3 , so it follows that

WT = (1− aγ)−(T+1)

(
1− (1− aγ)T+1

aγ

)
≥ (1− aγ)−(T+1)

3aγ

With the estimates

• WT = (1− aγ)−(T+1)
∑T

t=0(1− aγ)t ≤ wT

aγ (here we leverage aγ ≤ a
d ≤ 1),

• and WT ≥ (1−aγ)−(T+1)

3aγ ,

we can further simplify (40):

ΨT ≤ 3ar0(1− aγ)(T+1) + cγ ≤ 3ar0 exp [−aγ(T + 1)] + cγ

which is the first result of this lemma.

Now the lemma follows by carefully tuning γ in (38). Consider the two cases:

• If 1
d > ln(max{2,a2r0T/c})

aT then we choose γ = ln(max{2,a2r0T/c})
aT and get that

Õ
(
3ar0 exp[− ln(max{2, a2r0T/c})]

)
+ Õ

(c

aT

)
= Õ

(c

aT

)
,

as in case 2 ≥ a2r0T/c it holds ar0 ≤ 2c
aT .

28

• If otherwise 1
2a(T+1) ≤

1
d ≤

ln(max{2,a2r0T/c})
aT (Note 1

2a(T+1) ≤
ln(2)
aT ≤ ln(max{2,a2r0T/c})

aT)
then we pick γ = 1

d and get that

3ar0 exp

(
−aT

d

)
+

c

d
≤ 3ar0 exp

(
−aT

d

)
+

c ln(max{2, a2r0T/c})
aT

= Õ
(
ar0 exp

(
−aT

d

)
+

c

aT

)
Combining these two cases, we get

ΨT = Õ
(
ar0 exp

(
−aT

d

)
+

c

aT

)

Note that this lemma holds when (T +1) ≥ 1
2aγ , so it restricts the value of T , while there is no such

restriction in Stich (2019b)’s Lemma 2.

D.1.4 Proof of strongly convex case of Theorem 1 and Corollary 1

Proof of the strongly convex case of Theorem 1. Substituting (34) into (27) and using η ≤ 1
6LSK ,

we can simplify the recursion as,

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ (1− µSKη
2

)
E
[∥∥∥x(r) − x∗

∥∥∥2]− 1

3
SKηE

[
DF (x

(r),x∗)
]

+ 4SKη2σ2 + 4S2K2η2
M − S

S(M − 1)
ζ2∗ + 6LS2K2η3σ2 + 6LS2K3η3ζ2∗

Let η̃ = MKη, we have

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ (1− µη̃

2

)
E
[∥∥∥x(r) − x∗

∥∥∥2]− η̃

3
E
[
DF (x

(r),x∗)
]

+
4η̃2σ2

SK
+

4η̃2(M − S)ζ2∗
S(M − 1)

+
6Lη̃3σ2

SK
+

6Lη̃3ζ2∗
S

(41)

Applying Lemma 7 with t = r (T = R), γ = η̃, rt = E
[∥∥x(r) − x∗

∥∥2], a = µ
2 , b = 1

3 ,

st = E
[
DF (x

(r),x∗)
]
, wt = (1 − µη̃

2)−(r+1), c1 = 4σ2

SK +
4(M−S)ζ2

∗
S(M−1) , c2 = 6Lσ2

SK +
6Lζ2

∗
S and

1
d = 1

6L (η̃ = MKη ≤ 1
6L), it follows that

E
[
F (x̄(R))− F (x∗)

]
≤ 1

WR

R∑
r=0

wrE
[
F (x(r))− F (x∗)

]
≤ 9

2
µ
∥∥∥x(0) − x∗

∥∥∥2 exp (− 1
2µη̃R

)
+

12η̃σ2

SK
+

12η̃(M − S)ζ2∗
S(M − 1)

+
18Lη̃2σ2

SK
+

18Lη̃2ζ2∗
S

(42)

where x̄(R) = 1
WR

∑R
r=0 wrx

(r) and we use Jensen’s inequality (F is convex) in the first inequality.
Note that there are no terms containing γ3 in Lemma 7. As the terms containing γ3 is not the
determinant factor for the convergence rate, Lemma 7 can also be applied to this case (Karimireddy
et al., 2020; Koloskova et al., 2020). Thus, by tuning the learning rate carefully, we get

E
[
F (x̄(R))− F (x∗)

]
= Õ

(
µD2 exp

(
− µR

12L

)
+

σ2

µSKR
+

(M − S)ζ2∗
µSR(M − 1)

+
Lσ2

µ2SKR2
+

Lζ2∗
µ2SR2

)
(43)

where D :=
∥∥x(0) − x∗

∥∥. Eq. (42) and Eq. (43) are the upper bounds with partial client participa-
tion. In particular, when S = M , we can get the claim of the strongly convex case of Theorem 1
and Corollary 1.

29

D.2 General convex case

D.2.1 Tuning the learning rate

Lemma 8 (Koloskova et al. (2020)). Two non-negative sequences {rt}t≥0, {st}t≥0, which satisfies
the relation

rt+1 ≤ rt − bγtst + c1γ
2
t + c2γ

3
t

for all t ≥ 0 and for parameters b > 0, c1, c2 ≥ 0 and non-negative learning rates {γt}t≥0 with
γt ≤ 1

d , ∀t ≥ 0, for a parameter d > 0.

Selection of weights for average. Then there exists a constant learning rate γ = γt ≤ 1
d and the

weights wt = 1 and WT =
∑T

t=0 wt, making it hod that:

ΨT :=
b

T + 1

T∑
t=0

st ≤
r0

γ(T + 1)
+ c1γ + c2γ

2 (44)

Tuning the learning rate carefully. By tuning the learning rate carefully in (44), we have

ΨT ≤ 2c
1
2
1

(
r0

T + 1

) 1
2

+ 2c
1
3
2

(
r0

T + 1

) 2
3

+
dr0

T + 1
. (45)

Proof. For constant learning rates γt = γ we can derive the estimate

ΨT =
1

γ(T + 1)

T∑
t=0

(rt − rt+1) + c1γ + c2γ
2 ≤ r0

γ(T + 1)
+ c1γ + c2γ

2,

which is the first result (44) of this lemma. Let r0
γ(T+1) = c1γ and r0

γ(T+1) = c2γ
2, yield-

ing two choices of γ, γ =
(

r0
c1(T+1)

) 1
2

and γ =
(

r0
c2(T+1)

) 1
3

. Then choosing γ =

min

{(
r0

c1(T+1)

) 1
2

,
(

r0
c2(T+1)

) 1
3

, 1
d

}
≤ 1

d , there are three cases:

• If γ = 1
d , which implies that γ = 1

d ≤
(

r0
c1(T+1)

) 1
2

and γ = 1
d ≤

(
r0

c2(T+1)

) 1
3

, then

ΨT ≤
dr0

T + 1
+

c1
d

+
c2
d2
≤ dr0

T + 1
+ c

1
2
1

(
r0

T + 1

) 1
2

+ c
1
3
2

(
r0

T + 1

) 2
3

• If γ =
(

r0
c1(T+1)

) 1
2

, which implies that γ =
(

r0
c1(T+1)

) 1
2 ≤

(
r0

c2(T+1)

) 1
3

, then

ΨT ≤ 2c1

(
r0

c1(T + 1)

) 1
2

+ c2

(
r0

c1(T + 1)

)
≤ 2c

1
2
1

(
r0

T + 1

) 1
2

+ c
1
3
2

(
r0

T + 1

) 2
3

• If γ =
(

r0
c2(T+1)

) 1
3

, which implies that γ =
(

r0
c2(T+1)

) 1
3 ≤

(
r0

c1(T+1)

) 1
2

, then

ΨT ≤ c1

(
r0

c2(T + 1)

) 1
3

+ 2c
1
3
2

(
r0

T + 1

) 2
3

≤ c
1
2
1

(
r0

T + 1

) 1
2

+ 2c
1
3
2

(
r0

T + 1

) 2
3

Combining these three cases, we get the second result of this lemma.

30

D.2.2 Proof of general convex case of Theorem 1 and Corollary 1

Proof of the general convex case of Theorem 1. Letting µ = 0 in (41), we get the recursion of the
general convex case,

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ E
[∥∥∥x(r) − x∗

∥∥∥2]− η̃

3
E
[
DF (x

(r),x∗)
]

+
4η̃2σ2

SK
+

4η̃2(M − S)ζ2∗
S(M − 1)

+
6Lη̃3σ2

SK
+

6Lη̃3ζ2∗
S

Applying Lemma 8 with t = r (T = R), γ = η̃, rt = E
[∥∥x(r) − x∗

∥∥2], b = 1
3 ,

st = E
[
DF (x

(r),x∗)
]
, wt = 1, c1 = 4σ2

SK +
4(M−S)ζ2

∗
S(M−1) , c2 = 6Lσ2

SK +
6Lζ2

∗
S and 1

d = 1
6L

(η̃ = MKη ≤ 1
6L), it follows that

E
[
F (x̄(R))− F (x∗)

]
≤ 1

WR

R∑
r=0

wr

(
F (x(r))− F (x∗)

)
≤

3
∥∥x(0) − x∗

∥∥2
η̃R

+
12η̃σ2

SK
+

12η̃(M − S)ζ2∗
S(M − 1)

+
18Lη̃2σ2

SK
+

18Lη̃2ζ2∗
S

(46)

where x̄(R) = 1
WR

∑R
r=0 wrx

(r) and we use Jensen’s inequality (F is convex) in the first inequality.
By tuning the learning rate carefully, we get

F (x̄(R))− F (x∗) = O

(
σD√
SKR

+

√
1− S

M
· ζ∗D√

SR
+

(
Lσ2D4

)1/3
(SK)1/3R2/3

+

(
Lζ2∗D

4
)1/3

S1/3R2/3
+

LD2

R

)
(47)

where D :=
∥∥x(0) − x∗

∥∥. Eq. (46) and Eq. (47) are the upper bounds with partial client participa-
tion. In particular, when S = M , we can get the claim of the strongly convex case of Theorem 1
and Corollary 1.

D.3 Non-convex case

Lemma 9. Let Assumptions 1, 2, 3b hold. If the learning rate satisfies η ≤ 1
6LSK , then it holds that

E
[
F (x(r+1))− F (x(r))

]
≤ −SKη

2
E
[∥∥∥∇F (x(r))

∥∥∥2]+ LSKη2σ2

+
L2η

2

S∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

m,k − x(r)
∥∥∥2] (48)

Proof. According to Algorithm 1, the overall model updates of SFL after one complete training
round (with S clients selected for training) is

∆x = x(r+1) − x(r) = −η
S∑

m=1

K−1∑
k=0

g
(r)
πm,k ,

where g
(r)
πm,k = ∇fπm(x

(r)
m,k; ξ) is the stochastic gradient of Fπm regarding the vector x(r)

m,k. Thus,

E [∆x] = −η
S∑

m=1

K−1∑
k=0

E [∇Fπm
(xm,k)]

In the following, we focus on a single training round, and hence we drop the superscripts r for a
while, e.g., writing xm,k to replace x(r)

m,k. Specially, we would like to use x to replace x(r)
1,0. Without

otherwise stated, the expectation is conditioned on x(r).

31

Starting from the smoothness of F (applying Eq. (16), DF (x,y) ≤ L
2 ∥x− y∥2 with x = x+∆x,

y = x), and substituting the overall updates, we have

E [F (x+∆x)− F (x)]

≤ E [⟨∇F (x),∆x⟩] + L

2
E
[
∥∆x∥2

]
≤ −η

S∑
m=1

K−1∑
k=0

E [⟨∇F (x),∇Fπm
(xm,k)⟩] +

Lη2

2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2
 (49)

For the first term on the right hand side in (49), using the fact that 2 ⟨a, b⟩ = ∥a∥2+∥b∥2−∥a− b∥2
with a = ∇F (x) and b = ∇Fπm(xm,k), we have

− η

S∑
m=1

K−1∑
k=0

E [⟨∇F (x),∇Fπm(xm,k)⟩]

= −η

2

S∑
m=1

K−1∑
k=0

E
[
∥∇F (x)∥2 + ∥∇Fπm

(xm,k)∥2 − ∥∇Fπm
(xm,k)−∇F (x)∥2

]
Asm. 1
≤ −SKη

2
∥∇F (x)∥2 − η

2

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm

(xm,k)∥2
]
+

L2η

2

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
(50)

For the third term on the right hand side in (49), using Jensen’s inequality, we have

Lη2

2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2


≤ Lη2E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k −
S∑

m=1

K−1∑
k=0

∇Fπm
(xm,k)

∥∥∥∥∥
2
+ Lη2E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

∇Fπm
(xm,k)

∥∥∥∥∥
2


≤ LSKη2σ2 + LSKη2
S∑

m=1

K−1∑
k=0

E
[
∥∇Fπm

(xm,k)∥2
]
, (51)

where we apply Lemma 1 by seeing the data sample ξm,k, the stochastic gradient gπm,k, the gradient
∇Fπm(ξm,k) as ξi, xi, ei respectively in Lemma 1 for the first term and Jensen’s inequality for the
second term in the preceding inequality.

Substituting (50) and (51) into (49), we have

E [F (x+∆x)− F (x)] ≤ −SKη

2
∥∇F (x)∥2 + LSKη2σ2 +

L2η

2

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
− η

2
(1− 2LSKη)

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm

(xm,k)∥2
]

Since η ≤ 1
6LSK , the last term on the right hand side in the preceding inequality is negative. Then

E [F (x+∆x)− F (x)] ≤ −SKη

2
∥∇F (x)∥2 + LSKη2σ2 +

L2η

2

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
The claim follows after recovering the superscripts and taking unconditional expectation.

D.3.1 Bounding the client drift with Assumption 3a

Since Eq. (18), which holds only for convex functions, is used in the proof of Lemma 6 (i.e.,
Eq. (36)), we cannot use the result of Lemma 6. Next, we use Assumption 3a to bound the client
drift (defined in (33)).

32

Lemma 10. Let Assumptions 1, 2, 3a hold. If the learning rate satisfies η ≤ 1
6LSK , then the client

drift is bounded:

Er ≤
9

4
S2K2η2σ2 +

9

4
S2K3η2ζ2 +

(
9

4
β2S2K3η2 +

3

2
S3K3η2

)
E
[∥∥∥∇F (x(r))

∥∥∥2] (52)

Proof. According to Algorithm 1, the model updates of SFL from x(r) to x
(r)
m,k is

x
(r)
m,k − x(r) = −η

m∑
i=1

bm,k(i)∑
j=0

g
(r)
πi,j

with bm,k(i) :=

{
K − 1, i ≤ m− 1

k − 1, i = m
. In the following, we focus on a single training round, and

hence we drop the superscripts r for a while, e.g., writing xm,k to replace x(r)
m,k. Specially, we would

like to use x to replace x
(r)
1,0. Without otherwise stated, the expectation is conditioned on x(r).

We use Jensen’s inequality to bound the term E
[
∥xm,k − x∥2

]
= η2E

[∥∥∥∑m
i=1

∑bm,k(i)
j=0 gπi,j

∥∥∥2]:

E
[
∥xm,k − x∥2

]
≤ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(gπi,j −∇Fπi
(xi,j))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(∇Fπi
(xi,j)−∇Fπi

(x))

∥∥∥∥∥∥
2


+ 4η2 E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(∇Fπi
(x)−∇F (x))

∥∥∥∥∥∥
2


︸ ︷︷ ︸
T1

+4η2E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

∇F (x)

∥∥∥∥∥∥
2


Applying Lemma 1, Jensen’s inequality and Jensen’s inequality to the first, third and forth terms on
the right hand side in the preceding inequality respectively, we can get

E
[
∥xm,k − x∥2

]
≤ 4η2

m∑
i=1

bm,k(i)∑
j=0

E
[
∥gπi,j −∇Fπi

(xi,j)∥2
]
+ 4η2Bm,k

m∑
i=1

bm,k(i)∑
j=0

E
[
∥∇Fπi

(xi,j)−∇Fπi
(x)∥2

]
+ 4η2T1 + 4B2m,kη

2 ∥∇F (x)∥2 (53)

where Bm,k :=
∑m

i=1

∑bm,k(i)
j=0 1 = (m− 1)K + k. The first term on the right hand side in (53) is

bounded by 4Bm,kη
2σ2 with Assumption 2. The second term on the right hand side in (53) can be

bounded by 4L2η2Bm,k

∑m
i=1

∑bm,k(i)
j=0 E

[
∥xi,j − x∥2

]
with Assumption 1. Then, we have

E
[
∥xm,k − x∥2

]
≤ 4Bm,kη

2σ2 + 4L2η2Bm,k

m∑
i=1

bm,k(i)∑
j=0

E
[
∥xi,j − x∥2

]
+ 4η2T1 + 4B2m,kη

2 ∥∇F (x)∥2

Then, returning to Er :=
∑S

m=1

∑K−1
k=0 E

[
∥xm,k − x∥2

]
, we have

Er ≤ 4η2σ2
S∑

m=1

K−1∑
k=0

Bm,k + 4L2η2
S∑

m=1

K−1∑
k=0

Bm,k

m∑
i=1

bm,k(i)∑
j=0

E
[
∥xi,j − x∥2

]

+ 4η2
S∑

m=1

K−1∑
k=0

E


∥∥∥∥∥∥

m∑
i=1

bm,k(i)∑
j=0

(∇Fπi
(x)−∇F (x))

∥∥∥∥∥∥
2
+ 4η2

S∑
m=1

K−1∑
k=0

B2m,k ∥∇F (x)∥2

33

Applying Lemma 4 with xπi = ∇Fπi(x) and x = ∇F (x) to the third term and∑S
m=1

∑K−1
k=0 Bm,k ≤ 1

2S
2K2 and

∑S
m=1

∑K−1
k=0 B2m,k ≤ 1

3S
3K3 to the other terms on the right

hand side in the preceding inequality, we can simplify it:

Er ≤ 2S2K2η2σ2 + 2L2S2K2η2Er + 2S2K3η2

(
1

M

M∑
i=1

∥∇Fi(x)−∇F (x)∥2
)

+
4

3
S3K3η2 ∥∇F (x)∥2

Asm. 3a
≤ 2S2K2η2σ2 + 2L2S2K2η2Er + 2S2K3η2ζ2 + 2β2S2K3η2 ∥∇F (x)∥2 + 4

3
S3K3η2 ∥∇F (x)∥2

After rearranging the preceding inequality, we get

(1− 2L2S2K2η2)Er ≤ 2S2K2η2σ2 + 2S2K3η2ζ2 + 2β2S2K3η2 ∥∇F (x)∥2 + 4

3
S3K3η2 ∥∇F (x)∥2

Finally, using the condition that η ≤ 1
6LSK , which implies 1− 2L2S2K2η2 ≥ 8

9 , we have

Er ≤
9

4
S2K2η2σ2 +

9

4
S2K3η2ζ2 +

9

4
β2S2K3η2 ∥∇F (x)∥2 + 3

2
S3K3η2 ∥∇F (x)∥2 .

The claim follows after recovering the superscripts and taking unconditional expectations.

D.3.2 Proof of non-convex case of Theorem 1 and Corollary 1

Proof of non-convex case of Theorem 1. Substituting (52) into (48) and using η ≤
1

6LSK min
{
1,

√
S
β

}
, we can simplify the recursion as follows:

E
[
F (x(r+1))− F (x(r))

]
≤ −1

3
SKηE

[∥∥∥∇F (x(r))
∥∥∥2]+ LSKη2σ2 +

9

8
L2S2K2η3σ2 +

9

8
L2S2K3η3ζ2

Letting η̃ := SKη, subtracting F ∗ from both sides and then rearranging the terms, we have

E
[
F (x(r+1))− F ∗

]
≤ E

[
F (x(r))− F ∗

]
− η̃

3
E
[∥∥∥∇F (x(r))

∥∥∥2]+ Lη̃2σ2

SK
+

9L2η̃3σ2

8SK
+

9L2η̃3ζ2

8S

Then applying Lemma 8 with t = r (T = R), γ = η̃, rt = E
[
F (x(r))− F ∗], b = 1

3 , st =

E
[∥∥∇F (x(r))

∥∥2], wt = 1, c1 = Lσ2

SK , c2 = 9L2σ2

8SK + 9L2ζ2

8S and 1
d = 1

6L min
{
1,

√
S
β

}
(η̃ =

SKη ≤ 1
6L min

{
1,

√
S
β

}
), we have

min
0≤r≤R

E
[∥∥∥∇F (x(r))

∥∥∥2] ≤ 3
(
F (x0)− F ∗)

η̃R
+

3Lη̃σ2

SK
+

27L2η̃2σ2

8SK
+

27L2η̃2ζ2

8S
(54)

where we use min0≤r≤R E
[∥∥∇F (x(r))

∥∥2] ≤ 1
R+1

∑R
r=0 E

[∥∥∇F (x(r))
∥∥2]. Then, using η̃ ≤

1
6L(β+1) ≤ min

{
1,

√
S
β

}
and tuning the learning rate carefully, we get

min
0≤r≤R

E
[∥∥∥∇F (x(r))

∥∥∥2] = O((Lσ2A
)1/2

√
SKR

+

(
L2σ2A2

)1/3
(SK)1/3R2/3

+

(
L2ζ2A2

)1/3
S1/3R2/3

+
LβA

R

)
(55)

where A := F (x0)−F ∗. Eq. (54) and Eq. (55) are the upper bounds with partial client participation.
In particular, when S = M , we get the claim of the non-convex case of Theorem 1 and Corollary 1.

34

E Proofs of Theorem 2

Here we slightly improve the convergence guarantee for the strongly convex case by combining the
works of Karimireddy et al. (2020); Koloskova et al. (2020). Moreover, we reproduce the guarantees
for the general convex and non-convex cases based on Karimireddy et al. (2020) for completeness.
The results are given in Theorem 2. We provide the proof of Theorem 2 for the strongly convex,
general convex and non-convex cases in Sections E.1, E.2 and E.3, respectively.

In the following proof, we consider the partial client participation setting, specifically, selecting
partial clients without replacement. So we assume that π = {π1, π2, . . . , πM} is a permutation of
{1, 2, . . . ,M} in a certain training round and only the first S selected clients {π1, π2, . . . , πS} will
participate in this round. Without otherwise stated, we use E[·] to represent the expectation with
respect to both types of randomness (i.e., sampling data samples ξ and sampling clients π).
Theorem 2. For PFL (Algorithm 2), there exist a constant effective learning rate η̃ := Kη and
weights wr, such that the weighted average of the global parameters x̄(R) := 1

WR

∑R
r=0 wrx

(r)

(WR =
∑R

r=0 wr) satisfies the following upper bounds:

Strongly convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate 1
µR ≤

η̃ ≤ 1
6L and weights wr = (1− µη̃

2)−(r+1), such that it holds that

E
[
F (x̄(R))− F (x∗)

]
≤ 9

2
µD2 exp

(
−µη̃R

2

)
+

12η̃σ2

MK
+

18Lη̃2σ2

K
+ 12Lη̃2ζ2∗ (56)

General convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate η̃ ≤ 1
6L

and weights wr = 1, such that it holds that

E
[
F (x̄(R))− F (x∗)

]
≤ 3D2

η̃R
+

12η̃σ2

MK
+

18Lη̃2σ2

K
+ 12Lη̃2ζ2∗ (57)

Non-convex: Under Assumptions 1, 2, 3a, there exist a constant effective learning rate η̃ ≤ 1
6L(β+1)

and weights wr = 1, such that it holds that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 3A

η̃R
+

3Lη̃σ2

SK
+

27L2η̃2σ2

8K
+

9

4
L2η̃2ζ2 (58)

where D :=
∥∥x(0) − x∗

∥∥ for the convex cases and A := F (x(0))− F ∗ for the non-convex case.
Corollary 2. Applying the results of Theorem 2. By choosing a appropriate learning rate (see the
proof of Theorem 2 in Appendix E), we can obtain the convergence rates for PFL as follows:

Strongly convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate 1
µR ≤

η̃ ≤ 1
6L and weights wr = (1− µη̃

2)−(r+1), such that it holds that

E
[
F (x̄(R))− F (x∗)

]
= Õ

(
σ2

µMKR
+

Lσ2

µ2KR2
+

Lζ2∗
µ2R2

+ µD2 exp

(
− µR

12L

))
(59)

General convex: Under Assumptions 1, 2, 3b, there exist a constant effective learning rate η̃ ≤ 1
6L

and weights wr = 1, such that it holds that

E
[
F (x̄(R))− F (x∗)

]
= O

(
σD√
MKR

+

(
Lσ2D4

)1/3
K1/3R2/3

+

(
Lζ2∗D

4
)1/3

R2/3
+

LD2

R

)
(60)

Non-convex: Under Assumptions 1, 2, 3a, there exist a constant effective learning rate η̃ ≤ 1
6L(β+1)

and weights wr = 1, such that it holds that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
= O

((
Lσ2A

)1/2
√
MKR

+

(
L2σ2A2

)1/3
K1/3R2/3

+

(
L2ζ2A2

)1/3
R2/3

+
LβA

R

)
(61)

where O omits absolute constants, Õ omits absolute constants and polylogarithmic factors, D :=∥∥x(0) − x∗
∥∥ for the convex cases and A := F (x(0))− F ∗ for the non-convex case.

35

E.1 Strongly convex case

E.1.1 Find the per-round recursion

Lemma 11. Let Assumptions 1, 2, 3b hold and assume that all the local objectives are µ-strongly
convex. If the learning rate satisfies η ≤ 1

6LK , then it holds that

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ (1− µKη
2

)
E
[∥∥∥x(r) − x∗

∥∥∥2]+ 4Kη2σ2

S
+ 4K2η2

M − S

S(M − 1)
ζ2∗

− 2

3
KηE

[
DF (x

(r),x∗)
]
+

8

3
Lη

1

S

S∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

m,k − x(r)
∥∥∥2] (62)

Proof. According to Algorithm 2, the overall model updates of PFL after one complete training
round (with S clients selected for training) is

∆x = x(r+1) − x(r) = − η

S

S∑
m=1

K−1∑
k=0

g
(r)
πm,k ,

where g
(r)
πm,k = ∇fπm(x

(r)
m,k; ξ) is the stochastic gradient of Fπm regarding the vector x(r)

m,k. Thus,

E [∆x] = − η

S

S∑
m=1

K−1∑
k=0

E [∇Fπm(xm,k)]

In the following, we focus on a single training round, and hence we drop the superscripts r for a
while, e.g., writing xm,k to replace x(r)

m,k. Specially, we would like to use x to replace x(r)
1,0. Without

otherwise stated, the expectation is conditioned on x(r).

We start by substituting the overall updates:

E
[
∥x+∆x− x∗∥2

]
= ∥x− x∗∥2 + 2E [⟨x− x∗,∆x⟩] + E

[
∥∆x∥2

]
= ∥x− x∗∥2 − 2η

S

S∑
m=1

K−1∑
k=0

E [⟨∇Fπm
(xm,k),x− x∗⟩] + η2

S2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2
 (63)

We can apply Lemma 2 with x = xm,k, y = x∗, z = x and h = Fπm for the second term on the
right hand side in (63):

− 2η

S

S∑
m=1

K−1∑
k=0

E [⟨∇Fπm
(xm,k),x− x∗⟩]

≤ −2η

S

S∑
m=1

K−1∑
k=0

E
[
Fπm(x)− Fπm(x∗) +

µ

4
∥x− x∗∥2 − L ∥xm,k − x∥2

]
≤ −2KηDF (x,x

∗)− 1

2
µKη ∥x− x∗∥2 + 2Lη

S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
(64)

36

For the third term on the right hand side in (63), using Jensen’s inequality, we have

E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2


≤ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(gπm,k −∇Fπm(xm,k))

∥∥∥∥∥
2
+ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm(xm,k)−∇Fπm(x))

∥∥∥∥∥
2


+ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm(x)−∇Fπm(x∗))

∥∥∥∥∥
2
+ 4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

∇Fπm(x∗)

∥∥∥∥∥
2
 (65)

For the first term on the right hand side in (65), we have

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(gπm,k −∇Fπm
(xm,k))

∥∥∥∥∥
2
 = 4

S∑
m=1

E

∥∥∥∥∥
K−1∑
k=0

(gπm,k −∇Fπm
(xm,k))

∥∥∥∥∥
2


Lem. 1
= 4

S∑
m=1

K−1∑
k=0

E
[
∥gπm,k −∇Fπm(xm,k)∥2

]
Asm. 2
≤ 4SKσ2, (66)

where we use the fact that clients are independent to each other in the first equality and apply
Lemma 1 by seeing the data sample ξm,k, the stochastic gradient gπm,k, the gradient ∇Fπm

(ξm,k)
as ξi, xi, ei in the second equality. For the second term on the right hand side in (65), we have

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm(xm,k)−∇Fπm(x))

∥∥∥∥∥
2
 (15)
≤ 4SK

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm(xm,k)−∇Fπm(x)∥2

]
Asm. 1
≤ 4L2SK

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
For the third term on the right hand side in (65), we have

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

(∇Fπm(x)−∇Fπm(x∗))

∥∥∥∥∥
2
 (15)
≤ 4SK

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm

(x)−∇Fπm
(x∗)∥2

]
(18)
≤ 8LSK

S∑
m=1

K−1∑
k=0

E
[
DFπm

(x,x∗)
]

= 8LS2K2DF (x,x
∗),

where the last inequality is because E
[
DFπm

(x,x∗)
]
= DF (x,x

∗). The forth term on the right
hand side in (65) can be bounded by Lemma 3 as follows:

4E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

∇Fπm
(x∗)

∥∥∥∥∥
2
 (23)
≤ 4S2K2 M − S

S(M − 1)
ζ2∗ .

With the preceding four inequalities, we can bound the third term on the right hand side in (63):

η2

S2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2
 ≤ 4Kη2σ2

S
+ 4L2Kη2

1

S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
+ 8LK2η2DF (x,x

∗) + 4K2η2
M − S

S(M − 1)
ζ2∗ (67)

37

Then substituting (64) and (67) into (63), we have

E
[
∥x+∆x− x∗∥2

]
≤
(
1− µKη

2

)
∥x− x∗∥2 + 4Kη2σ2

S
+ 4K2η2

M − S

S(M − 1)
ζ2∗

− 2Kη(1− 4LKη)DF (x,x
∗) + 2Lη(1 + 2LKη)

1

S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
≤
(
1− µKη

2

)
∥x− x∗∥2 + 4Kη2σ2

S
+ 4K2η2

M − S

S(M − 1)
ζ2∗

− 2

3
KηDF (x,x

∗) +
8

3
Lη

1

S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
,

where we use the condition that η ≤ 1
6LK in the last inequality. The claim of this lemma follows

after recovering the superscripts and taking unconditional expectation.

E.1.2 Bounding the client drift with Assumption 3b

The “client drift” (Karimireddy et al., 2020) in PFL is defined as follows: :

Er :=
1

S

S∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

m,k − x(r)
∥∥∥2] (68)

Lemma 12. Let Assumptions 1, 2, 3b hold and assume that all the local objectives are µ-strongly
convex. If the learning rate satisfies η ≤ 1

6LK , then the client drift is bounded:

Er ≤
9

4
K2η2σ2 +

3

2
K3η2ζ2∗ + 3LK3η2E

[
DF (x

(r),x∗)
]

(69)

Proof. According to Algorithm 2, the model updates of PFL from x(r) to x
(r)
m,k is

x
(r)
m,k − x(r) = −η

k−1∑
j=0

g
(r)
πm,j

In the following, we focus on a single training round, and hence we drop the superscripts r for a
while, e.g., writing xm,k to replace x(r)

m,k. Specially, we would like to use x to replace x(r)
1,0. Without

otherwise stated, the expectation is conditioned on x(r).

We use Jensen’s inequality to bound the term E
[
∥xm,k − x∥2

]
= η2E

[∥∥∥∑k−1
j=0 gπm,j

∥∥∥2]:

E
[
∥xm,k − x∥2

]
≤ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

(gπm,j −∇Fπm(xm,j))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

(∇Fπm(xm,j)−∇Fπm(x))

∥∥∥∥∥∥
2


+ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

(∇Fπm
(x)−∇Fπm

(x∗))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

∇Fπm
(x∗)

∥∥∥∥∥∥
2


Applying Lemma 1 to the first term and Jensen’s inequality to the last three terms on the right hand
side in the preceding inequality, respectively, we get

E
[
∥xm,k − x∥2

]
≤ 4

k−1∑
j=0

η2E
[
∥gπm,j −∇Fπm

(xm,j)∥2
]
+ 4k

k−1∑
j=0

η2E
[
∥∇Fπm

(xm,j)−∇Fπm
(x)∥2

]
+ 4k2η2E

[
∥∇Fπm

(x)−∇Fπm
(x∗)∥2

]
+ 4k2η2E

[
∥∇Fπm

(x∗)∥2
]

38

The first term can be bounded by 4kη2σ2 with Assumption 2. The second term can be bounded
by 4L2kη2

∑k−1
j=0 E

[
∥xm,j − x∥2

]
with Assumption 1. The third term can be bounded by

8Lk2η2E
[
DFπm

(x,x∗)
]

with Eq. (18). Thus, we have

E
[
∥xm,k − x∥2

]
≤ 4kη2σ2 + 4L2kη2

k−1∑
j=0

E
[
∥xm,j − x∥2

]
+ 8Lk2η2E

[
DFπm

(x,x∗)
]
+ 4k2η2E

[
∥∇Fπm

(x∗)∥2
]

≤ 4kη2σ2 + 4L2kη2
k−1∑
j=0

E
[
∥xm,j − x∥2

]
+ 8Lk2η2DF (x,x

∗) + 4k2η2ζ2∗

Then returning to Er := 1
S

∑S
m=1

∑K−1
k=0 E

[
∥xm,k − x∥2

]
, we have

Er = 4η2σ2
K−1∑
k=0

k + 4L2η2
1

S

S∑
m=1

K−1∑
k=0

k

k−1∑
j=0

E
[
∥xm,j − x∥2

]
+ 8Lη2

K−1∑
k=0

k2DF (x,x
∗) + 4η2

K−1∑
k=0

k2ζ2∗

Using the facts that
∑K−1

k=1 k = (K−1)K
2 ≤ K2

2 and
∑K−1

k=1 k2 = (K−1)K(2K−1)
6 ≤ K3

3 , we can
simplify the preceding inequality:

Er ≤ 2K2η2σ2 + 2L2K2η2
1

S

S∑
m=1

k−1∑
j=0

E
[
∥xm,j − x∥2

]
+

8

3
LK3η2DF (x,x

∗) +
4

3
K3η2ζ2∗

After rearranging the preceding inequality, we get

(1− 2L2K2η2)Er ≤ 2K2η2σ2 +
4

3
K3η2ζ2∗ +

8

3
LK3η2DF (x,x

∗)

Finally, using the condition that η ≤ 1
6LK , which implies 1− 2L2K2η2 ≥ 8

9 , we have

Er ≤
9

4
K2η2σ2 +

3

2
K3η2ζ2∗ + 3LK3η2DF (x,x

∗).

The claim follows after recovering the superscripts and taking unconditional expectations.

E.1.3 Proof of strongly convex case of Theorem 2

Proof of strongly convex case of Theorem 2. Substituting (69) into (62) and using η ≤ 1
6LK , we can

simplify the recursion as,

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ (1− µKη
2

)
E
[∥∥∥x(r) − x∗

∥∥∥2]− 1

3
KηE

[
DF (x

(r),x∗)
]

+
4Kη2σ2

S
+ 4K2η2

M − S

S(M − 1)
ζ2∗ + 6LK2η3σ2 + 4LK3η3ζ2∗

Let η̃ = Kη, we have

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ (1− µη̃

2

)
E
[∥∥∥x(r) − x∗

∥∥∥2]− η̃

3
E
[
DF (x

(r),x∗)
]

+
4η̃2σ2

SK
+

4η̃2(M − S)ζ2∗
S(M − 1)

+
6Lη̃3σ2

K
+ 4Lη̃3ζ2∗ (70)

Applying Lemma 7 with t = r (T = R), γ = η̃, rt = E
[∥∥x(r) − x∗

∥∥2], a = µ
2 , b = 1

3 ,

st = E
[
DF (x

(r),x∗)
]
, wt = (1 − µη̃

2)−(r+1), c1 = 4σ2

SK +
4(M−S)ζ2

∗
S(M−1) , c2 = 6Lσ2

K + 4Lζ2∗ and
1
d = 1

6L (η̃ = Kη ≤ 1
6L), it follows that

E
[
F (x̄(R))− F (x∗)

]
≤ 1

WR

R∑
r=0

wrE
[
F (x(r))− F (x∗)

]
≤ 9

2
µ
∥∥∥x(0) − x∗

∥∥∥2 exp (− 1
2µη̃R

)
+

12η̃σ2

SK
+

12η̃(M − S)ζ2∗
S(M − 1)

+
18Lη̃2σ2

K
+ 12Lη̃2ζ2∗ (71)

39

where x̄(R) = 1
WR

∑R
r=0 wrx

(r) and we use Jensen’s inequality (F is convex) in the first inequality.
Thus, by tuning the learning rate carefully, we get

E
[
F (x̄(R))− F (x∗)

]
= Õ

(
µD2 exp

(
− µR

12L

)
+

σ2

µSKR
+

(M − S)ζ2∗
µSR(M − 1)

+
Lσ2

µ2KR2
+

Lζ2∗
µ2R2

)
(72)

where D :=
∥∥x(0) − x∗

∥∥. Eq. (71) and Eq. (72) are the upper bounds with partial client participa-
tion. When M is large enough, we have (M−S)

S(M−1) ≈ (1 − S
M) 1

S . This is the constant appearing in
Karimireddy et al. (2020); Woodworth et al. (2020b). In particular, when S = M , we can get the
claim of the strongly convex case of Theorem 2 and Corollary 2.

E.2 General convex case

E.2.1 Proof of general convex case of Theorem 2 and Corollary 2

Proof of general convex case of Theorem 2. Let µ = 0 in (70), we get the simplified per-round re-
cursion of general convex case,

E
[∥∥∥x(r+1) − x∗

∥∥∥2] ≤ E
[∥∥∥x(r) − x∗

∥∥∥2]− η̃

3
E
[
DF (x

(r),x∗)
]

+
4η̃2σ2

SK
+

4η̃2(M − S)ζ2∗
S(M − 1)

+
6Lη̃3σ2

K
+ 4Lη̃3ζ2∗

Applying Lemma 8 with t = r (T = R), γ = η̃, rt = E
[∥∥x(r) − x∗

∥∥2], b = 1
3 , st =

E
[
DF (x

(r),x∗)
]
, wt = 1, c1 = 4σ2

SK +
4(M−S)ζ2

∗
S(M−1) , c2 = 6Lσ2

K +4Lζ2∗ and 1
d = 1

6L (η̃ = Kη ≤ 1
6L),

it follows that

E
[
F (x̄(R))− F (x∗)

]
≤ 1

WR

R∑
r=0

wr

(
F (x(r))− F (x∗)

)
≤

3
∥∥x(0) − x∗

∥∥2
η̃R

+
12η̃σ2

SK
+

12η̃(M − S)ζ2∗
S(M − 1)

+
18Lη̃2σ2

K
+ 12Lη̃2ζ2∗ (73)

where x̄(R) = 1
WR

∑R
r=0 wrx

(r) and we use Jensen’s inequality (F is convex) in the first inequality.
By tuning the learning rate carefully, we get

F (x̄R)− F (x∗) = O

(
σD√
SKR

+

√
1− S

M
· ζ∗D√

SR
+

(
Lσ2D4

)1/3
K1/3R2/3

+

(
Lζ2∗D

4
)1/3

R2/3
+

LD2

R

)
(74)

where D :=
∥∥x(0) − x∗

∥∥. Eq. (73) and Eq. (74) are the upper bounds with partial client participa-
tion. In particular, when S = M , we can get the claim of the strongly convex case of Theorem 2
and Corollary 2.

E.3 Non-convex case

Lemma 13. Let Assumptions 1, 2, 3b hold. If the learning rate satisfies η ≤ 1
6LK , then it holds that

E
[
F (x(r+1))− F (x(r))

]
≤ −Kη

2
E
[∥∥∥∇F (x(r))

∥∥∥2]+ LKη2σ2

S

+
L2η

2S

S∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

m,k − x(r)
∥∥∥2] (75)

Proof. According to Algorithm 2, the overall model updates of PFL after one complete training
round (with S clients selected for training) is

∆x = x(r+1) − x(r) = − η

S

S∑
m=1

K−1∑
k=0

g
(r)
πm,k ,

40

where g
(r)
πm,k = ∇fπm

(x
(r)
m,k; ξ) is the stochastic gradient of Fπm

regarding the vector x(r)
m,k. Thus,

E [∆x] = − η

S

S∑
m=1

K−1∑
k=0

E [∇Fπm
(xm,k)]

In the following, we focus on a single training round, and hence we drop the superscripts r for a
while, e.g., writing xm,k to replace x(r)

m,k. Specially, we would like to use x to replace x(r)
1,0. Without

otherwise stated, the expectation is conditioned on x(r).

Starting from the smoothness of F (applying Eq. (16), DF (x,y) ≤ L
2 ∥x− y∥2 with x = x+∆x,

y = x), and substituting the overall updates, we have
E [F (x+∆x)− F (x)]

≤ E [⟨∇F (x),∆x⟩] + L

2
E
[
∥∆x∥2

]
≤ − η

S

S∑
m=1

K−1∑
k=0

E [⟨∇F (x),∇Fπm
(xm,k)⟩] +

Lη2

2S2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2
 (76)

For the first term on the right hand side in (76), using the fact that 2 ⟨a, b⟩ = ∥a∥2+∥b∥2−∥a− b∥2
with a = ∇F (x) and b = ∇Fπm(xm,k), we have

− η

S

S∑
m=1

K−1∑
k=0

E [⟨∇F (x),∇Fπm(xm,k)⟩]

= − η

2S

S∑
m=1

K−1∑
k=0

E
[
∥∇F (x)∥2 + ∥∇Fπm

(xm,k)∥2 − ∥∇Fπm
(xm,k)−∇F (x)∥2

]
Asm. 1
≤ −Kη

2
∥∇F (x)∥2 − η

2S

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm

(xm,k)∥2
]
+

L2η

2S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
(77)

For the third term on the right hand side in (76), using Jensen’s inequality, we have

Lη2

2S2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k

∥∥∥∥∥
2


≤ Lη2

S2
E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

gπm,k −
S∑

m=1

K−1∑
k=0

∇Fπm
(xm,k)

∥∥∥∥∥
2
+ Lη2E

∥∥∥∥∥
S∑

m=1

K−1∑
k=0

∇Fπm
(xm,k)

∥∥∥∥∥
2


≤ LKη2σ2

S
+

LKη2

S

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm

(xm,k)∥2
]
, (78)

where we use independence and Lemma 1 for the first term (see Eq. (66)) and Jensen’s inequality
for the second term in the preceding inequality.

Substituting (77) and (78) into (76), we have

E [F (x+∆x)− F (x)] ≤ −Kη

2
∥∇F (x)∥2 + LKη2σ2

S
+

L2η

2S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
− η

2S
(1− 2LKη)

S∑
m=1

K−1∑
k=0

E
[
∥∇Fπm(xm,k)∥2

]
Since η ≤ 1

6LK , the last term on the right hand side in the preceding inequality is negative. Then

E [F (x+∆x)− F (x)] ≤ −Kη

2
∥∇F (x)∥2 + LKη2σ2

S
+

L2η

2S

S∑
m=1

K−1∑
k=0

E
[
∥xm,k − x∥2

]
The claim follows after recovering the superscripts and taking unconditional expectation.

41

E.3.1 Bounding the client drift with Assumption 3a

Lemma 14. Let Assumptions 1, 2, 3b hold. If the learning rate satisfies η ≤ 1
6LK , then the client

drift is bounded:

Er ≤
9

4
K2η2σ2 +

3

2
K3η2ζ2 +

3

2
K3η2(β2 + 1)E

[∥∥∥∇F (x(r))
∥∥∥2] (79)

Proof. According to Algorithm 2, the model updates of PFL from x(r) to x
(r)
m,k is

x
(r)
m,k − x(r) = −η

k−1∑
j=0

g
(r)
πm,j

In the following, we focus on a single training round, and hence we drop the superscripts r for a
while, e.g., writing xm,k to replace x(r)

m,k. Specially, we would like to use x to replace x(r)
1,0. Without

otherwise stated, the expectation is conditioned on x(r).

We use Jensen’s inequality to bound the term E
[
∥xm,k − x∥2

]
= η2E

[∥∥∥∑k−1
j=0 gπm,j

∥∥∥2]:

E
[
∥xm,k − x∥2

]
≤ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

(gπm,j −∇Fπm
(xm,j))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

(∇Fπm
(xm,j)−∇Fπm

(x))

∥∥∥∥∥∥
2


+ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

(∇Fπm
(x)−∇F (x))

∥∥∥∥∥∥
2
+ 4η2E


∥∥∥∥∥∥
k−1∑
j=0

∇F (x)

∥∥∥∥∥∥
2


Applying Lemma 1 to the first term and Jensen’s inequality to the last three terms on the right hand
side in the preceding inequality, respectively, we get

E
[
∥xm,k − x∥2

]
≤ 4η2

k−1∑
j=0

E
[
∥gπm,j −∇Fπm(xm,j)∥2

]
+ 4kη2

k−1∑
j=0

E
[
∥∇Fπm(xm,j)−∇Fπm(x)∥2

]
+ 4k2η2E

[
∥∇Fπm(x)−∇F (x)∥2

]
+ 4k2η2E

[
∥∇F (x)∥2

]
The first term can be bounded by 4kη2σ2 with Assumption 2. The second term can be bounded
by 4L2kη2

∑k−1
j=0 E

[
∥xm,j − x∥2

]
with Assumption 1. The third term can be bounded by

4k2η2
(
β2 ∥∇F (x)∥2 + ζ2

)
with Assumption 3a. Thus, we have

E
[
∥xm,k − x∥2

]
≤ 4kη2σ2 + 4L2kη2

k−1∑
j=0

E
[
∥xm,j − x∥2

]
+ 4k2η2(β2 + 1) ∥∇F (x)∥2 + 4k2η2ζ2

Then returning to Er := 1
S

∑S
m=1

∑K−1
k=0 E

[
∥xm,k − x∥2

]
, we have

Er = 4η2σ2
K−1∑
k=0

k + 4L2η2
1

S

S∑
m=1

K−1∑
k=0

k

k−1∑
j=0

E
[
∥xm,j − x∥2

]
+ 4η2(β2 + 1) ∥∇F (x)∥2

K−1∑
k=0

k2 + 4η2ζ2
K−1∑
k=0

k2

Using the facts that
∑K−1

k=1 k = (K−1)K
2 ≤ K2

2 and
∑K−1

k=1 k2 = (K−1)K(2K−1)
6 ≤ K3

3 , we can
simplify the preceding inequality:

Er ≤ 2K2η2σ2 + 2L2K2η2
1

S

S∑
m=1

k−1∑
j=0

E
[
∥xm,j − x∥2

]
+

4

3
K3η2(β2 + 1) ∥∇F (x)∥2 + 4

3
K3η2ζ2

42

After rearranging the preceding inequality, we get

(1− 2L2K2η2)Er ≤ 2K2η2σ2 +
4

3
K3η2ζ2 +

4

3
K3η2(β2 + 1) ∥∇F (x)∥2

Finally, using the condition that η ≤ 1
6LK , which implies 1− 2L2K2η2 ≥ 8

9 , we have

Er ≤
9

4
K2η2σ2 +

3

2
K3η2ζ2 +

3

2
K3η2(β2 + 1) ∥∇F (x)∥2

The claim follows after recovering the superscripts and taking unconditional expectations.

E.3.2 Proof of non-convex case of Theorem 2

Proof of non-convex case of Theorem 2. Substituting (52) into (48) and using η ≤ 1
6LK(β+1) , we

can simplify the recursion as follows:

E
[
F (x(r+1))− F (x(r))

]
≤ −1

3
KηE

[∥∥∥∇F (x(r))
∥∥∥2]+ LKη2σ2

S
+

9

8
L2K2η3σ2 +

3

4
L2K3η3ζ2

Letting η̃ := Kη, subtracting F ∗ from both sides and then rearranging the terms, we have

E
[
F (x(r+1))− F ∗

]
≤ E

[
F (x(r))− F ∗

]
− η̃

3
E
[∥∥∥∇F (x(r))

∥∥∥2]+ Lη̃2σ2

SK
+

9L2η̃3σ2

8K
+

3

4
L2η̃3ζ2

Then applying Lemma 8 with t = r (T = R), γ = η̃, rt = E
[
F (x(r))− F ∗], b = 1

3 , st =

E
[∥∥∇F (x(r))

∥∥2], wt = 1, c1 = Lσ2

SK , c2 = 9L2σ2

8K + 3
4L

2ζ2 and 1
d = 1

6L(β+1) (η̃ = Kη ≤
1

6L(β+1)), we have

min
0≤r≤R

E
[∥∥∥∇F (x(r))

∥∥∥2] ≤ 3
(
F (x0)− F ∗)

η̃R
+

3Lη̃σ2

SK
+

27L2η̃2σ2

8K
+

9

4
L2η̃2ζ2 (80)

where we use min0≤r≤R E
[∥∥∇F (x(r))

∥∥2] ≤ 1
R+1

∑R
r=0 E

[∥∥∇F (x(r))
∥∥2]. Then, tuning the

learning rate carefully, we get

min
0≤r≤R

E
[∥∥∥∇F (x(r))

∥∥∥2] = O((Lσ2A
)1/2

√
SKR

+

(
L2σ2A2

)1/3
K1/3R2/3

+

(
L2ζ2A2

)1/3
R2/3

+
LβA

R

)
(81)

where A := F (x0)−F ∗. Eq. (80) and Eq. (81) are the upper bounds with partial client participation.
In particular, when S = M , we get the claim of the non-convex case of Theorem 2 and Corollary 2.

43

F Simulations on quadratic functions

Nine groups of simulated experiments with various degrees of heterogeneity are provided in Table 6
as a extension of the experiment in Subsection 4.1. Figure 7 plots the results of PFL and SFL with
various combinations of δ and ζ∗.

Table 6: Settings of simulated experiments. Each setting has two local objectives (i.e., M = 2) and
shares the same global objective. Choosing large value of ζ∗ and δ means higher heterogeneity. The
definitions of ζ∗ and δ can be found in Subsection 4.1.

Settings ζ∗ = 1 ζ∗ = 10 ζ∗ = 100

δ = 0

{
F1(x) =

1
2x

2 + x

F2(x) =
1
2x

2 − x

{
F1(x) =

1
2x

2 + 10x

F2(x) =
1
2x

2 − 10x

{
F1(x) =

1
2x

2 + 100x

F2(x) =
1
2x

2 − 100x

δ = 1
3

{
F1(x) =

2
3x

2 + x

F2(x) =
1
3x

2 − x

{
F1(x) =

2
3x

2 + 10x

F2(x) =
1
3x

2 − 10x

{
F1(x) =

2
3x

2 + 100x

F2(x) =
1
3x

2 − 100x

δ = 1

{
F1(x) = x2 + x

F2(x) = −x

{
F1(x) = x2 + 10x

F2(x) = −10x

{
F1(x) = x2 + 100x

F2(x) = −100x

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

(a) δ = 0, ζ∗ = 1

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

(b) δ = 0, ζ∗ = 10

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

PFL, K=2
PFL, K=10

SFL, K=2
SFL, K=10

(c) δ = 0, ζ∗ = 100

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

(d) δ = 1
3

, ζ∗ = 1

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

(e) δ = 1
3

, ζ∗ = 10

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

PFL, K=2
PFL, K=10

SFL, K=2
SFL, K=10

(f) δ = 1
3

, ζ∗ = 100

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

(g) δ = 1, ζ∗ = 1

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

(h) δ = 1, ζ∗ = 10

0 100 200 300 400 500
Training rounds

10 4

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 th

e
op

tim
um

PFL, K=2
PFL, K=10

SFL, K=2
SFL, K=10

(i) δ = 1, ζ∗ = 100

Figure 7: Simulations on quadratic functions. The best learning rates are chosen from [0.003, 0.006,
0.01, 0.03, 0.06, 0.1, 0.3, 0.6] with grid search. We run each experiments for 5 random seeds.
Shaded areas show the min-max values.

44

G More experimental details

This section serves as a supplement and enhancement to Section 4. Our code is partly from Gao
et al. (2021); Zeng et al. (2021); Jhunjhunwala et al. (2023) (more references are included in the
code), and it is available at https://github.com/liyipeng00/convergence.

G.1 Extended Dirichlet partition

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

0 0 5923 0 0 0 0 0 0 0

0 0 0 0 0 0 6742 0 0 0

0 0 0 0 5958 0 0 0 0 0

0 6131 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 5842

5421 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5918 0 0 0 0

0 0 0 0 0 0 0 6265 0 0

0 0 0 5851 0 0 0 0 0 0

0 0 0 0 0 0 0 0 5949 0

5421 6131 5923 5851 5958 5918 6742 6265 5949 5842
0

1000

2000

3000

4000

5000

6000

(a) 10 clients, ExDir(1, 100.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

0 0 0 0 5923 0 0 0 0 0

0 6742 0 0 0 0 0 0 0 0

5958 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6131

0 0 0 0 0 0 5842 0 0 0

0 0 0 0 0 0 0 0 5421 0

0 0 0 0 0 5918 0 0 0 0

0 0 0 6265 0 0 0 0 0 0

0 0 0 0 0 0 0 5851 0 0

0 0 5949 0 0 0 0 0 0 0

5958 6742 5949 6265 5923 5918 5842 5851 5421 6131
0

1000

2000

3000

4000

5000

6000

(b) 10 clients, ExDir(1, 10.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

0 0 5923 0 0 0 0 0 0 0

0 0 0 0 0 0 6742 0 0 0

0 0 0 5958 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6131

0 0 0 0 5842 0 0 0 0 0

0 0 0 0 0 0 0 5421 0 0

0 5918 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 6265 0

5851 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5949 0 0 0 0

5851 5918 5923 5958 5842 5949 6742 5421 6265 6131
0

1000

2000

3000

4000

5000

6000

(c) 10 clients, ExDir(1, 1.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

0 0 0 0 2600 0 0 0 0 3323

0 0 0 0 0 6742 0 0 0 0

0 0 0 5958 0 0 0 0 0 0

0 0 2712 0 0 0 0 0 0 3419

0 0 0 0 0 0 0 0 5842 0

0 0 0 1732 0 0 1886 1803 0 0

0 0 3012 0 0 0 2906 0 0 0

2304 0 0 0 2090 0 0 1871 0 0

2031 1610 0 0 0 0 0 0 2210 0

0 5949 0 0 0 0 0 0 0 0

4335 7559 5724 7690 4690 6742 4792 3674 8052 6742
0

1000

2000

3000

4000

5000

6000

7000

8000

(d) 10 clients, ExDir(2, 100.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l
0 0 0 0 0 5923 0 0 0 0

0 0 6742 0 0 0 0 0 0 0

0 0 0 0 0 3225 0 0 2733 0

0 0 0 0 3547 0 0 0 0 2584

0 2783 0 0 0 0 0 3059 0 0

0 0 0 2405 3016 0 0 0 0 0

0 0 0 0 0 0 5918 0 0 0

2141 4124 0 0 0 0 0 0 0 0

1318 0 0 0 0 0 0 701 1925 1907

0 0 0 4497 0 0 1452 0 0 0

3459 6907 6742 6902 6563 9148 7370 3760 4658 4491
0

2000

4000

6000

8000

(e) 10 clients, ExDir(2, 10.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

1709 0 0 0 0 2258 0 0 1579 377

0 0 0 0 0 726 0 0 6016 0

0 0 4130 0 0 0 1828 0 0 0

0 226 0 131 0 0 0 5774 0 0

5842 0 0 0 0 0 0 0 0 0

0 5421 0 0 0 0 0 0 0 0

0 0 0 0 2478 0 3440 0 0 0

0 0 0 0 0 0 0 0 0 6265

0 0 443 5408 0 0 0 0 0 0

0 0 0 0 3870 0 0 2079 0 0

7551 5647 4573 5539 6348 2984 5268 7853 7595 6642
0

1000

2000

3000

4000

5000

6000

7000

(f) 10 clients, ExDir(2, 1.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

0 850 833 0 805 763 0 919 816 937

757 822 0 741 767 708 759 744 803 641

1378 0 0 0 1921 0 0 0 1299 1360

1037 0 899 0 1142 1112 957 984 0 0

0 1764 0 2124 0 0 0 1954 0 0

0 0 1902 0 1576 0 1943 0 0 0

0 1314 0 1025 0 1119 1189 0 0 1271

1493 0 1451 1634 0 0 0 0 1687 0

1558 1280 0 0 0 0 1480 0 0 1533

0 0 1142 1226 0 1127 0 1170 1284 0

6223 6030 6227 6750 6211 4829 6328 5771 5889 5742
0

1000

2000

3000

4000

5000

6000

(g) 10 clients, ExDir(5, 100.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

1330 0 1465 0 1585 942 0 0 0 601

3073 0 0 0 0 2051 0 0 0 1618

1345 0 0 1553 0 0 1370 0 1690 0

1471 0 1262 0 0 0 646 1472 1280 0

0 437 478 824 399 612 1035 432 973 652

0 993 0 980 866 0 0 998 753 831

0 941 0 1027 0 1284 0 1927 739 0

0 0 1260 0 1446 1213 1322 0 0 1024

0 1888 0 0 0 0 1935 2028 0 0

0 1383 1812 2025 729 0 0 0 0 0

7219 5642 6277 6409 5025 6102 6308 6857 5435 4726
0

1000

2000

3000

4000

5000

6000

7000

(h) 10 clients, ExDir(5, 10.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

1069 1293 0 1421 358 645 1074 0 0 63

720 0 1303 0 0 0 3877 842 0 0

912 572 0 572 675 180 0 196 1575 1276

0 0 0 2113 0 1668 964 0 1196 190

553 786 858 35 0 0 595 914 122 1979

419 2978 0 0 0 1067 0 957 0 0

0 1927 695 1027 2200 0 0 69 0 0

0 0 2615 0 1862 0 0 0 1788 0

0 0 0 0 1185 1910 0 0 1994 762

0 0 5949 0 0 0 0 0 0 0

3673 7556 11420 5168 6280 5470 6510 2978 6675 4270
0

2000

4000

6000

8000

10000

(i) 10 clients, ExDir(5, 1.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

558 585 579 624 581 737 535 603 615 506

625 695 602 705 740 629 848 583 599 716

532 663 560 686 561 595 605 636 522 598

647 636 570 862 494 679 633 570 602 438

520 669 498 609 659 615 519 547 590 616

501 485 524 479 484 470 583 648 584 663

511 590 590 554 656 549 478 616 770 604

527 703 649 743 581 620 661 723 536 522

527 597 601 581 546 611 652 599 555 582

690 619 578 605 676 548 542 592 577 522

5638 6242 5751 6448 5978 6053 6056 6117 5950 5767
1000

2000

3000

4000

5000

6000

(j) 10 clients, ExDir(10, 100.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

428 678 615 565 494 477 826 512 717 611

844 508 828 550 501 824 704 587 653 743

450 808 686 869 544 354 362 616 609 660

927 472 350 582 573 1069 584 459 548 567

481 433 718 859 541 607 481 673 446 603

764 298 373 756 407 296 923 555 596 453

348 851 584 452 658 708 744 535 544 494

466 1039 848 778 319 607 434 565 681 528

632 826 677 566 599 753 310 449 451 588

491 609 399 756 595 632 747 643 818 259

5831 6522 6078 6733 5231 6327 6115 5594 6063 5506
1000

2000

3000

4000

5000

6000

(k) 10 clients, ExDir(10, 10.0)

0 1 2 3 4 5 6 7 8 9
Client ID

0

1

2

3

4

5

6

7

8

9

Total

La
be

l

744 208 1354 947 536 241 87 1255 293 258

11 193 377 340 2 1220 449 1159 1323 1668

1012 655 291 672 387 102 529 1025 840 445

633 288 505 681 218 430 1102 274 1775 225

1003 181 519 443 1290 373 995 879 2 157

417 1672 280 17 7 648 999 256 983 142

72 1098 1443 395 212 911 274 50 712 751

863 319 235 541 758 182 895 1472 641 359

797 135 24 1650 2171 149 29 0 0 896

2220 216 518 129 1241 187 585 0 0 853

7772 4965 5546 5815 6822 4443 5944 6370 6569 5754
0

1000

2000

3000

4000

5000

6000

7000

(l) 10 clients, ExDir(10, 1.0)

Figure 8: Visualization of partitioning results on MNIST by Extended Dirichlet strategy. The x-axis
indicates client IDs and the y-axis indicates labels. The value in each cell is the number of data
samples of a label belonging to that client. For the first row, there are only one possible results in the
case where each client owns one label with 10 clients and 10 labels in total, so these three partitions
are the same. For the second, third and forth rows, data heterogeneity increases from left to right.

Baseline. There are two common partition strategies to simulate the heterogeneous settings in the
FL literature. According to Li et al. (2022), they can be summarized as follows:

a) Quantity-based class imbalance: Under this strategy, each client is allocated data samples from
a fixed number of classes. The initial implementation comes from McMahan et al. (2017), and
has extended by Li et al. (2022) recently. Specifically, Li et al. first randomly assign C different
classes to each client. Then, the samples of each class are divided randomly and equally into
the clients which owns the class.

b) Distribution-based class imbalance: Under this strategy, each client is allocated a proportion of
the data samples of each class according to Dirichlet distribution. The initial implementation,
to the best of our knowledge, comes from Yurochkin et al. (2019). For each class c, Yurochkin
et al. draw pc ∼ Dir(αq) and allocate a pc,m proportion of the data samples of class k to
client m. Here q is the prior distribution, which is set to 1.

45

https://github.com/liyipeng00/convergence

Extended Dirichlet strategy. This is to generate arbitrarily heterogeneous data across clients by
combining the two strategies above. The difference is to add a step of allocating classes (labels)
to determine the number of classes per client (denoted by C) before allocating samples via Dirich-
let distribution (with concentrate parameter α). Thus, the extended strategy can be denoted by
ExDir(C,α). The implementation is as follows (one partitioning example is shown in Figure 8):

Class ID

C
lie

nt
 ID

5

4

3

2

1

1 2 3 4

Figure 9: Allocating
2 classes (4 classes
in total) to 5 clients.

• Allocating classes: We randomly allocate C different classes to each
client. After assigning the classes, we can obtain the prior distribution
qc for each class c (see Figure 9).

• Allocating samples: For each class c, we draw pc ∼ Dir(αqc) and then
allocate a pc,m proportion of the samples of class c to client m. For
example, qc = [1, 1, 0, 0, . . . ,] means that the samples of class c are
only allocated to the first 2 clients.

This strategy have two levels, the first level to allocate classes and the second
level to allocate samples. We note that Reddi et al. (2021) use a two-level par-
tition strategy to partition the CIFAR-100 dataset. They draw a multinomial
distribution from the Dirichlet prior at the root (Dir(α)) and a multinomial
distribution from the Dirichlet prior at each coarse label (Dir(β)).

G.2 Gradient clipping.

Two partitions, the extreme setting C = 1 (i.e., ExDir(1, 10.0)) and the moderate settings C = 2
(i.e., ExDir(2, 10.0)) are used in the main body. For both settings, we use the gradient clipping to
improve the stability of the algorithms as done in previous works Acar et al. (2021); Jhunjhunwala
et al. (2023). Further, we note that the gradient clipping is critical for PFL and SFL to prevent diver-
gence in the learning process on heterogeneous data, especially in the extreme setting. Empirically,
we find that the fitting “max norm” of SFL is larger than PFL. Thus we trained VGG-9 on CIFAR-10
with PFL and SFL for various values of the max norm of gradient clipping to select the fitting value,
and had some empirical observations for gradient clipping in FL. The experimental results are given
in Table 7, Table 8 and Figure 10. The empirical observations are summarized as follows:

1) The fitting max norm of SFL is larger than PFL. When the max norm is set to be 20 for both
algorithms, gradient clipping helps improve the performance of PFL, while it may even hurt
that of SFL (e.g., see the 12-th row in Table 8).

2) The fitting max norm for the case with high data heterogeneity is larger than that with low data
heterogeneity. This is suitable for both algorithms. (e.g., see the 12, 24-th rows in Table 8)

3) The fitting max norm for the case with more local update steps is larger than that with less local
update steps. This is suitable for both algorithms. (e.g., see the 4, 8, 12-th rows in Table 8)

4) Gradient clipping with smaller values of the max norm exhibits a preference for a larger learn-
ing rate. This means that using gradient clipping makes the best learning rate larger. This
phenomenon is more obvious when choosing smaller values of the max norm (see Table 7).

5) The fitting max norm is additionally affected by the model architecture, model size, and so on.

Finally, taking into account the experimental results and convenience, we set the max norm of gra-
dient clipping to 10 for PFL and 50 for SFL for all settings in this paper.

46

Table 7: Test accuracies when using gradient clipping with various values of the max norm for
VGG-9 on CIFAR-10. Other settings without being stated explicitly are identical to that in the main
body. The results are computed over the last 40 training rounds (with 1000 training rounds in total).
The highest test accuracy among different learning rates is marked in cyan for both algorithms.
Setting PFL10−2.0 10−1.5 10−1.0 10−0.5 SFL10−2.5 10−2.0 10−1.5 10−1.0

VGG-9, C = 1, K = 5, w/o clip ∞ 25.43 30.95 30.63 10.00 ∞ 43.93 53.79 57.69 10.00
VGG-9, C = 1, K = 5, w/ clip 20 21.92 31.04 32.41 24.99 100 43.93 53.79 57.69 10.00
VGG-9, C = 1, K = 5, w/ clip 10 12.51 25.67 34.89 28.77 50 43.79 53.73 58.63 10.00
VGG-9, C = 1, K = 5, w/ clip 5 10.54 16.72 27.01 35.11 20 43.12 53.17 57.96 10.00

VGG-9, C = 1, K = 20, w/o clip∞ 24.23 27.53 26.91 10.00 ∞ 35.63 10.00 10.00 10.00
VGG-9, C = 1, K = 20, w/ clip 20 19.44 27.60 26.41 15.00 100 35.63 10.00 10.00 10.00
VGG-9, C = 1, K = 20, w/ clip 10 11.51 22.81 28.79 21.10 50 34.55 27.11 10.00 10.00
VGG-9, C = 1, K = 20, w/ clip 5 10.39 14.56 22.48 27.26 20 30.49 10.00 10.00 10.00

VGG-9, C = 1, K = 50, w/o clip∞ 22.44 23.70 20.97 10.00 ∞ 25.11 10.00 10.00 10.00
VGG-9, C = 1, K = 50, w/ clip 20 17.82 23.80 20.72 10.00 100 25.11 10.00 10.00 10.00
VGG-9, C = 1, K = 50, w/ clip 10 10.14 20.58 21.95 10.00 50 23.41 10.00 10.00 10.00
VGG-9, C = 1, K = 50, w/ clip 5 10.31 10.44 18.25 18.02 20 18.27 10.00 10.00 10.00

VGG-9, C = 2, K = 5, w/o clip ∞ 41.36 51.34 55.22 10.00 ∞ 58.33 69.14 71.58 10.00
VGG-9, C = 2, K = 5, w/ clip 20 41.46 51.30 56.54 47.47 100 58.33 69.14 71.58 10.00
VGG-9, C = 2, K = 5, w/ clip 10 38.50 50.99 57.09 53.46 50 58.35 68.75 71.24 10.00
VGG-9, C = 2, K = 5, w/ clip 5 26.07 46.49 58.26 56.71 20 57.81 69.17 70.94 10.00

VGG-9, C = 2, K = 20, w/o clip∞ 55.64 64.04 10.00 10.00 ∞ 60.56 67.70 64.94 10.00
VGG-9, C = 2, K = 20, w/ clip 20 55.70 64.14 66.57 10.00 100 59.48 68.11 64.94 10.00
VGG-9, C = 2, K = 20, w/ clip 10 54.70 63.97 68.07 61.92 50 60.82 67.93 66.50 10.00
VGG-9, C = 2, K = 20, w/ clip 5 47.32 61.61 67.11 63.56 20 58.36 67.65 67.74 10.00

VGG-9, C = 2, K = 50, w/o clip∞ 63.93 67.85 10.00 10.00 ∞ 61.93 68.05 61.77 10.00
VGG-9, C = 2, K = 50, w/ clip 20 63.94 68.26 67.15 59.46 100 62.36 67.01 62.84 10.00
VGG-9, C = 2, K = 50, w/ clip 10 62.72 67.57 69.11 64.21 50 62.27 67.52 62.59 10.00
VGG-9, C = 2, K = 50, w/ clip 5 58.52 65.34 66.77 64.75 20 59.80 68.72 64.26 38.22

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL, C=1, K=5

PFL, lr=0.03, w/o clip
PFL, lr=0.1, w/ clip=20
PFL, lr=0.1, w/ clip=10
PFL, lr=0.3, w/ clip=5

0 500 1000 1500 2000 2500 3000 3500 4000
10

15

20

25

30

35

40

45

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL, C=1, K=50

PFL, lr=0.03, w/o clip
PFL, lr=0.03, w/ clip=20
PFL, lr=0.1, w/ clip=10
PFL, lr=0.1, w/ clip=5

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

SFL, C=1, K=5

SFL, lr=0.03, w/o clip
SFL, lr=0.03, w/ clip=100
SFL, lr=0.03, w/ clip=50
SFL, lr=0.03, w/ clip=20

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

SFL, C=1, K=50

SFL, lr=0.003, w/o clip
SFL, lr=0.003, w/ clip=100
SFL, lr=0.003, w/ clip=50
SFL, lr=0.003, w/ clip=20

0 500 1000 1500 2000 2500 3000 3500 4000

20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL, C=2, K=5

PFL, lr=0.1, w/o clip
PFL, lr=0.1, w/ clip=20
PFL, lr=0.1, w/ clip=10
PFL, lr=0.1, w/ clip=5

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL, C=2, K=50

PFL, lr=0.03, w/o clip
PFL, lr=0.03, w/ clip=20
PFL, lr=0.1, w/ clip=10
PFL, lr=0.1, w/ clip=5

0 500 1000 1500 2000 2500 3000 3500 4000
20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

SFL, C=2, K=5

SFL, lr=0.03, w/o clip
SFL, lr=0.03, w/ clip=100
SFL, lr=0.03, w/ clip=50
SFL, lr=0.03, w/ clip=20

0 500 1000 1500 2000 2500 3000 3500 4000
20

30

40

50

60

70

80

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

SFL, C=2, K=50

SFL, lr=0.01, w/o clip
SFL, lr=0.01, w/ clip=100
SFL, lr=0.01, w/ clip=50
SFL, lr=0.01, w/ clip=20

Figure 10: The corresponding training curves of Table 8 (VGG-9 on CIFAR-10).

47

Table 8: The best learning rate (selected in Table 7) and its corresponding test accuracies in the short
run (1000 training rounds) and in the long run (4000 training rounds). The results are computed over
the last 40 training rounds in the short run (the 5-th, 9-th columns) and 100 training rounds in the long
run (the 6-th, 10-th columns). That the algorithms diverge when without gradient clipping makes
the result with †. The results that deviate from the vanilla case (w/o gradient clipping) considerably
(more than 2%) are marked in magenta and teal.

Setting PFL Lr Acc. Acc. SFL Lr Acc. Acc.

{CIFAR-10, C = 1}

1 VGG-9, K = 5, w/o clip ∞ 10−1.5 30.95 60.75 ∞ 10−1.5 57.69 78.56
2 VGG-9, K = 5, w/ clip 20 10−1.0 32.41 67.97 (+7.2) 100 10−1.5 57.69 78.75
3 VGG-9, K = 5, w/ clip 10 10−1.0 34.89 (+3.9) 69.10 (+8.4) 50 10−1.5 58.63 78.56
4 VGG-9, K = 5, w/ clip 5 10−0.5 35.11 (+4.2) 71.07 (+10.3) 20 10−1.5 57.96 79.06

5 VGG-9, K = 20, w/o clip∞ 10−1.5 27.53 56.89 ∞ 10−2.5 35.63 72.90
6 VGG-9, K = 20, w/ clip 20 10−1.5 27.60 57.01 100 10−2.5 35.63 73.06
7 VGG-9, K = 20, w/ clip 10 10−1.0 28.79 64.11 (+7.2) 50 10−2.5 34.55 73.16
8 VGG-9, K = 20, w/ clip 5 10−0.5 27.26 62.31 (+5.4) 20 10−2.5 30.49 (-5.1) 69.66 (-3.2)

9 VGG-9, K = 50, w/o clip∞ 10−1.5 23.70 48.29 ∞ 10−2.5 25.11 69.10
10 VGG-9, K = 50, w/ clip 20 10−1.5 23.80 47.64 100 10−2.5 25.11 69.01
11 VGG-9, K = 50, w/ clip 10 10−1.0 21.95 46.21 (-2.1) 50 10−2.5 23.41 68.71
12 VGG-9, K = 50, w/ clip 5 10−1.0 18.25 (-5.5) 22.58 (-25.7) 20 10−2.5 18.27 (-6.8) 62.70 (-6.4)

{CIFAR-10, C = 2}

13 VGG-9, K = 5, w/o clip ∞ 10−1.0 55.22 76.98 ∞ 10−1.5 71.58 82.09
14 VGG-9, K = 5, w/ clip 20 10−1.0 56.54 78.28 100 10−1.5 71.58 82.17
15 VGG-9, K = 5, w/ clip 10 10−1.0 57.09 78.18 50 10−1.5 71.24 82.18
16 VGG-9, K = 5, w/ clip 5 10−1.0 58.26 (+3.0) 76.69 20 10−1.5 70.94 82.48

17 VGG-9, K = 20, w/o clip∞ 10−1.5 64.04 77.21 ∞ 10−2.0 67.70 81.31
18 VGG-9, K = 20, w/ clip 20 10−1.0 66.57 (+2.5) 78.87 100 10−2.0 68.11 82.08
19 VGG-9, K = 20, w/ clip 10 10−1.0 68.07 (+4.0) 78.85 50 10−2.0 67.93 81.50
20 VGG-9, K = 20, w/ clip 5 10−1.0 67.11 (+3.1) 76.66 20 10−1.5 67.74 77.59 (-3.7)

21 VGG-9, K = 50, w/o clip∞ 10−1.5 67.85 10.00† ∞ 10−2.0 68.05 79.30
22 VGG-9, K = 50, w/ clip 20 10−1.5 68.26 77.83 100 10−2.0 67.01 78.88
23 VGG-9, K = 50, w/ clip 10 10−1.0 69.11 78.13 50 10−2.0 67.52 79.42
24 VGG-9, K = 50, w/ clip 5 10−1.0 66.77 75.42 20 10−2.0 68.72 78.51

48

G.3 Grid search

We use the grid search to find the best learning rate on one random seed “1234”. Since we
have observed that the best learning rate of PFL is smaller than SFL empirically, the grid for
PFL is {10−2.0, 10−1.5, 10−1.0, 10−0.5} ({0.01, 0.03, 0.1, 0.3} in fact) and the grid for SFL is
{10−2.5, 10−2.0, 10−1.5, 10−1.0} ({0.003, 0.01, 0.03, 0.1} in fact). We use these grids for all tasks
in this paper, including MNIST and FMNIST in the next subsection.

One practical method used in Jhunjhunwala et al. (2023) to find the best learning rate is running
the algorithms for a fewer training rounds and then comparing the short-run results by some metrics
(e.g., training accuracy) when the computation resources are restrictive and the task is complex (e.g.,
CIFAR-10). However, we should pay attention to whether the chosen learning rates are appropriate
in the specific scenarios, as the best learning rate in the short run may not be the best in the long
run. One alternative method is using the short-run results to find some alternatives (coarse-grained
search) and then using the long-run results to find the best one (fine-grained search).

In this paper, for CIFAR-10 and CINIC-10, we run the algorithms for 1000 training rounds to find
the candidate learning rates (with a less then 3% difference to the best result in test accuracy), called
as coarse-grained search; and then run the algorithms for 4000 training rounds with the candidate
learning rates to find the best learning rate (with the highest test accuracy), called as fine-grained
search. The max norm of gradient clipping is set to 10 for PFL and 50 for SFL for all settings (see
subsection G.2). Other hyperparameters are identical to that in the main body.

The results of the coarse-grained search are collected in Figure 12, Table 10. Taking the setting
training VGG-9 on CIFAR-10 as an example. We first find the candidate learning rates, whose
short-run test accuracies are only 3% or less below the best accuracy. The candidate learning rates
are summarized in Table 9. The training curves are in Figure 11. We then find the best learning
rate, whose long-run test accuracy is the highest among the candidate learning rates. The final best
learning rates are in Table 9. For fine-grained search of other settings, please refer to the code.

Table 9: Best learning rates found by the fine-grained search. The candidate learning rates are
collected in the cell and the correspond long-run test accuracies are in the parentheses. According
to the long-run test accuracies, we keep the best learning rate and cross out the others.

Settings PFL SFL

CIFAR-10, VGG-9, C = 1, K = 5 0.1 0.03
CIFAR-10, VGG-9, C = 1, K = 20 0.1 0.003
CIFAR-10, VGG-9, C = 1, K = 50 0.03 (28.72), 0.1 (46.21) 0.003
CIFAR-10, VGG-9, C = 2, K = 5 0.1 0.01 (82.05), 0.03 (82.18)
CIFAR-10, VGG-9, C = 2, K = 20 0.1 0.01 (81.50), 0.03 (78.35)
CIFAR-10, VGG-9, C = 2, K = 50 0.03 (76.14), 0.1 (78.13) 0.01

0 200 400 600 800 1000
Training rounds

10

15

20

25

30

35

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL

lr=0.01
lr=0.03
lr=0.1*
lr=0.3

0 200 400 600 800 1000
Training rounds

10

20

30

40

50

60
SFL

lr=0.003
lr=0.01
lr=0.03*
lr=0.1

0 200 400 600 800 1000
Training rounds

10

15

20

25

30

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL

lr=0.01
lr=0.03
lr=0.1*
lr=0.3

0 200 400 600 800 1000
Training rounds

10

15

20

25

30

35
SFL

lr=0.003*
lr=0.01
lr=0.03
lr=0.1

0 200 400 600 800 1000
Training rounds

8

10

12

14

16

18

20

22

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL

lr=0.01
lr=0.03"
lr=0.1*
lr=0.3

0 200 400 600 800 1000
Training rounds

8

10

12

14

16

18

20

22

24

SFL

lr=0.003*
lr=0.01
lr=0.03
lr=0.1

0 200 400 600 800 1000
Training rounds

10

20

30

40

50

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL

lr=0.01
lr=0.03
lr=0.1*
lr=0.3

0 200 400 600 800 1000
Training rounds

20

30

40

50

60

70
SFL

lr=0.003
lr=0.01"
lr=0.03*
lr=0.1

0 200 400 600 800 1000
Training rounds

20

30

40

50

60

70

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL

lr=0.01
lr=0.03
lr=0.1*
lr=0.3

0 200 400 600 800 1000
Training rounds

20

30

40

50

60

SFL

lr=0.003
lr=0.01*
lr=0.03"
lr=0.1

0 200 400 600 800 1000
Training rounds

20

30

40

50

60

70

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

PFL

lr=0.01
lr=0.03"
lr=0.1*
lr=0.3

0 200 400 600 800 1000
Training rounds

20

30

40

50

60

SFL

lr=0.003
lr=0.01*
lr=0.03
lr=0.1

Figure 11: The corresponding training curves of Table 9. We mark the best learning rate in the short
run with “*” and other candidate learning rates with “"” in the legend. The top row shows the first
three settings and the bottom row shows the last three settings in Table 9.

49

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

C = 2, K = 50
-2.5-2.0-1.5-1.0-0.5

0

50

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

50

100
C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

50

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

50

100
C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

50

100
C = 2, K = 50

-2.5-2.0-1.5-1.0-0.5
0

50

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

50

100
C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

50

100
C = 1, K = 50

PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

50

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

50

100
C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

50

100
C = 2, K = 50

(a) Left: Logistic/MNIST. Middle: MLP/MNIST. Right: LeNet-5/MNIST

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

25

50

75
C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

25

50

75
C = 1, K = 50

PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

C = 2, K = 50
-2.5-2.0-1.5-1.0-0.5

0

25

50

75

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

25

50

75

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

25

50

75

C = 2, K = 50

(b) Left: LeNet-5/FMNIST. Right: CNN/FMNIST

-2.5-2.0-1.5-1.0-0.5
0

20

40

60

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

10

20

30

C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

10

20

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

C = 2, K = 50
-2.5-2.0-1.5-1.0-0.5

0

20

40

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

10

20

30
C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

10

20

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

60

C = 2, K = 50

(c) Left: VGG-9/CIFAR-10. Right: ResNet-18/CIFAR-10

-2.5-2.0-1.5-1.0-0.5
0

20

40

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

10

20

30
C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

10

20

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

C = 2, K = 50
-2.5-2.0-1.5-1.0-0.5

0

10

20

30

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 1, K = 5

-2.5-2.0-1.5-1.0-0.5
0

10

20

30
C = 1, K = 20

-2.5-2.0-1.5-1.0-0.5
0

10

20

C = 1, K = 50
PFL
SFL

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

Te
st

 To
p1

 A
cc

ur
ac

y
(%

) C = 2, K = 5

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40

C = 2, K = 20

-2.5-2.0-1.5-1.0-0.5
Learning rate (log10)

0

20

40
C = 2, K = 50

(d) Left: VGG-9/CINIC-10. Right: ResNet-18/CINIC-10

Figure 12: Test accuracies after training for 1000 rounds for various settings. Details are in Table 10.

G.4 More experimental results

More experimental results are provided in this subsection. These include results on MNIST (LeCun
et al., 1998), FMNIST (Xiao et al., 2017) and additional results on CIFAR-10 and CINIC-10.

Setup on MNIST and FMNIST. We consider five additional tasks: 1) training Logistic Regression on
MNIST , 2) training Multi-Layer Perceptron (MLP) on MNIST, 3) training LeNet-5 (LeCun et al.,
1998) on MNIST, 4) training LeNet-5 on FMNIST, 5) training CNN on FMNIST. We partition the
training sets of both MNIST and FMNIST into 500 clients by extended Dirichlet strategy C = 1
and C = 2 (with α = 10.0) and spare the test sets for computing test accuracy. We apply gradient
clipping with the max norm of 10 for PFL and 50 for SFL. We find the best learning rate by grid
search. This is done by running algorithms for 1000 training rounds and choosing the learning rate
that achieves the highest test accuracy averaged over the last 40 training rounds. Note that since
tasks on MNIST/FMNIST are quite simpler than that on CIFAR-10/CINIC-10, we do not use the
coarse, fine-grained search. The results of grid search are given in Table 10. Other hyperparameters
without being stated explicitly are identical to that of CIFAR-10/CINIC-10 in the main body.

Results of MNIST and FMNIST. The results of these five tasks are in Figures 13, 14 and Table 11.
In the tasks MNIST/MLP, MNIST/LeNet-5, FMNIST/CNN, the performance of SFL is better when
C = 1, which is consistent with the analysis in Subsection 4.2. However, we note that SFL shows
worse even when C = 1 in simpler tasks MNIST/Logistic and FMNIST/LeNet-5, especially when
K is large. This may be because the (objective function) heterogeneity on simple models and
datasets is limited even with extreme data distributions (i.e., C = 1). Thus, more extensive ex-
periments are still required before drawing conclusions, which is beyond the scope of this paper.

50

0 200 400 600 800 1000
Training rounds

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Tr
ai

ni
ng

 L
os

s

MNIST, Logisitc, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Tr
ai

ni
ng

-R
 L

os
s

MNIST, Logisitc, C = 1

0 200 400 600 800 1000
Training rounds

75

78

80

82

85

88

90

92

95

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, Logisitc, C = 1

0 200 400 600 800 1000
Training rounds

75

78

80

82

85

88

90

92

95

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) MNIST, Logisitc, C = 1

0 200 400 600 800 1000
Training rounds

75

78

80

82

85

88

90

92

95

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, Logisitc, C = 1

0 200 400 600 800 1000
Training rounds

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Tr
ai

ni
ng

 L
os

s

MNIST, Logisitc, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Tr
ai

ni
ng

-R
 L

os
s

MNIST, Logisitc, C = 2

0 200 400 600 800 1000
Training rounds

82

84

86

88

90

92

94

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, Logisitc, C = 2

0 200 400 600 800 1000
Training rounds

82

84

86

88

90

92

94

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) MNIST, Logisitc, C = 2

0 200 400 600 800 1000
Training rounds

82

84

86

88

90

92

94

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, Logisitc, C = 2

0 200 400 600 800 1000
Training rounds

0.10

0.20

0.30

0.40

0.50

Tr
ai

ni
ng

 L
os

s

MNIST, MLP, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.10

0.20

0.30

0.40

0.50

Tr
ai

ni
ng

-R
 L

os
s

MNIST, MLP, C = 1

0 200 400 600 800 1000
Training rounds

82
84
86
88
90
92
94
96
98

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, MLP, C = 1

0 200 400 600 800 1000
Training rounds

82
84
86
88
90
92
94
96
98

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) MNIST, MLP, C = 1

0 200 400 600 800 1000
Training rounds

82
84
86
88
90
92
94
96
98

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, MLP, C = 1

0 200 400 600 800 1000
Training rounds

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 L
os

s

MNIST, MLP, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

-R
 L

os
s

MNIST, MLP, C = 2

0 200 400 600 800 1000
Training rounds

92

93

94

95

96

97

98

99

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, MLP, C = 2

0 200 400 600 800 1000
Training rounds

92

93

94

95

96

97

98

99

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) MNIST, MLP, C = 2

0 200 400 600 800 1000
Training rounds

92

93

94

95

96

97

98

99

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, MLP, C = 2

0 200 400 600 800 1000
Training rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 L
os

s

MNIST, LeNet-5, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

-R
 L

os
s

MNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

90

92

94

96

98

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

90

92

94

96

98

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) MNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

90

92

94

96

98

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

ni
ng

 L
os

s

MNIST, LeNet-5, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

ni
ng

-R
 L

os
s

MNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

95

96

97

98

99

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

95

96

97

98

99

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) MNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

95

96

97

98

99

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

MNIST, LeNet-5, C = 2

Figure 13: Experimental results on MNIST. For the best viewing experience, we apply moving
average over a window length of 8% of the data points. Note that “Traning Loss/Accuracy” are
computed over the training data of participating clients, “Training-R Loss/Accuracy” are computed
over the training data of random clients and “Test Accuracy” are computed over the original test set.

51

0 200 400 600 800 1000
Training rounds

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Tr
ai

ni
ng

 L
os

s

FMNIST, LeNet-5, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Tr
ai

ni
ng

-R
 L

os
s

FMNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

60

65

70

75

80

85

90

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

60

65

70

75

80

85

90

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) FMNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

60

65

70

75

80

85

90

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, LeNet-5, C = 1

0 200 400 600 800 1000
Training rounds

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Tr
ai

ni
ng

 L
os

s

FMNIST, LeNet-5, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Tr
ai

ni
ng

-R
 L

os
s

FMNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

70

75

80

85

90

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

70

75

80

85

90

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) FMNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

70

75

80

85

90

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, LeNet-5, C = 2

0 200 400 600 800 1000
Training rounds

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Tr
ai

ni
ng

 L
os

s

FMNIST, CNN, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Tr
ai

ni
ng

-R
 L

os
s

FMNIST, CNN, C = 1

0 200 400 600 800 1000
Training rounds

70

75

80

85

90

95

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, CNN, C = 1

0 200 400 600 800 1000
Training rounds

70

75

80

85

90

95

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) FMNIST, CNN, C = 1

0 200 400 600 800 1000
Training rounds

70

75

80

85

90

95

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, CNN, C = 1

0 200 400 600 800 1000
Training rounds

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Tr
ai

ni
ng

 L
os

s

FMNIST, CNN, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 200 400 600 800 1000
Training rounds

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Tr
ai

ni
ng

-R
 L

os
s

FMNIST, CNN, C = 2

0 200 400 600 800 1000
Training rounds

75

80

85

90

95

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, CNN, C = 2

0 200 400 600 800 1000
Training rounds

75

80

85

90

95

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) FMNIST, CNN, C = 2

0 200 400 600 800 1000
Training rounds

75

80

85

90

95

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

FMNIST, CNN, C = 2

Figure 14: Experimental results on FMNIST. For the best viewing experience, we apply moving
average over a window length of 8% of the data points. Note that “Traning Loss/Accuracy” are
computed over the training data of participating clients, “Training-R Loss/Accuracy” are computed
over the training data of random clients and “Test Accuracy” are computed over the original test set.

52

Table 10: Test accuracy results of grid searches for various settings. The results are computed over
the last 40 training rounds (with 1000 training rounds in total). The highest test accuracy among
different learning rates is marked in cyan for both algorithms.

Setting PFL SFL

10−2.0 10−1.5 10−1.0 10−0.5 10−2.5 10−2.0 10−1.5 10−1.0

MNIST, Logistic, C = 1, K = 5 90.95 89.81 87.78 84.33 90.68 87.05 81.38 78.27
MNIST, Logistic, C = 1, K = 20 88.98 87.00 86.06 82.49 85.87 76.88 72.82 72.14
MNIST, Logistic, C = 1, K = 50 86.99 85.50 85.52 81.77 78.45 69.67 67.00 67.09
MNIST, Logistic, C = 2, K = 5 91.72 91.48 90.70 89.84 91.97 90.79 86.68 82.43
MNIST, Logistic, C = 2, K = 20 91.31 90.54 90.10 89.66 90.29 84.86 78.94 75.18
MNIST, Logistic, C = 2, K = 50 90.69 89.89 89.78 89.20 86.45 79.24 73.89 70.85

MNIST, MLP, C = 1, K = 5 91.47 89.51 93.06 91.68 95.13 95.74 95.22 67.44
MNIST, MLP, C = 1, K = 20 78.70 82.53 90.89 87.46 95.79 94.79 91.24 51.06
MNIST, MLP, C = 1, K = 50 71.61 78.20 88.73 85.52 94.83 92.46 84.62 26.71
MNIST, MLP, C = 2, K = 5 93.32 94.35 95.66 94.58 95.40 96.14 96.14 93.00
MNIST, MLP, C = 2, K = 20 93.18 94.59 95.62 90.42 96.33 96.25 95.24 55.47
MNIST, MLP, C = 2, K = 50 93.40 94.40 95.28 87.78 96.34 95.36 91.99 43.36

MNIST, LeNet-5, C = 1, K = 5 68.72 95.46 98.07 98.05 98.28 98.76 98.91 98.29
MNIST, LeNet-5, C = 1, K = 20 58.20 94.30 98.02 97.41 98.43 98.94 98.68 9.84
MNIST, LeNet-5, C = 1, K = 50 53.61 93.00 97.23 97.49 98.60 98.77 97.98 9.95
MNIST, LeNet-5, C = 2, K = 5 96.40 98.43 98.90 98.67 98.62 98.95 98.91 98.55
MNIST, LeNet-5, C = 2, K = 20 97.88 98.69 98.86 98.50 98.94 99.17 98.96 97.74
MNIST, LeNet-5, C = 2, K = 50 98.07 98.65 98.93 98.12 98.95 98.99 98.85 97.88

FMNIST, LeNet-5, C = 1, K = 5 50.88 71.24 81.83 83.26 82.76 85.34 85.31 82.02
FMNIST, LeNet-5, C = 1, K = 20 39.64 69.26 80.73 81.74 78.44 80.84 80.24 61.50
FMNIST, LeNet-5, C = 1, K = 50 37.56 68.40 79.73 80.53 73.84 76.51 75.95 42.07
FMNIST, LeNet-5, C = 2, K = 5 70.59 81.00 85.44 85.16 80.94 84.51 85.59 83.83
FMNIST, LeNet-5, C = 2, K = 20 77.85 84.00 85.70 85.00 80.09 83.20 83.88 77.65
FMNIST, LeNet-5, C = 2, K = 50 81.24 84.17 86.33 84.36 77.73 82.53 81.39 71.13

FMNIST, CNN, C = 1, K = 5 75.57 83.44 86.98 86.40 86.83 88.66 87.82 85.01
FMNIST, CNN, C = 1, K = 20 73.84 82.17 85.86 85.11 83.62 87.37 86.14 73.85
FMNIST, CNN, C = 1, K = 50 72.94 81.26 84.67 82.41 81.75 85.39 82.42 10.00
FMNIST, CNN, C = 2, K = 5 83.20 86.58 88.26 87.24 86.41 88.71 89.19 87.06
FMNIST, CNN, C = 2, K = 20 85.12 87.46 88.80 87.08 85.39 89.24 88.48 83.65
FMNIST, CNN, C = 2, K = 50 85.93 87.82 88.61 86.64 85.53 88.63 87.12 79.50

CIFAR-10, VGG-9, C = 1, K = 5 12.51 25.67 34.89 28.77 43.79 53.73 58.63 10.00
CIFAR-10, VGG-9, C = 1, K = 20 11.51 22.81 28.79 21.10 34.55 27.11 10.00 10.00
CIFAR-10, VGG-9, C = 1, K = 50 10.14 20.58 21.95 10.00 23.41 10.00 10.00 10.00
CIFAR-10, VGG-9, C = 2, K = 5 38.50 50.99 57.09 53.46 58.35 68.75 71.24 10.00
CIFAR-10, VGG-9, C = 2, K = 20 54.70 63.97 68.07 61.92 60.82 67.93 66.50 10.00
CIFAR-10, VGG-9, C = 2, K = 50 62.72 67.57 69.11 64.21 62.27 67.52 62.59 10.00

CIFAR-10, ResNet-18, C = 1, K = 5 11.46 19.72 26.50 25.45 33.49 37.77 42.04 36.59
CIFAR-10, ResNet-18, C = 1, K = 20 10.56 18.48 23.41 20.86 18.99 26.41 32.70 10.00
CIFAR-10, ResNet-18, C = 1, K = 50 10.55 17.39 22.42 17.86 15.46 17.57 19.39 10.00
CIFAR-10, ResNet-18, C = 2, K = 5 23.45 32.71 43.24 47.45 41.24 51.51 65.86 68.17
CIFAR-10, ResNet-18, C = 2, K = 20 28.02 42.36 58.07 64.03 42.83 58.43 70.55 58.29
CIFAR-10, ResNet-18, C = 2, K = 50 36.22 46.69 64.75 69.71 47.57 65.33 68.40 46.80

CINIC-10, VGG-9, C = 1, K = 5 10.36 22.56 29.58 21.02 36.87 42.26 43.27 10.00
CINIC-10, VGG-9, C = 1, K = 20 10.13 19.09 22.83 15.00 28.88 31.54 10.00 10.00
CINIC-10, VGG-9, C = 1, K = 50 10.37 16.85 17.92 10.00 22.12 10.00 10.00 10.00
CINIC-10, VGG-9, C = 2, K = 5 33.52 42.24 46.12 43.43 43.64 49.28 50.64 10.00
CINIC-10, VGG-9, C = 2, K = 20 44.04 48.26 47.80 42.40 48.54 52.10 47.55 10.00
CINIC-10, VGG-9, C = 2, K = 50 42.87 46.93 48.29 40.75 48.93 51.11 41.19 13.04

CINIC-10, ResNet-18, C = 1, K = 5 10.64 17.16 23.15 21.37 29.52 32.70 33.55 29.92
CINIC-10, ResNet-18, C = 1, K = 20 10.29 14.65 18.01 16.68 19.91 20.42 29.57 10.00
CINIC-10, ResNet-18, C = 1, K = 50 10.18 13.65 16.27 14.35 14.56 17.72 26.30 10.00
CINIC-10, ResNet-18, C = 2, K = 5 22.59 28.03 35.78 39.35 34.06 38.73 43.57 44.67
CINIC-10, ResNet-18, C = 2, K = 20 27.18 34.74 43.40 43.46 30.27 37.96 46.13 36.81
CINIC-10, ResNet-18, C = 2, K = 50 30.36 37.05 40.74 38.90 33.77 43.20 42.32 11.35

53

Table 11: Test accuracy results for various settings. We run PFL and SFL for 1000 training rounds
for MNIST and FMNIST and 4000 training rounds for CIFAR-10 and CINIC-10 with 3 different
random seeds. The results are computed over the random seeds and the last 40 training rounds for
MNIST and FMNIST and the last 100 training rounds for CIFAR-10 and CINIC-10. The better re-
sults (with more than 1% advantage for MNIST/FMNIST and 2% advantage for CIFAR-10/CINIC-
10) between PFL and SFL in each setting are marked in color.

Setup C = 1 C = 2

Dataset Model Method K = 5 K = 20 K = 50 K = 5 K = 20 K = 50

MNIST

Logistic PFL 91.10±0.35 89.46±1.20 87.82±1.98 91.69±0.17 91.19±0.47 90.46±0.86

SFL 91.09±0.67 87.11±2.09 80.94±3.70 91.89±0.32 90.16±1.10 86.52±2.41

MLP PFL 93.61±1.42 91.84±2.20 90.27±3.17 95.65±0.38 95.46±0.47 95.34±0.51

SFL 95.91±0.33 95.90±0.44 95.25±0.76 96.26±0.22 96.35±0.22 96.35±0.32

LeNet-5 PFL 98.21±0.40 98.02±0.63 97.21±1.55 98.94±0.09 98.97±0.10 98.98±0.11

SFL 98.90±0.18 98.87±0.19 98.79±0.19 98.91±0.11 99.07±0.12 98.99±0.10

FMNIST
LeNet-5 PFL 82.57±2.03 81.09±3.19 78.22±4.38 85.86±0.87 86.35±1.12 86.58±0.88

SFL 83.97±2.42 79.39±2.59 76.21±2.95 86.52±1.67 84.69±2.26 83.58±2.55

CNN PFL 86.61±1.62 85.40±2.07 84.62±2.18 88.61±0.93 89.16±0.77 89.10±0.89

SFL 88.03±1.28 86.75±1.39 85.44±1.66 89.91±0.96 89.60±1.01 89.05±1.27

CIFAR-10
VGG-9 PFL 67.61±4.02 62.00±4.90 45.77±5.91 78.42±1.47 78.88±1.35 78.01±1.50

SFL 78.43±2.46 72.61±3.27 68.86±4.19 82.56±1.68 82.18±1.97 79.67±2.30

ResNet-18 PFL 52.12±6.09 44.58±4.79 34.29±4.99 80.27±1.52 82.27±1.55 79.88±2.18

SFL 83.44±1.83 76.97±4.82 68.91±4.29 87.16±1.34 84.90±3.53 79.38±4.49

CINIC-10
VGG-9 PFL 52.61±3.19 45.98±4.29 34.08±4.77 55.84±0.55 53.41±0.62 52.04±0.79

SFL 59.11±0.74 58.71±0.98 56.67±1.18 60.82±0.61 59.78±0.79 56.87±1.42

ResNet-18 PFL 41.12±4.28 33.19±4.73 24.71±4.89 57.70±1.04 55.59±1.32 46.99±1.73

SFL 60.36±1.37 51.84±2.15 44.95±2.97 64.17±1.06 58.05±2.54 56.28±2.32

54

0 1000 2000 3000 4000
Training rounds

0.50

1.00

1.50

2.00

2.50

3.00

Tr
ai

ni
ng

 L
os

s

CIFAR-10, VGG-9, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.50

1.00

1.50

2.00

2.50

3.00

Tr
ai

ni
ng

-R
 L

os
s

CIFAR-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CIFAR-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Tr
ai

ni
ng

 L
os

s

CIFAR-10, VGG-9, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Tr
ai

ni
ng

-R
 L

os
s

CIFAR-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

50
55
60
65
70
75
80
85
90
95

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

50
55
60
65
70
75
80
85
90
95

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CIFAR-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

50
55
60
65
70
75
80
85
90
95

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

0.00

1.00

2.00

3.00

4.00

5.00

Tr
ai

ni
ng

 L
os

s

CIFAR-10, ResNet-18, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.00

1.00

2.00

3.00

4.00

5.00

Tr
ai

ni
ng

-R
 L

os
s

CIFAR-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CIFAR-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

CIFAR-10, ResNet-18, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

-R
 L

os
s

CIFAR-10, ResNet-18, C = 2

0 1000 2000 3000 4000
Training rounds

30

40

50

60

70

80

90

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-18, C = 2

0 1000 2000 3000 4000
Training rounds

30

40

50

60

70

80

90

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CIFAR-10, ResNet-18, C = 2

0 1000 2000 3000 4000
Training rounds

30

40

50

60

70

80

90

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CIFAR-10, ResNet-18, C = 2

Figure 15: Experimental results on CIFAR-10. For the best viewing experience, we apply moving
average over a window length of 4% of the data points. Note that “Traning Loss/Accuracy” are
computed over the training data of participating clients, “Training-R Loss/Accuracy” are computed
over the training data of random clients and “Test Accuracy” are computed over the original test set.
The shaded areas show the standard deviation with 3 random seeds.

55

0 1000 2000 3000 4000
Training rounds

0.00

1.00

2.00

3.00

4.00

5.00

Tr
ai

ni
ng

 L
os

s

CINIC-10, VGG-9, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.00

1.00

2.00

3.00

4.00

5.00

Tr
ai

ni
ng

-R
 L

os
s

CINIC-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CINIC-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

10
20
30
40
50
60
70
80
90

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, VGG-9, C = 1

0 1000 2000 3000 4000
Training rounds

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

CINIC-10, VGG-9, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

-R
 L

os
s

CINIC-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

30

40

50

60

70

80

90

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

30

40

50

60

70

80

90

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CINIC-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

30

40

50

60

70

80

90

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, VGG-9, C = 2

0 1000 2000 3000 4000
Training rounds

0.00

1.00

2.00

3.00

4.00

5.00

Tr
ai

ni
ng

 L
os

s

CINIC-10, ResNet-18, C = 1
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.00

1.00

2.00

3.00

4.00

5.00

Tr
ai

ni
ng

-R
 L

os
s

CINIC-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CINIC-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

10
20
30
40
50
60
70
80
90

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, ResNet-18, C = 1

0 1000 2000 3000 4000
Training rounds

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Tr
ai

ni
ng

 L
os

s

CINIC-10, ResNet-18, C = 2
PFL, K=5
PFL, K=20
PFL, K=50
SFL, K=5
SFL, K=20
SFL, K=50

0 1000 2000 3000 4000
Training rounds

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Tr
ai

ni
ng

-R
 L

os
s

CINIC-10, ResNet-18, C = 2

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

100

Tr
ai

ni
ng

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, ResNet-18, C = 2

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

100

Tr
ai

ni
ng

-R
 To

p1
 A

cc
ur

ac
y

(%
) CINIC-10, ResNet-18, C = 2

0 1000 2000 3000 4000
Training rounds

20

30

40

50

60

70

80

90

100

Te
st

 To
p1

 A
cc

ur
ac

y
(%

)

CINIC-10, ResNet-18, C = 2

Figure 16: Experimental results on CINIC-10. For the best viewing experience, we apply moving
average over a window length of 4% of the data points. Note that “Traning Loss/Accuracy” are
computed over the training data of participating clients, “Training-R Loss/Accuracy” are computed
over the training data of random clients and “Test Accuracy” are computed over the original test set.
The shaded areas show the standard deviation with 3 random seeds.

56

	Introduction
	Contributions
	Convergence theory
	Assumptions
	Convergence analysis of SFL
	PFL vs. SFL on heterogeneous data

	Experiments
	Experiments on quadratic functions
	Experiments on real datasets

	Conclusion
	Applicable to Split Learning
	Related work
	Notations and technical lemmas
	Notations
	Basic identities and inequalities
	Technical lemmas

	Proofs of Theorem 1
	Strongly convex case
	Finding the recursion
	Bounding the client drift with Assumption 3b
	Tuning the learning rate
	Proof of strongly convex case of Theorem 1 and Corollary 1

	General convex case
	Tuning the learning rate
	Proof of general convex case of Theorem 1 and Corollary 1

	Non-convex case
	Bounding the client drift with Assumption 3a
	Proof of non-convex case of Theorem 1 and Corollary 1

	Proofs of Theorem 2
	Strongly convex case
	Find the per-round recursion
	Bounding the client drift with Assumption 3b
	Proof of strongly convex case of Theorem 2

	General convex case
	Proof of general convex case of Theorem 2 and Corollary 2

	Non-convex case
	Bounding the client drift with Assumption 3a
	Proof of non-convex case of Theorem 2

	Simulations on quadratic functions
	More experimental details
	Extended Dirichlet partition
	Gradient clipping.
	Grid search
	More experimental results

