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A IMPLEMENTATION DETAILS OF TILDE-Q SUBLOSSES

As we discussed in Sec. 4.2, TILDE-Q consists of three sublosses: La.shift, Lphase, and Lamp. Our
design rationale for selecting these sublosses is described in Sec. 4.1. In this section, we describe the
detailed connection between the sublosses and the design rationale (Eqs. 1, 2, and 3).

Amplitude Shifting Given two sets of points with the same length T , X,X ′ ∈ RT , let us define
their distance using the signed distance function g : R× R → R. Then, for each point x, x′ in set
X,X ′, we can define a point-wise distance set D with g as below:

D = [g(x1, x
′
1), . . . , g(xT , x

′
T )] = [d1, . . . , dT ].

When we design La.shift, we have one main question: given an arbitrary X,X ′, and g, how do we
build a loss function that is invariant to any arbitrary gap k. In this work, we have reformulated this
task from ensuring equal gaps between all points into making uniform distribution of the gaps (i.e.,∑

i pdi
log pdi

on the interval [1, T ]). Please note that we convert gaps into relative values since an
absolute domain requires information for k for each data sample. Without loss of generality, we can say
that this problem is equivalent to the problem of entropy maximization. Let us suppose that we convert
the distance set D into the probability distribution by Softmax function, pdi = Softmax(di). In
this case, we can say that our optimization problem is maximize the entropy as below:

maximize L =

T∑
i=1

pdi log pdi ,

which is well-known to have its global optima with ∀i∈[1,T ]pdi
= 1

T . Therefore, we formulate
La.shift as Eq. 4, which satisfies Eq. 1. Please note that the noise robustness of La.shift relies on
that of the signed distance function, g. Since La.shift requires computation of g and Softmax, it
takes O(n) time for its computation.

Phase Shifting To discuss phase shifting and periodicity of a time-series, Fourier transform is an
inevitable factor. However, in the real-world dataset, a few problems arise: 1) we are unaware of
the frequencies and periodicity of the data itself, and 2) a direct use of Fourier coefficients may be
biased by noise. During the design phase, we aim to solve these problems with Lphase. To extract
the main flow of time-series data (i.e., the dominant periodicity or frequencies), we first define the
dominant frequencies based on their statistical significance. Let X ∈ RT as an input signal. In the
machine learning domain, researchers commonly suppose the input signal follows normal distribution
X ∼ N (0, I). Accordingly, its Fourier coefficients on frequency k is:

F(X) =

T∑
n=1

xne
−i2πkn/T ∼ N (0, T ).

After Fourier transform, we define k as a dominant frequency if k is greater than
√
T , which indicates

statistical significance. However, in some cases, we have only a short sample to represent signals or
a noisy signal that has no periodicity, which does not yield a statistically significant k. To prevent
such cases, in Lphase, we guarantee that at least

√
T ′ number of frequencies are selected as dominant

frequencies. Lphase requires O(n log n) time for its computation, which is inherited from complexity
of Fast Fourier Transform.

Uniform Amplification Although effective, Lphase has two limitations: 1) it is not perfectly phase
shifting invariant as it is optimized with Fourier coefficients, and 2) aforementioned two subloss
terms still make no consideration for uniform amplification invariance. Inspired by Paparrizos &
Gravano (2015), we utilize normalized correlation for the uniform amplification. Specifically, we
normalize correlation R as follows:

R(X,Y) =
Corr(X,Y)√

Corr(X,X) · Corr(Y,Y)
,

where Corr is cross-correlation or auto-correlation, and R is normalized correlation. By using this
term, we have uniform amplification invariant measure. We utilize Lamp as the subcomponent with
small γ, since tolerance for the multiplication factor (i.e., uniform amplification) has greater influence
than addition or phase shifting. As Lphase, by using fast Fourier transform, Lamp takes O(n log n)
time.
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TILDE-Q Design Rationale: α and γ La.shift is built for amplitude shifting and designed
to be effective with both periodic and nonperiodic signals. In contrast, Lphase handles uniform
amplification and is tailored to perform optimally with periodic signals. Since La.shift and Lphase
complement each other, we set α to balance them. For example, a large α value will work well for
nonperiodic signals and will have less penalty for amplitude shifting. Additionally, we utilize Lamp
as a subcomponent to calibrate the results (e.g., gamma = 0.01). With this design, while preserving
the shape-awareness of TILDE-Q, users can control specific invariances or conditions. For example,
users can increase the value of α to emphasize nonperiodic modeling when a dataset has no particular
periodicity. This user-oriented objective setting is one of the strengths of TILDE-Q and increases its
utility.

B DETAILED EXPERIMENT SETUP

Dataset In our experiment, we utilize six datasets – Synthetic, ECG5000, and Traffic dataset
for the simple model (i.e., Sequence-to-Sequence Gated Recurrent Unit) and ETTh2, ETTm2, and
Electricity for the state-of-the-art model (i.e., Informer and N-Beats). For each dataset, we describe
some metadata of them and the experimental setting, including the input length n and prediction
window L. Our implementation could be found in Anonymized Github1.

Synthetic: As Le Guen & Thome (2019) describe, the Synthetic dataset is an artificial dataset for
measuring model performance on sudden changes (step functions) with an input signal composed of
two peaks. The amplitude and temporal position of the two peaks are randomly selected. Then the
selected position and amplitude of the step are determined by a peak position and amplitude. We use
500 time-series for training, 500 for validation, and 500 for testing. For the Synthetic dataset, we set
the input length as n = 20 and the prediction window as L = 40. The generation code is provided in
DILATE Github2.

ECG5000: This dataset is originally a 20-hour long ECG (Electrocardiogram), downloaded from
Physionet3 and archived in UCR Time Series Classification Archive (Dau et al., 2019). The data is
split by each heartbeat and processed in equal lengths (140). In the training, we use 500 for training,
500 for validation, and 4000 for testing. We take the first n = 84 steps as input and predict the last
L = 56 steps.

Traffic: Traffic dataset is a collection of 48 months (2015-2016) hourly road occupancy rate (between
0 to 1) data from the California Department of Transportation4. As Le Guen & Thome (2019) do,
we utilize univariate series of the first sensor, a total of 17544 data points. We set our problem as
forecasting L = 24 future occupancy rates with n = 168 historical data (past week). We use 60% of
the data for training, 20% for validation, and the rest for evaluation.

ETT: The ETT (Electricity TraNSformer Temperature) dataset, published by Zhou et al. (2021), is
2-year data collected from two separate counties in China, including ETTh2 and ETTm2 datasets.
Each data point has a target value of “oil temperature” and other 6 power load features. ETTh2 and
ETTm2 datasets have 1-hour and 15-minute intervals, respectively. As Zhou et al. (2021) do, we split
them into 12/4/4 months for the training/validation/testing. Detailed settings, such as the input and
output length and hyperparameter setting, are based on the information at Informer Github5.

ECL: The ECL (Electricity Consuming Load) is a dataset recorded in kWh every 15 minutes
from 2012 to 2014, for 321 clients. In our experiment, we split them into 15/3/4 months for the
train/validation/test, as Zhou et al. (2021) do. Note that we use the same hyperparameter settings in
the ETTh2 dataset.

Deep Learning Model Architectures We perform experiments with three different model architec-
tures, including Sequence-to-Sequence GRU, Informer, and N-Beats. To induce models to predict
future time-series in a timely manner, we set α = 0.5 and γ = 0.01 for TILDE-Q. Other training

1https://anonymous.4open.science/r/TILDE-Q-9E54
2https://github.com/vincent-leguen/DILATE
3https://physionet.org/
4http://pems.dot.ca.gov
5https://github.com/zhouhaoyi/Informer2020

14



Under review as a conference paper at ICLR 2024

metrics, including MSE and DILATE, are used as described in their original papers. All models are
trained with Early Stopping and ADAM optimizer.

Sequence-to-Sequence GRU To evaluate TILDE-Q in simple model, we utilize one layer Sequence-
to-Sequence GRU model. For the training of the GRU model, we set a learning rate of 1e− 3, hidden
size of 128, trained by maximum 1000 epochs with Early Stopping and ADAM optimizer.

Informer When we train Informer with ETTh2, ETTm2, and ECL dataset, we utilize the official
code and hyperparameter setting. In the case of ECL dataset, as the author answered in their official
code5, we utilize the same hyperparameter and dataset splitting criteria as the ETTh2 dataset.

N-Beats For N-Beats, we utilize two generic blocks with a hidden size of 128. Additionally, we set
the learning rate as 1e− 3 for all three datasets.

Autoformer For Autoformer6, we use the official code and hyperparameter setting. For the ETTh2
dataset, we utilize hyperparameter settings described in the official code of FEDformer7.

FEDformer For FEDformer7, we use the official code and hyperparameter setting.

C ADDITIONAL EVALUATIONS

C.1 DETAILED EXPERIMENT RESULTS AND ANALYSIS

Table 3: Detailed experimental results on six real-world datasets (four cases) with N-Beats.
Methods N-Beats + MSE N-Beats + DILATE N-Beats + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

E
T

T
h2

96 0.1869 7.2379 2.3787 0.4688 0.3105 6.5849 3.6490 0.4879 0.1557 5.1011 1.3240 0.5862
192 0.2385 11.5667 4.9153 0.4505 0.6186 9.7254 7.0831 0.4637 0.1738 7.6334 2.4122 0.5819
336 0.2889 16.5255 11.5207 0.4544 1.1406 13.7328 14.6986 0.4584 0.2132 11.3351 5.3556 0.5373
720 0.3881 24.1570 18.8462 0.4381 1.6713 19.4392 23.7028 0.4575 0.3044 17.6006 9.6636 0.5287

E
T

T
m

2 96 0.0790 3.9685 2.0436 0.6721 0.1524 7.9302 5.5597 0.4379 0.0952 4.0110 2.1939 0.6902
192 0.1224 6.8695 3.2834 0.5762 0.2055 10.0393 8.5602 0.5107 0.1286 6.3556 4.9798 0.6160
336 0.1824 12.1438 8.5915 0.4587 0.2501 12.6342 16.1473 0.4819 0.1705 8.9377 8.3539 0.6195
720 0.2370 22.8676 17.8458 0.4929 0.4170 17.7764 24.6877 0.5836 0.2336 14.2715 19.0883 0.7070

E
C

L

96 0.3666 3.5207 0.2989 0.6589 1.1156 5.1430 2.6613 0.5074 0.3183 2.9707 0.4844 0.7229
192 0.4307 5.7578 0.4253 0.6212 1.1859 7.3406 2.8488 0.4973 0.3383 4.1817 0.4229 0.7187
336 0.5199 8.5563 0.5384 0.5965 1.2460 9.5096 3.0517 0.5091 0.3831 5.6643 0.3024 0.7112
720 0.6240 13.9436 0.6510 0.5717 1.3061 13.1928 3.7279 0.5337 0.4540 8.9997 0.3251 0.6960

E
xc

ha
ng

e 96 0.4496 8.6395 4.3197 0.4424 0.3945 8.9661 4.3286 0.4316 0.2748 7.9744 5.2964 0.4467
192 1.2161 12.1857 10.5166 0.4157 1.5684 13.0560 9.2434 0.4061 1.6629 11.5557 8.7896 0.4348
336 1.4529 14.7085 19.0407 0.4130 3.6784 17.5189 17.2512 0.3871 1.8432 12.5648 20.8871 0.4603
720 1.8563 21.7347 50.6751 0.4073 3.9008 26.7020 74.0546 0.3400 2.8487 19.1588 53.8069 0.4619

Tr
af

fic

96 0.2349 2.1046 0.0216 0.8303 2.3325 3.9657 1.2052 0.5250 0.2286 2.0699 0.0207 0.8371
192 0.3014 3.4040 0.0142 0.7916 2.5627 5.4169 1.1355 0.5515 0.3352 3.2559 0.0119 0.8028
336 0.3455 4.6409 0.0088 0.7918 2.4599 8.2828 1.3377 0.5208 0.3990 4.2622 0.0066 0.8206
720 0.4298 7.0561 0.0045 0.7958 2.3522 12.6258 0.9967 0.5177 0.4480 6.7344 0.0034 0.8085

W
ea

th
er 96 0.0042 9.3228 5.9134 0.4072 0.0023 8.9289 5.0617 0.4256 0.0010 6.5198 6.0450 0.5168

192 0.0056 10.9682 11.9549 0.4212 0.0030 12.8164 10.6858 0.4307 0.0017 8.8391 9.0867 0.5076
336 0.0058 13.3578 14.6572 0.4243 0.0087 20.4895 23.7903 0.3579 0.0026 11.8682 9.6758 0.5074
720 0.0068 18.5861 22.1432 0.4315 0.1534 28.6021 47.4488 0.3982 0.0029 17.1895 19.1942 0.5078

At first, we observe that the model optimized with TILDE-Q outperforms the same model optimized
with other objective functions in both short- and long-term forecasting tasks. An interesting point in
the results is the large increased errors of TDI and DTW with long-term forecasting. For example,
TDI of Informer with DILATE shows dramatically increased error with the ECL dataset, as the
forecasting window increases, while LCSS does not produce such a large increased error. We attribute
this to the weakness of DTW-based loss functions, which have a weakness due to high sensitiveness
to noise. In contrast, TILDE-Q does not show such a large performance drop and even achieves

6https://github.com/thuml/Autoformer
7https://github.com/MAZiqing/FEDformer
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Table 4: Detailed experimental results on six real-world datasets (four cases) with Informer.
Methods Informer + MSE Informer + DILATE Informer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS
E

T
T

h2

96 0.2466 6.9254 3.6676 0.4633 0.3284 6.3109 3.5838 0.5037 0.1768 5.8437 1.6734 0.5379
192 0.2818 10.2654 11.1580 0.4254 0.4086 8.8262 7.1780 0.4893 0.2432 10.2134 9.9865 0.4317
336 0.3089 12.1822 18.7014 0.4434 0.4164 10.3779 13.2580 0.5062 0.2958 13.5586 20.2850 0.4165
720 0.2877 17.6369 38.4617 0.4425 0.4229 14.1196 23.9403 0.4815 0.3157 18.4617 43.3238 0.4262

E
T

T
m

2 96 0.0889 3.4007 1.5719 0.7386 0.1263 6.0144 2.7757 0.5129 0.0871 3.1354 1.3474 0.7817
192 0.1157 5.7964 2.8128 0.6705 0.2340 9.7004 7.8354 0.5266 0.1317 5.7093 2.9129 0.6983
336 0.1860 8.9971 6.7970 0.6365 0.2805 11.7889 13.3861 0.5025 0.1767 9.0866 7.4023 0.6555
720 0.2165 14.7685 24.6694 0.5768 0.3745 16.7734 29.2783 0.4747 0.2063 15.3057 24.1959 0.5860

E
C

L

96 0.2709 2.8067 0.1720 0.7032 0.9856 3.6394 1.4794 0.6324 0.2800 2.9466 0.2473 0.7275
192 0.2793 4.1193 0.1508 0.7060 1.1209 5.2289 2.1749 0.6053 0.3077 4.2693 0.2978 0.7336
336 0.3203 5.9533 0.1642 0.7222 1.2331 7.8470 3.0415 0.5694 0.3271 5.8090 0.1984 0.7143
720 0.6414 15.8561 4.4284 0.4564 1.3706 12.5981 5.6720 0.5506 0.4676 11.4027 0.7107 0.6298

E
xc

ha
ng

e 96 0.3534 8.0965 4.8843 0.4689 0.3260 7.7370 5.6336 0.4678 0.5264 7.9866 6.5120 0.4553
192 0.9682 11.0843 11.3110 0.4647 0.9737 10.8894 15.6770 0.4584 1.2845 10.4358 10.7009 0.4959
336 1.3710 12.8076 18.5937 0.4676 1.6735 12.7034 29.2013 0.4428 1.6912 12.2349 18.2197 0.4932
720 1.7586 22.6852 59.4243 0.4681 1.8292 16.0093 56.8687 0.5293 1.9130 24.0510 62.8152 0.5104

Tr
af

fic

96 0.2606 2.0994 0.0208 0.8329 2.9612 2.3355 0.9646 0.7312 0.2284 2.0027 0.0194 0.8490
192 0.2920 3.2573 0.0126 0.8158 2.9978 3.5451 0.8429 0.7394 0.2753 3.1721 0.0125 0.8248
336 0.3109 4.6581 0.0078 0.8115 2.9696 4.9879 1.2672 0.7117 0.2993 4.4715 0.0077 0.8170
720 0.3472 6.7989 0.0040 0.8146 2.6845 10.7450 3.4514 0.5874 0.3859 7.5424 0.0051 0.7752

W
ea

th
er 96 0.0043 8.2890 5.4604 0.4556 0.0069 6.5571 4.7505 0.5159 0.0021 5.5412 4.5012 0.5602

192 0.0031 10.7993 9.2928 0.4523 0.0041 10.5645 9.4713 0.4704 0.0028 8.2535 5.8289 0.5516
336 0.0051 13.8721 22.2699 0.4451 0.0055 12.0586 16.4933 0.4884 0.0039 10.8802 10.5220 0.5668
720 0.0061 21.7720 41.5877 0.4476 0.0737 16.8378 29.8112 0.5142 0.0047 13.9934 20.9991 0.5689

Figure 3: Qualitative results with simple sequence-to-sequence GRU model (a) and state-of-the-art
model (b).

better performance in the long-term forecasting (e.g., Table 4, ETTh2). Additionally, we can find
that Informer with TILDE-Q on ECL data and N-Beats with TILDE-Q on all three datasets show
significant improvements. It indicates that TILDE-Q success to model shape, but other metrics could
not. We provide additional qualitative analysis in Appendix C.2. For the experimental results with
standard deviation and NLinear (Zeng et al., 2023), please visit our Anonymous GitHub1.

Next, we present a qualitative analysis of the results. Fig. 3 shows how the model with different
training metrics forecasts with different datasets. From the figure, we have noticed that TILDE-Q
allows the model to generate more robust, shape-aware forecasting, regardless of amplitude shifting,
phase shifting, and uniform amplification. For example, in the case of N-Beats (Fig. 3 (b) bottom),
TILDE-Q generate forecasting results, which are more robust, shape-aware prediction compared
to other metrics. We also see the strength in the Informer case (Fig. 3 (b), top). Even when the
model has not enough ability to capture shape, TILDE-Q tries to retrieve the shape. We provide
additional qualitative results with the visualization below. When the model has enough ability to
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capture shape (i.e., except ETTh2, Informer of T ′ ∈ [192, 336, 720]), TILDE-Q has shown its
noise-robust, smooth forecasting with correctly modeled temporal dynamics. In the most of N-Beats
results and some of the Informer results, TILDE-Q reveals that these models have enough ability to
capture the temporal dynamics with a proper loss function. In summary, TILDE-Q proves that it is
model-agnostic, noise-robust, and able to capture the shape.

Table 5: Detailed experimental results on six real-world datasets (four cases) with Autoformer.
Methods Autoformer + MSE Autoformer + DILATE Autoformer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

E
T

T
h2

96 0.1538 5.2227 2.1865 0.6187 0.2211 6.0453 2.5345 0.5315 0.1494 5.1060 1.9752 0.6317
192 0.1974 7.8730 3.3382 0.6019 0.2825 8.6696 5.6671 0.5335 0.2079 7.8917 3.7532 0.5984
336 0.2393 10.8002 7.3141 0.5954 0.3759 11.0335 13.1347 0.5257 0.2360 10.7212 7.0085 0.5971
720 0.2859 16.3502 15.9233 0.5772 0.4296 15.9819 22.2173 0.4924 0.2378 16.0002 13.7906 0.5795

E
T

T
m

2 96 0.0990 4.3498 2.5052 0.6756 0.1135 5.3097 2.2211 0.5936 0.0940 3.9078 2.2587 0.7075
192 0.1340 6.3207 3.3676 0.6512 0.1854 8.5209 3.7894 0.5506 0.1259 6.0979 2.9278 0.6810
336 0.1587 9.4374 6.9205 0.6036 0.2001 12.0265 8.8305 0.5370 0.1548 9.5223 7.2875 0.6169
720 0.1999 14.8332 11.9655 0.6064 0.2665 17.8025 17.4114 0.5001 0.1885 14.5844 9.9918 0.6277

E
C

L

96 0.4209 3.5957 0.2461 0.6487 0.6813 3.6490 0.4780 0.6253 0.3515 3.2173 0.2298 0.6912
192 0.4206 4.9924 0.3416 0.6574 0.7319 5.5324 0.2775 0.6118 0.4032 4.8581 0.3301 0.6680
336 0.4621 6.6888 0.2795 0.6535 0.7895 7.5665 0.2503 0.6091 0.4637 6.7335 0.3923 0.6429
720 0.5005 10.8571 0.2383 0.6183 0.8630 12.1416 0.1877 0.6074 0.5049 9.8492 0.2525 0.6420

E
xc

ha
ng

e 96 0.2472 8.2957 5.8340 0.4577 0.1921 8.4651 5.6328 0.4646 0.1730 8.2046 5.1165 0.4577
192 0.3255 11.4212 17.0909 0.4319 0.4732 12.8599 19.0164 0.4124 0.2955 11.3655 15.4372 0.4433
336 0.5483 15.1853 44.4975 0.3277 0.8035 18.0948 57.5819 0.3114 0.5331 16.7350 45.8166 0.3321
720 1.3620 24.6397 145.3080 0.2357 1.4936 27.7069 151.6671 0.2302 1.1993 19.5296 121.8509 0.2233

Tr
af

fic

96 0.2562 1.9689 0.0178 0.8761 0.4835 1.9044 0.0392 0.8521 0.2275 1.8778 0.0168 0.8879
192 0.2604 2.8922 0.0091 0.8780 0.5653 3.0466 0.0343 0.8187 0.2497 2.8793 0.0116 0.8817
336 0.2474 4.0026 0.0051 0.8797 0.8155 4.2637 0.0327 0.8047 0.2422 3.9469 0.0059 0.8760
720 0.2720 6.4371 0.0030 0.8710 1.0729 6.0776 0.0217 0.8176 0.2836 6.1751 0.0034 0.8674

W
ea

th
er 96 0.0168 7.4658 6.0336 0.4818 0.0019 5.9775 4.9688 0.5306 0.0015 5.9829 4.8957 0.5461

192 0.0069 10.6173 7.4506 0.4941 0.0026 8.3686 5.4565 0.5423 0.0017 7.7799 6.1032 0.5355
336 0.0052 12.5224 13.2607 0.4898 0.0030 12.4524 12.1816 0.4854 0.0020 10.3144 9.0025 0.5252
720 0.0078 18.5079 25.8063 0.4744 0.0115 20.1354 36.7754 0.4721 0.0023 15.2563 18.3134 0.5102

Table 6: Detailed experimental results on six real-world datasets (four cases) with FEDformer.
Methods FEDformer + MSE FEDformer + DILATE FEDformer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS MSE DTW TDI LCSS

E
T

T
h2

96 0.1299 4.7265 1.2607 0.6690 0.1906 6.2294 1.8228 0.5261 0.1381 4.7578 1.3560 0.6621
192 0.1819 7.6178 2.6979 0.6229 0.2688 8.8422 4.8043 0.5261 0.1988 7.6174 2.7712 0.6124
336 0.2305 10.5860 6.7027 0.6050 0.3506 11.4834 12.8408 0.5091 0.2382 10.4108 6.6218 0.6039
720 0.2776 15.7013 14.7466 0.5911 0.4327 14.0692 20.6266 0.5091 0.2871 15.3120 16.4059 0.5808

E
T

T
m

2 96 0.0682 3.0962 1.3862 0.7868 0.1147 4.6648 2.2981 0.6325 0.0669 3.0328 1.3556 0.7918
192 0.0976 5.2417 2.0295 0.7340 0.1848 8.0678 4.4893 0.5391 0.0971 5.1508 2.1782 0.7384
336 0.1326 8.3151 5.4619 0.6667 0.2493 13.6349 11.7563 0.5049 0.1279 8.3010 4.5488 0.6828
720 0.1957 14.2579 11.8328 0.6262 0.2913 17.4636 41.9434 0.4806 0.1822 14.1131 10.4778 0.6361

E
C

L

96 0.2531 2.6402 0.1436 0.7322 0.4794 2.8685 0.2482 0.6943 0.2638 2.6594 0.1614 0.7265
192 0.2945 3.8647 0.1831 0.7306 0.5485 4.3313 0.1732 0.6813 0.2821 3.7830 0.1277 0.7340
336 0.3313 5.2789 0.1078 0.7207 0.6967 5.7911 0.1985 0.6892 0.3385 5.1763 0.1229 0.7290
720 0.3956 8.5881 0.0632 0.6961 0.7741 10.1163 0.8837 0.6403 0.3939 8.5665 0.0784 0.7013

E
xc

ha
ng

e 96 0.1437 8.5595 4.4258 0.4347 0.3884 8.9178 7.0385 0.4439 0.1215 8.0591 6.1979 0.4704
192 0.2694 12.5168 12.3117 0.4202 0.5912 13.1929 15.4207 0.4187 0.2956 11.5607 12.1302 0.4474
336 0.4916 16.4673 27.0756 0.4140 0.7520 18.1381 33.7878 0.3969 0.5896 15.9267 24.8808 0.4342
720 1.2115 25.6243 108.0500 0.3838 1.5110 26.7031 91.6313 0.3760 1.1700 24.6190 71.8783 0.3935

Tr
af

fic

96 0.2074 1.9132 0.0165 0.8824 0.3533 1.8617 0.0291 0.8609 0.1867 1.8386 0.0152 0.8983
192 0.2051 2.7761 0.0085 0.8951 1.4682 2.7545 0.1312 0.8591 0.1961 2.7380 0.0083 0.8975
336 0.2140 3.7583 0.0047 0.9023 2.9741 3.7440 0.1779 0.8519 0.2059 3.7834 0.0050 0.8947
720 0.2291 5.9735 0.0026 0.8919 3.0829 5.8173 0.0949 0.8580 0.2312 6.1080 0.0022 0.8735

W
ea

th
er 96 0.0070 6.1550 4.7039 0.5264 0.0017 5.9507 4.5891 0.5535 0.0014 5.5205 4.1085 0.5792

192 0.0063 7.6906 6.2940 0.5417 0.0020 8.6593 4.6333 0.6000 0.0017 6.9706 5.0003 0.5863
336 0.0046 10.3501 9.4691 0.5261 0.0053 14.8249 9.6239 0.4801 0.0018 9.3016 7.4610 0.5784
720 0.0060 15.2429 24.5379 0.4911 0.0029 16.3929 20.0782 0.4892 0.0024 13.7936 15.7668 0.5737
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Table 7: Detailed experimental results on six real-world datasets (four cases) with NSFormer.
Methods NSFormer + MSE NSFormer + TILDE-Q

Metric MSE DTW TDI LCSS MSE DTW TDI LCSS
E

T
T

h2

96 0.1868 ± 0.0173 5.7546 ± 0.5472 2.0024 ± 0.1875 0.5522 ± 0.0504 0.1629 ± 0.0083 5.1673 ± 0.0355 1.4536 ± 0.5094 0.6083 ± 0.0080
192 0.2311 ± 0.0053 8.6408 ± 0.6911 3.8789 ± 0.0671 0.5301 ± 0.0440 0.2016 ± 0.0056 8.0815 ± 0.0596 4.0217 ± 0.1380 0.5963 ± 0.0004
336 0.2624 ± 0.0167 11.1345 ± 0.3661 10.0050 ± 0.7225 0.5530 ± 0.0131 0.2760 ± 0.0136 11.0140 ± 0.0735 10.8131 ± 0.7981 0.5598 ± 0.0050
720 0.2391 ± 0.0025 15.9557 ± 0.0797 18.2158 ± 1.4161 0.5409 ± 0.0154 0.2663 ± 0.0102 15.0010 ± 0.1701 19.5509 ± 1.3960 0.5575 ± 0.0084

E
T

T
m

2 96 0.0682 ± 0.0011 3.2222 ± 0.0710 1.5062 ± 0.0636 0.7681 ± 0.0029 0.0704 ± 0.0017 3.2704 ± 0.0382 1.5464 ± 0.0593 0.7678 ± 0.0018
192 0.1107 ± 0.0061 5.6567 ± 0.1432 3.1250 ± 0.3309 0.6897 ± 0.0052 0.1142 ± 0.0097 5.4756 ± 0.0160 3.0431 ± 0.1125 0.7091 ± 0.0051
336 0.1655 ± 0.0156 9.0536 ± 0.2199 7.3496 ± 0.2607 0.6285 ± 0.0146 0.1590 ± 0.0033 8.9267 ± 0.1396 8.5419 ± 0.8318 0.6450 ± 0.0049
720 0.2349 ± 0.0202 14.8967 ± 0.3186 19.1985 ± 1.7474 0.5587 ± 0.0156 0.2209 ± 0.0126 14.8251 ± 0.0936 20.4820 ± 0.6624 0.5892 ± 0.0030

E
C

L

96 0.3117 ± 0.0102 3.1460 ± 0.0466 0.3059 ± 0.0078 0.6839 ± 0.0051 0.3136 ± 0.0069 3.0445 ± 0.0511 0.3170 ± 0.0273 0.6876 ± 0.0012
192 0.3789 ± 0.0160 4.6092 ± 0.0077 0.3790 ± 0.0398 0.6736 ± 0.0252 0.3453 ± 0.0158 4.4510 ± 0.1726 0.3892 ± 0.0469 0.6853 ± 0.0049
336 0.3856 ± 0.0072 6.2827 ± 0.0620 0.2954 ± 0.0678 0.6724 ± 0.0098 0.3633 ± 0.0062 6.0038 ± 0.0717 0.3573 ± 0.0336 0.6953 ± 0.0075
720 0.4102 ± 0.0426 10.0263 ± 0.0869 1.7172 ± 1.0628 0.6680 ± 0.0107 0.3999 ± 0.0071 9.6903 ± 0.0497 0.6640 ± 0.2962 0.6716 ± 0.0059

E
xc

ha
ng

e 96 0.1514 ± 0.0505 8.4840 ± 0.1408 6.2843 ± 0.3800 0.4600 ± 0.0100 0.1078 ± 0.0084 8.0182 ± 0.2299 7.4383 ± 0.6279 0.4667 ± 0.0037
192 0.2514 ± 0.0280 10.7493 ± 0.8153 14.7287 ± 2.0162 0.4723 ± 0.0105 0.2219 ± 0.0247 11.0704 ± 0.5110 15.5720 ± 3.1424 0.4898 ± 0.0191
336 0.5246 ± 0.0908 12.3626 ± 1.0148 25.7294 ± 1.0591 0.4873 ± 0.0138 0.4219 ± 0.0740 11.9023 ± 0.5967 23.2522 ± 1.5396 0.4928 ± 0.0049
720 0.8866 ± 0.1059 18.8469 ± 3.5656 54.3978 ± 10.9369 0.5006 ± 0.0075 0.7557 ± 0.0535 13.7467 ± 1.3978 42.9306 ± 9.0610 0.5199 ± 0.0201

Tr
af

fic

96 0.1916 ± 0.0131 1.7903 ± 0.0393 0.0148 ± 0.0006 0.9012 ± 0.0076 0.2035 ± 0.0101 1.7658 ± 0.0213 0.0134 ± 0.0007 0.9088 ± 0.0069
192 0.1829 ± 0.0086 2.7411 ± 0.0295 0.0083 ± 0.0001 0.9000 ± 0.0040 0.1838 ± 0.0113 2.7329 ± 0.0139 0.0079 ± 0.0002 0.9038 ± 0.0133
336 0.2017 ± 0.0046 3.7920 ± 0.0107 0.0049 ± 0.0002 0.8959 ± 0.0021 0.1919 ± 0.0054 3.7476 ± 0.0310 0.0046 ± 0.0001 0.8993 ± 0.0019
720 0.2294 ± 0.0077 6.0884 ± 0.1178 0.0027 ± 0.0001 0.8833 ± 0.0077 0.2287 ± 0.0071 5.8202 ± 0.0803 0.0024 ± 0.0001 0.8972 ± 0.0030

W
ea

th
er 96 0.0017 ± 0.0005 8.2914 ± 1.1221 7.8379 ± 1.5827 0.4230 ± 0.0378 0.0012 ± 0.0001 5.7786 ± 0.0468 5.4118 ± 0.1960 0.5451 ± 0.0037

192 0.0020 ± 0.0002 9.9842 ± 0.4992 10.8039 ± 1.9632 0.4536 ± 0.0025 0.0014 ± 0.0000 7.3667 ± 0.0967 6.2922 ± 0.2090 0.5532 ± 0.0060
336 0.0018 ± 0.0002 13.6885 ± 0.7604 14.9242 ± 1.3217 0.4308 ± 0.0161 0.0015 ± 0.0001 9.9883 ± 0.0800 9.0103 ± 0.5340 0.5529 ± 0.0020
720 0.0022 ± 0.0002 16.7372 ± 0.5878 33.7388 ± 4.4616 0.4751 ± 0.0025 0.0020 ± 0.0000 14.7109 ± 0.4148 17.1988 ± 0.9428 0.5405 ± 0.0051

C.2 QUALITATIVE EVALUATION

As we have described, shape is hard to be captured by using existing metrics, such as Lp metrics.
We therefore showcase each model, training metric, and dataset. For the evaluation of TILDE-Q,
we visualize the forecasting results using various models. Specifically, we report four cases: 1)
when TILDE-Q and MSE show marginal performance, 2) case to prove that TILDE-Q is scalable
for the complex problem, 3) case to visually investigate superiority of TILDE-Q for periodic and
noisy dataset, and 4) when the data have no obvious periodicity. For more visualization, and the
experimental results, please refer to the Anonymous GitHub1.

C.2.1 COMPARISON WITH MSE AND TILDE-Q

In some cases, including FEDformer model with ETTh2 dataset, TILDE-Q and MSE have marginal
MSE performance, as shown in Fig. 4. In these cases, MSE and TILDE-Q have shown almost identical
behavior, indicating that TILDE-Q’s performance is at least comparable to that of MSE.

Figure 4: Qualitative results with ECL dataset for Autoformer (left), FEDformer (middle), and
NSformer (right). Green line is trained with TILDE-Q and blue line is trained with MSE

C.2.2 USING TILDE-Q TO BOOST MODEL SCALABILITY

In the cases of NBeats, Informer, and even NSformer (Liu et al., 2022), we have found that TILDE-Q
is the best methods for model to have better interpretation of dataset, as shown in Fig. 5. These
showcases reveal the importance of shape-awareness, especially for a dataset that is hard to predict.
For NBeats and Informer, especially for the long-term forecasting (e.g., 720-Output), TILDE-Q shows
its superiority in terms of shape-awareness and noise-robustness. For NSformer, TILDE-Q captures
peaks and plateaus better than MSE, which is crucial for real-world problem, such as electricity usage.
In case of Informer (middle), MSE and TILDE-Q make informative predictions on the 336-Output

18



Under review as a conference paper at ICLR 2024

Figure 5: Qualitative results with NBeats (left), Informer (middle), and NSformer (right)

Figure 6: Qualitative results with Weather dataset for Informer (top-left), Autoformer (top-right),
FEDformer (bottom-left), and NSformer (bottom-right)

setting, but on the 720-Output setting, the model trained with MSE lost its ability to be aware of the
shape, resulting in uninformative output.

C.2.3 PERIODIC AND NOISY DATASET SHOWCASES

Because of its noisy characteristics, most models have struggled to recognize the periodicity of the
Weather dataset, resulting in performance degradation. This section will provide qualitative examples
from the Weather dataset. In the Weather dataset, we observed that it has periodic behavior with large
fluctuations and high noises. This fluctuation makes the model mislead the periodicity of dataset, even
when we could visually identify it. As shown in Fig. 6, compared to MSE and DILATE, TILDE-Q
helps the model properly forecast the future value, preserving important features such as plateau,
peak, and periodicity with less noise. On the other hand, in the cases of MSE and DILATE, they have
less effective or no strategy for handling the shape and distortion, yielding uninformative and noisy
forecasting results.

C.2.4 PERFORMANCE ON DATA WITHOUT PERIODICITY

Although effective, TILDE-Q and the existing metrics still face limitations when predicting data
without obvious periodicity and with rapid fluctuations. One representative example is the Exchange
dataset, which inherently has no obvious periodicity, like other economics datasets. However, the
results with TILDE-Q and NSformer provide insight for a possible future improvement through its
temporal feature modeling with a large gap (i.e., amplitude shifting), as bottom-right part of Fig. 7.
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Figure 7: Qualitative results with Exchange dataset for Informer (top-left), Autoformer (top-right),
FEDformer (bottom-left), and NSformer (bottom-right)

C.3 ABLATION STUDY

To evaluate the effect of the α, γ, and measure the effect of each loss function, we conduct a set of
experiments with the ETTh2 dataset and N-Beats on the long-term forecasting problem. As we can
see in Fig. 8, the model tends to predict amplification-free forecasting when α increases. These results
indicate our motivation, “La.shift will return the forecasting results with same standard deviation
with timely manner but without consideration of proper average value.”

Furthermore, in the top of Fig. 9, we can observe three things: (1) if we utilize La.shift only, as we
intended, it has a different average (-1.19 vs. 0.11) but relatively similar standard deviation (0.408 vs.
0.299); (2) In the case of Lphase only, they can capture dominant frequency and produce relatively
less-noisy forecasting; (3) Lamp have relatively similar average value (-1.195 vs. -0.319), but it has
far different standard deviation (0.408 vs. 8.592). In contrast, forecasting results of the model trained
with MSE is very noisy and hard to interpret (Fig. 9, bottom). Note that we normalized the results in
Fig. 9 because of the scale issue.

In Table 8, we provide how model performances vary with respect to hyperparameters of TILDE-Q.
For the default setting, we utilized α = 0.5, γ = 0.01. Because the design of TILDE-Q mainly
focuses on shape modeling, we can see that DTW and LCSS are not critically changing for the
hyperparameter. But their trade-offs are revealed in the MSE and TDI. For example, when we
decrease α, we can observe TDI increases. It indicates the trade-offs of phase shifting invariance,
which has tolerance for non-timely forecasting. Also, we can see that increasing α or γ affects the
MSE. When we have α = 1, we have no Lphase and less penalty for the statistical differences, and
its absence causes the high MSE, as we can see in Fig. 8. γ also affects the MSE, but Lphase reduces
Lamp’s side effect.

Table 8: Ablation study on with ETTh2, L = 720, and N-Beats
Metric Default γ = 0.1 γ = 0.5 γ = 1.0 α = 0.0 α = 0.1 α = 0.8 α = 1.0 La.shift only Lphase only Lamp only

MSE 0.3005 0.2968 0.3083 0.3168 0.3075 0.3161 0.2872 1.1752 1.5123 0.3391 1.8453
DTW 17.5154 17.5265 17.5649 17.7302 17.7564 17.5931 17.6508 17.6886 17.7261 17.848 18.0261
TDI 9.2197 9.1303 9.2261 9.4366 10.3550 9.8957 8.4725 8.7118 10.2519 12.8568 10.5602

LCSS 0.5382 0.5366 0.5277 0.5137 0.5050 0.5137 0.5584 0.5445 0.5341 0.4920 0.5086
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Figure 8: Ablation study result visualization with different α on ETTh2 dataset

Figure 9: Ablation study result visualization of three proposed loss function on ETTm2 dataset
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