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Appendix
We present additional details and experiments of the proposed CityWalkers dataset and the PedGen
model for pedestrian movement generation. In Sec. A, we introduce more details and statistics of
CityWalkers. Sec. B benchmarks the noise level of our automatic labeling pipeline. In Sec. C, we
discuss implementation details of PedGen. Sec. D provides more visualizations of the dataset and the
qualitative results. An ablation study on label filtering is presented in Sec. E, and an ablation study on
the noises in input conditions is shown in Sec. F. We discuss broader impacts of our work in Sec. G.

A MORE DETAILS ON CITYWALKERS

We manually review all videos to ensure the raw data quality and scene diversity. We collected
728 such videos and split each one into 5-second clips, with an interval of 25 seconds between
subsequent clips. We then perform a second check round to examine whether all clips are in urban
environments, have proper lighting conditions without much motion blur, and do not contain abrupt
viewpoint changes. To prevent the leaking of personally identifiable information, we also blur the
faces and license plates with mosaicing tools (Xu et al., 2020). In total, 22,698 clips are collected,
each representing a different urban scene. All video clips are decomposed into image sequences
with a frame rate of 30 fps. We keep pedestrians tracked consecutively for at least 10 frames, and
pass it together with the camera angular velocity predicted by DPVO (Teed et al., 2023) to the
WHAM network to get pseudo-labels for 4D global pedestrian movement. For each pedestrian,
WHAM outputs both its movement in the global frame X g = {tgt ,ϕ
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global pedestrian movement in the fixed local camera coordinate c(τ), which can be paired with
the context information as {Iτ , Id

τ , Is
τ ,X c(τ)} to get training and validation samples. We use the

CityScapes (Cordts et al., 2016) classes for the semantic map, as they contain common classes in
urban scenes, such as buildings, sidewalks, and cars.

Table 4 compares CityWalkers to other human motion datasets. CityWalkers has the most diverse
human subjects and scenes compared to other human motion datasets and is the only dataset that
uses web source videos and pseudo-labels. We provide further statistics regarding the pedestrian
movements in CityWalkers in Fig. 6. Plots A-D display key motion characteristics. Plot A shows
that our dataset captures motions with a wide range of typical human walking speeds. As evidenced
by Plot B and C, our data also contains substantial samples of varying stride patterns. We also
demonstrate the diversity of movement directions with Plot D, which represents the change in
orientation across the recorded motion. In addition, we plot pedestrian body shape statistics with Plot
E and Plot F. We look at the height of pedestrians in Plot E and their waist-to-height ratio in Plot F, as
an indicator for the mass index. Fig. 7 demonstrates the list of cities and countries in CityWalkers and
its pedestrian attributes roughly estimated by an off-the-shelf VLM (Chen et al., 2023b). CityWalkers
covers most European countries and some Asian countries, and we plan to add more locations in the
future. As most of the places in CityWalkers have many tourists, its pedestrians are from all over the
world, and the age groups and genders are well-represented.

B BENCHMARKING THE NOISE LEVEL OF CITYWAKERS

Though we have applied several techniques to improve the quality of pseudo-labels by using state-
of-the-art models and filtering wrong predictions, label noise from web videos is still inevitable
and hence it is important to benchmark the accuracy of our data autolabeling pipeline. We use the
SLOPER4D dataset (Dai et al., 2023), collected in a similar outdoor setting as CityWalkers with
a much smaller scale. The SLOPER4D dataset has ground-truth human motion and scene-depth
labels annotated from the 3D LiDAR point clouds. We evaluate the accuracy of the 4D human
motion estimation with the Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE) and the
World-Aligned Mean Per Joint Position Error (WA-MPJPE), and the accuracy of the monocular depth
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Table 4: Comparison of human motion datasets. We compare CityWalkers with datasets that do not have scene
context (top), datasets that provide scene context labels but are captured in controlled environments (middle),
and datasets that are captured in the wild (bottom). CityWalkers has the most number of scenes and subjects
among all datasets and is the only dataset that uses web source videos and pseudo-labels.

Datasets Web source Pseudo-labels # Subjects # Scenes Hours Depth Segmentation SMPL

AMASS (Mahmood et al., 2019) - - 344 - 62.9 - - ✓
DNA-Rendering (Cheng et al., 2023b) - - 1,500 - 3.2 - - ✓

PROX (Hassan et al., 2019) - - 20 12 0.9 ✓ ✓ ✓
RELI11D (Yan et al., 2024) - - 10 7 3.3 ✓ - ✓
RICH (Huang et al., 2022) - - 22 5 2.7 ✓ - ✓
TRUMANS (Jiang et al., 2024) - - 7 100 15.0 ✓ ✓ ✓

3DPW (Von Marcard et al., 2018) - - 7 60 0.5 - - ✓
EMDB (Kaufmann et al., 2023) - - 10 81 1.0 - - ✓
SLOPER4D (Dai et al., 2023) - - 12 10 1.4 ✓ - ✓
JRDB-Pose (Vendrow et al., 2023) - - 5,022 54 1.1 ✓ ✓ -

CityWalkers (ours) ✓ ✓ 120,914 16,215 30.8 ✓ ✓ ✓

Plot A Plot B Plot C

Plot D Plot E Plot F

Figure 6: Pedestrian movement statistics of CityWalkers.

estimation with the absolute relative error (REL) and the Root Mean Squared Error (RMSE). The
results are shown in Tab. 5. We want to stress that while encountering label noise is inevitable, web
videos are necessary to learn a generalizable pedestrian movement generation model with natural
pedestrian behaviors and diverse motion contexts.

Table 5: Benchmarking results of our autolabeling pipeline on the SLOPER4D dataset.

4D Human Motion Depth

PA-MPJPE (mm)↓ WA-MPJPE (mm) ↓ REL ↓ RMSE ↓
42.76 297.72 0.33 5.46
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Teen Adult Senior

Female
51%

Male
49%

* rough estimation by an VLM

Alanya, Turkey
Alberobello, Italy
Altenburg, Germany
Amalfi, Italy
Amalfi Coast, Italy
Amsterdam, Netherlands
Anacapri, Italy
Antalya, Turkey
Antwerp, Belgium
Athens, Greece
Baden-Baden, Germany
Bai Dinh, Vietnam
Bamberg, German
Bangkok, Thailand
Barcelona, Spain
Bari, Italy
Bautzen, Germany
Berlin, Germany
Bern, Switzerland
Bialystok, Poland
Bilbao, Spain
Birmingham, UK
Blankenberge, Belgium
Bodrum, Turkey
Bologna, Italy
Brandenburg, Germany
Brasov, Romania
Bratislava, Slovakia
Brașov, Romania
Brno, Czech
Bruges, Belgium
Brussels, Belgium
Bucharest, Romania

227 Cities, 49 Countries 
Budapest, Hungary
Budva, Montenegro
Burgas, Bulgaria
Cai Rang, Vietnam
Can Tho, Vietnam
Capri, Italy
Catania, Italy
Cesme, Turkey
Chania, Greece
Chemnitz, Germany
Como, Italy
Copenhagen, Denmark
Corfu, Greece
Cottbus, Germany
Crete, Greece
Dalat, Vietnam
Danang, Vietnam
Debrecen, Hungary
Dinant, Belgium
Dresden, Germany
Dublin, Ireland
Dubrovnik, Croatia
Durres, Albania
Edinburgh, Scotland
Elafonissi, Greece
Ephesus, Turkey
Erfurt, Germany
Faro, Portugal
Fethiye, Turkey
Fira, Greece
Florence, Italy
Frankfurt, Germany
Freiberg, Germany

Fulda, Germany
Fürth, Germany
Gdansk, Poland
Geneva, Switzerland
Genoa, Italy
Gera, Germany
Glasgow, Scotland
Golden Sands, Bulgaria
Granada, Spain
Graz, Austria
Görlitz, Germany
Halle, Germany
Hanau, Germany
Hanoi, Vietnam
Helsingborg, Sweden
Helsinki, Finland
Heraklion, Greece
Hof, Germany
Hoi An, Vietnam
Holmestrand, Norway
Horten, Norway
Hua Hin, Thailand
Hue, Vietnam
Ibiza, Spain
Istanbul, Turkey
Izmir, Turkey
Kaliningrad, Russia
Kampot, Cambodia
Kanchanaburi, Thailand
Karlovy vary, Czech
Karlsruhe, Germany
Kas, Turkey
Kassel, Germany

Kemer, Turkey
Koh Rong Sanloem, Cambodia
Kos, Greece
Kosice, Slovakia
Kotor, Montenegro
Krakow, Poland
Krefeld, Germany
Kusadasi, Turkey
Kyiv, Ukraine
Landsberg am Lech, Germany
Lausanne, Switzerland
Leipzig, Germany
Liberec, Czech
Lier, Belgium
Lisbon, Portugal
Liverpool, UK
Ljubljana, Slovenia
London, England
Lund, Sweden
Madrid, Spain
Magdeburg, Germany
Mainz, Germany
Majorca, Spain
Makrinitsa, Greece
Malaga, Spain
Mallorca, Spain
Malmö, Sweden
Manchester, UK
Mannheim, Germany
Marbella, Spain
Maribor, Slovenia
Marmaris, Turkey
Mechelen, Belgium
 

Milan, Italy
Milos, Greece
Monte carlo, Monaco
Mostar, Bosnia
Munich, Germany
Mykonos, Greece
Naples, Italy
Naumburg, Germany
Nha trang, Vietnam
Nice, France
Ninh binh, Vietnam
Oia, Greece
Olhao, Portugal
Opatija, Croatia
Oradea, Romania
Osaka, Japan
Oslo, Norway
Oxford, UK
Palanga, Lithuania
Paleochora, Greece
Palma, Spain
Palma de Mallorca, Spain
Paris, France
Paros, Greece
Passau, Germany
Pattaya, Thailand
Phnom Penh, Cambodia
Pisa, Italy
Porto, Portugal
Portofino, Italy
Positano, Italy
Poznan, Poland
Prague, Czech

Pula, Croatia
Quedlinburg, Germany
Ravello, Italy
Rethymno, Greece
Rhodes, Greece
Riga, Latvia
Rome, Italy
Rostock, Germany
Rothenburg ob der Tauber, Germany
Rotterdam, Netherlands
Rovinj, Croatia
Saigon, Vietnam
Salzburg, Austria
Santiago de compostella, Spain
Santorini, Greece
Sarajevo, Bosnia
Seville, Spain
Shkoder, Albania
Sibenik, Croatia
Side, Turkey
Siem reap, Cambodia
Sighisoara, Romania
Sihanoukville, Cambodia
Sliema, Malta
Sopot, Poland
Sorrento, Italy
Southampton, England
Sozopol, Bulgaria
Split, Croatia
Stockholm, Sweden
Szczecin, Poland
Szeged, Hungary
Tallinn, Estonia
 

Tartu, Estonia
Thessaloniki, Greece
Tirana, Albania
Tokyo, Japan
Tonsberg, Norway
Torun, Poland
Transylvania, Romania
Travnik, Bosnia
Trieste, Italy
Trogir, Croatia
Uppsala, Sweden
Valencia, Spain
Valetta, Malta
Valletta, Malta
Varna, Bulgaria
Venice, Italy
Verona, Italy
Vienna, Austria
Warsaw, Poland
Weimar, Germany
Wernigerode, Germany
Wetzlar, Germany
Wiesbaden, Germany
Wroclaw, Poland
Zadar, Croatia
Zagreb, Croatia
Zilina, Slovakia
Zurich, Switzerland
Zwickau, Germany

Figure 7: List of locations and pedestrian attribute statistics of CityWalkers.

C IMPLEMENTATION DETAILS OF PEDGEN

The denoising transformer of PedGen follows the decoder-only architecture with 8 transformer blocks
and residual connections between them, and the latent dimension of the transformer is 512. Each
transformer block consists of a self-attention and an MLP module with a FiLM (Perez et al., 2018)
layer applied after each module to inject the condition information similar to (Chen et al., 2023a).
During training, we found our depth labels could be inconsistent with the depth estimated from
the SMPL global translation in the dataset. Therefore, we multiply the depth map by a factor γ,
which equals the ratio between the depth from the SMPL root translation and the depth of the human
root’s projection in the 2D depth label to align the motion and the scene. To ensure the generated
motion starts from the initial position t1 and ends at the goal position tT when the goal condition is
provided, we apply diffusion inpainting (Chen et al., 2023a) by setting v̂1 = 0 and scale the velocity
predictions v̂t = λv̂t by λ = (tT − t1)/t̂T . Our model also supports the efficient generation of
long-term movements by concatenating the short-term movements generated by PedGen. Specifically,
we define a transition phase between two adjacent motion intervals. During the initial generation,
we force the motion of the transition phase to be the same in adjacent intervals and then partially
add noise to the transition phase again and denoise it back to generate a smoother transition similar
to (Shafir et al., 2023). Please see the attached video for results on long-term movement generation.

All models are trained with 4 Nvidia RTX A5000 GPUs with 256 batch size. We use the
Adam (Kingma & Ba, 2014) optimizer with a weight decay of 1e-7 and a gradient clipping of
1.0 to train for 500 epochs on CityWalkers. The initial learning rate is set to 4e-4, and it decays by a
factor of 0.9 every 75 epochs. The whole model took about 30 hours to train. The number of forward
diffusion steps is set to K = 1000 with a cosine noise schedule. The loss weights wrec, wtraj, wgeo

are all set to 1. We apply data augmentation during training, which randomly rotates the pedestrian
movement together with its scene context encoded in the local voxel along the vertical axis. We
further use classifier-free guidance (Ho & Salimans, 2022) with a 20% probability of dropping the
condition embedding during training, and the guidance scale is set to 1.0 during inference. We also
adopt the DDIM sampler (Song et al., 2020) with 100 steps to speed up sampling. As the original
videos do not have ground truth camera intrinsic parameters, we estimate them by setting the focal
length to be the diagonal pixel length of the image and the optical center to be the center of the image.
For the local point cloud Plocal, we set its range ∆x = 4m, ∆y = 2m and ∆z = 4m, the grid size
for voxelization is further set to be 0.2m× 0.1m× 0.2m, resulting in a voxel shape of 40× 40× 40.
To encode the voxel, we first treat the vertical axis (Y-axis) as the feature dimension and the rest of
the axes as the tokens. We then use a cross-attention layer to extract information from the encoded
scene with a query vector from the other context factors.

D ADDITIONAL VISUALIZATIONS

To better demonstrate the utility of the scene context and the goal context, we compare the generated
movements with no context, with only the scene context, and with both scene and goal contexts in
Fig. 8. Some additional 4D pedestrian movement labels in CityWalkers are visualized in Fig. 10 to
show the diversity of the pedestrian movements. Fig. 9 shows the 3D visualizations of the ground truth
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and generated pedestrian movements of PedGen, as well as the scene context labels by unprojecting
the image pixels to the 3D space according to the depth label. We can see that the ground truth
movements align well with the geometry of the scene, showing the quality of the movement and
scene context labels. The generated pedestrian movements also match well with their surrounding
environments in 3D. Fig. 11 shows a qualitative comparison between PedGen and other baselines.
It can be noticed that PedGen can generate more natural and diverse motions with different poses,
gestures, and hand movements. It also aligns with the surrounding environment better after being
conditioned on the context factors. Fig. 12 shows samples of the CARLA test set that we used
to evaluate the zero-shot generalization ability of PedGen. We display a handful of urban scenes
with diverse objects and layouts, all of which reflect test set diversity. Fig.13 shows the application
of PedGen in simulated environments by populating urban scenes in CARLA with realistic multi-
pedestrian movements. In Fig. 14, we lay out a wide array of scenes in CityWalkers with diverse
locations, weather, crowd density, and time of day to show the diversity of the urban scenes.

E ABLATION ON AUTOMATIC LABEL FILTERING

An ablation study on the number of filtering iterations can be found in Tab. 7. Fig.15 shows the
application of PedGen in real-world pedestrian movement prediction by generating diverse long-term
pedestrian movements in a 3D Gaussian-Splatting reconstructed Chen et al. (2024) scenario in
Waymo. The results further demonstrate the practicality of PedGen in real-world applications. Fig. 16
shows visualizations of the automatically filtered anomaly samples. We can observe that the anomaly
labels in the first iteration of anomaly filtering have drastic errors in the body pose or do not belong
to pedestrian movements. In contrast, the anomaly labels in the second iteration of anomaly filtering
have much smaller errors with minor deviations in the local movements and could also contain false
positives with novel movements. We find that two iterations with a reconstruction error threshold of
10 are sufficient to filter most low-quality labels with the best model performance.

F ABLATION ON INPUT NOISES

To handle real-world scenarios where conditional inputs are unreliable, like depth sensing in au-
tonomous driving, we conduct additional experiments on each context factor to study its sensitivity to
input noises. We add Gaussian noises with a standard deviation of 0.5 on the scene point cloud, the
SMPL beta vector, and the goal position. The results are shown in the table below:

Table 6: Ablation on the model sensitivity to noises in input conditions.

Context
Factor

Metric (w/ noise σ = 0.5)

mADE ↓ aADE ↓ mFDE ↓ aFDE ↓

Scene 1.69 4.02 2.74 7.41
Human 1.83 3.50 3.08 6.22
Goal 1.61 2.33 2.55 2.79

We can see that all factors suffer from input noises, with the goal having the most degraded perfor-
mance, where mADE increases by 168% and aADE increases by 114%. The scene and the human
factors have increased less in terms of the average metrics (aADE increases by 7% for scene context
and increases by 8% for human context) and still performs better than the baseline without context.
However, they are less robust in terms of the min metrics (mADE increases by 52% for scene context
and increases by 68% for human context) as it is hard to predict the exact future movement of the
dataset with noisy inputs.

G BROADER IMPACTS

Our work can benefit many applications. For example, city designers can simulate pedestrian
movements to optimize public areas and transportation systems. Forecasting future pedestrian
movements is also crucial for the safe deployment of autonomous vehicles. The diverse urban scenes
and pedestrians in the CityWalkers dataset could also support future research directions besides
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pedestrian movement generation, such as relation modeling between real-world scenes and humans
and integration of realistic human movements and urban scenes into embodied AI training.

Some potential negative societal impacts of our work include using the released data for surveillance
applications by modeling and predicting pedestrian behaviors and the risk of leaking personally
identifiable information. It is also possible that our model could be misused to generate fake pedestrian
movements of real-world humans. As discussed in the ethics statement, we will enforce practices to
protect privacy (e.g., removing personally identifiable information) and add the user agreement and
the license to our dataset to prevent misuse.

Scene Only

No Context

(a) (b) (c) (d) (e)

Scene + Goal

Figure 8: Qualitative comparisons of the scene and the goal context. We visualize the generated movements
using no context factor, the ones using only the scene context, and the ones using both the scene and the goal
context (marked as the yellow flag) in five environments in the CARLA simulator. The generated initial pose
is colored in white. From the comparison between "No Context" and "Scene Only," we can see that (a) The
generated movement with no context hits the wall, while the one with the scene context can navigate the sidewalk.
(b): The generated movement with no context directly walks into the bus stop, while the model generates a
standing pose with a reasonable direction after using the scene context. (c): The model generates a sitting pose
and makes the movement float from the ground if no context is used, and it generates a walking motion while
avoiding the obstacles in the front after using the scene context. (d): The sitting pose generated without context
factors is jittering and has the wrong orientation, while the generated sitting pose is stable and more plausible
after using the scene context. (e): The generated movement ignores the slope in the front without the context.
Adding the scene context makes the model aware of the terrain and the movement to walk upward. From the
comparison between "Scene Only" and "Scene + Goal", we can see that adding the goal context can make the
movement reach the goal more precisely, while in some cases like (b) and (d), using the scene context alone can
generate plausible human poses similar to the ones with the goal context.

Ground Truth PedGen

Figure 9: Visualizations in 3D. We visualize both the ground truth scene and movement labels (orange) and
the generated movements by PedGen (blue) in multiple views in 3D by unprojecting the image pixels from the
depth labels.
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leaning on a stroller 
and turning

taking out phone 
to take a picture pointing at a wall

moving items  turning and walking 
with hands behind back

scratching head 
while sitting

Diverse Surrounding Environments Diverse Route Destinations

Diverse Pedestrian Movements

Diverse Individual Characteristics

Figure 10: Samples of 4D pedestrian movement labels in CityWalkers. The text descriptions of the movements
from top left to bottom right are: walking down stairs (pink), turning and lifting baggage up steps (light green),
walking up stairs (dark purple), turning around with phone in hand (sky blue), moving hands to hip (dark green),
wiping seats and tables (red), jumping and skipping around (yellow), taking photo and standing up (light purple).

Ground Truth

PedGen (No context)

MDM

HumanMAC

TRUMANS

PedGen (With Context)

Figure 11: Qualitative comparison results. We visualize the generation results of PedGen compared to the
other baselines and the ground truth. Three random samples are generated for each method.
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Figure 12: Samples in the CARLA test set. Each scene contains a rendered image, a semantic map, and a depth
map.

Figure 13: Populating urban scenes in CARLA. We generate multi-pedestrian movements using PedGen.
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Figure 14: Samples of real-world scenes in CityWalkers. We visualize the extracted pedestrian 3D meshes in
each scene.
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Figure 15: Pedestrian movement prediction in Waymo. We predict long-term pedestrian movements using
PedGen. Ground Truth PedGen

First Iteration

Second Iteration

Figure 16: Visualizations of anomaly labels in CityWalkers. We visualize the filtered labels in the first and the
second iterations of automatic anomaly label filtering.

Table 7: Ablation on the number of filtering iterations. We evaluate PedGen with no context on the
CityWalkers validation set.

Filtering
Iterations

Metric

mADE ↓ aADE ↓ mFDE ↓ aFDE ↓

0 1.17 4.45 1.64 8.31
1 1.17 4.22 1.68 7.88
2 1.13 4.32 1.60 8.09
3 1.17 4.42 1.63 8.22
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