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ABSTRACT

Generating temporally-consistent high-fidelity videos can be computationally ex-
pensive, especially over longer temporal spans. More-recent Diffusion Trans-
formers (DiTs)— despite making significant headway in this context— have only
heightened such challenges as they rely on larger models and heavier attention
mechanisms, resulting in slower inference speeds. In this paper, we introduce a
training-free method to accelerate video DiTs, termed Adaptive Caching (Ada-
Cache), which is motivated by the fact that “not all videos are created equal”:
meaning, some videos require fewer denoising steps to attain a reasonable quality
than others. Building on this, we not only cache computations through the diffu-
sion process, but also devise a caching schedule tailored to each video generation,
maximizing the quality-latency trade-off. We further introduce a Motion Regular-
ization (MoReg) scheme to utilize video information within AdaCache, essentially
controlling the compute allocation based on motion content. Altogether, our plug-
and-play contributions grant significant inference speedups (e.g. up to 4.7× on
Open-Sora 720p - 2s video generation) without sacrificing the generation quality,
across multiple video DiT baselines. Our code will be made publicly-available.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020) have become the standard for generative mod-
eling in recent years, arguably surpassing the quality of VAEs (Kingma, 2013; Rolfe, 2016), GANs
(Karras et al., 2019; Goodfellow et al., 2020) and Auto-Regressive models (Chang et al., 2022;
2023). This observation holds in a wide-range of applications including image (Rombach et al.,
2022; Saharia et al., 2022), video (Singer et al., 2022; Blattmann et al., 2023a), 3D (Poole et al.,
2022; Liu et al., 2023a), and audio (Kong et al., 2020; Huang et al., 2023) generation, as well as
image (Hertz et al., 2022; Avrahami et al., 2023) and video (Qi et al., 2023; Wu et al., 2023) editing.
More recent Diffusion Transformers (DiTs) (Peebles & Xie, 2023; Ma et al., 2024a) show better
promise in terms of scalability and generalization compared to prior UNet-based diffusion models
(Rombach et al., 2022), revealing intriguing horizons in GenAI for the years to come.

Despite the state-of-the-art performance, DiTs can also be computationally expensive both in terms
of memory and computational requirements. This becomes especially critical when applied with a
large number of input tokens (e.g. high-resolution long video generation). For instance, the reason
for models such as Sora (OpenAI, 2024) not being publicly-served is speculated to be the high
resource demands and slower inference speeds (Liu et al., 2024). To tackle these challenges and
reduce the footprint of diffusion models, various research directions have emerged such as latent
diffusion (Rombach et al., 2022), step-distillation (Sauer et al., 2023; Yin et al., 2024), caching
(Wimbauer et al., 2024; Ma et al., 2024c; Habibian et al., 2024), architecture-search (Zhao et al.,
2023b; Li et al., 2024b), token reduction (Bolya & Hoffman, 2023; Li et al., 2024a) and region-
based methods (Nitzan et al., 2024; Kahatapitiya et al., 2024). Fewer techniques transfer readily
from UNet-based pipelines to DiTs, whereas others often require novel formulations. Hence, DiT
acceleration has been under-explored as of yet.

Moreover, we note that not all videos are created equal. Some videos contain high-frequency tex-
tures and significant motion content, whereas others are much simpler (e.g. with homogeneous tex-
tures or static regions). Having a diffusion process tailored specifically for each video generation
can be beneficial in terms of realizing the best quality-latency trade-off. This idea has been explored
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Figure 1: Effectiveness of Adaptive Caching: We show a qualitative comparison of AdaCache
(right) applied on top of Open-Sora (Zheng et al., 2024) (left), a baseline video DiT. Here, we
consider generating 720p - 2s video clips, and report VBench (Huang et al., 2024) quality and
average latency on the standard benchmark prompts from Open-Sora gallery. AdaCache generates
videos significantly faster (i.e., 4.7× speedup) with a comparable quality. Also, the number of
computed steps varies for each video. Best-viewed with zoom-in. Prompts in supplementary.

to some extent in region-based methods (Avrahami et al., 2023; Nitzan et al., 2024; Kahatapitiya
et al., 2024), but not sufficiently in the context of video generation.

Motivated by the above, we introduce Adaptive Caching (AdaCache) for accelerating video dif-
fusion transformers. This approach requires no training and can seamlessly be integrated into a
baseline video DiT at inference, as a plug-and-play component. The core idea of our proposal is to
cache residual computations within transformer blocks (e.g. attention or MLP outputs) in a certain
diffusion step, and reuse them through a number of subsequent steps, that is dependent on the video
being generated. We do this by devising a caching schedule, i.e., deciding when-to-recompute-next
whenever making a residual computation. This decision is guided by a distance metric that measures
the rate-of-change between previously-stored and current representations. If the distance is high we
would not cache for an extended period (i.e., #steps), to avoid reusing incompatible representations.
We further introduce a Motion Regularization (MoReg) to allocate computations based on the mo-
tion content in the video being generated. This is inspired by the observation that high-moving
sequences require more diffusion steps to achieve a reasonable quality. Altogether, our pipeline is
applied on top of multiple video DiT baselines showing much-faster inference speeds without sacri-
ficing generation quality (see Fig. 1). Finally, we validate the effectiveness of our contributions and
justify our design decisions through ablations and qualitative comparisons.

2 RELATED WORK

Diffusion-based Video Generation (Singer et al., 2022; Ho et al., 2022; Blattmann et al., 2023a;
Girdhar et al., 2023; Chen et al., 2024a) has surpassed the quality and diversity of GAN-based
approaches (Vondrick et al., 2016; Saito et al., 2017; Tulyakov et al., 2018; Clark et al., 2019; Yu
et al., 2022), while also being competitive with recent Auto-Regressive models (Yan et al., 2021;
Hong et al., 2022; Villegas et al., 2022; Kondratyuk et al., 2023; Xie et al., 2024). They have
become a standard component in the pipelines for frame interpolation (Wang et al., 2024c; Feng
et al., 2024), video outpainting (Fan et al., 2023; Chen et al., 2024e; Wang et al., 2024a), image-
to-video Guo et al. (2023); Blattmann et al. (2023a); Xing et al. (2023), video-to-video (i.e., video
editing or translation) (Yang et al., 2023a; Yatim et al., 2024; Hu et al., 2024), personalization (Wu
et al., 2024; Men et al., 2024), motion customization (Zhao et al., 2023a; Xu et al., 2024) and
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compositional generation (Liu et al., 2022; Yang & Wang, 2024). The underlying architecture of
video diffusion models has evolved from classical UNets (Ronneberger et al., 2015; Rombach et al.,
2022) with additional spatio-temporal attention layers (He et al., 2022; Blattmann et al., 2023b;
Chen et al., 2023b; Girdhar et al., 2023), to fully-fledged transformer-based (i.e., DiT (Peebles &
Xie, 2023)) architectures (Lu et al., 2023; Ma et al., 2024b; Gao et al., 2024; Zhang et al., 2024b). In
the process, the latency of denoising (Song et al., 2020; Lu et al., 2022) has also scaled with larger
models (Podell et al., 2023; Gao et al., 2024). This becomes critical especially in applications such
as long-video generation (Yin et al., 2023; Wang et al., 2023a; Zhao et al., 2024a; Henschel et al.,
2024; Tan et al., 2024; Zhou et al., 2024), while also affecting the growth of commercially-served
video models (Runway AI, 2024; OpenAI, 2024; Luma AI, 2024; Kling AI, 2024).

Efficiency of Diffusion models has been actively explored with respect to both training and in-
ference pipelines. Multi-stage training at varying resolutions (Chen et al., 2023a; 2024b; Gao
et al., 2024) and high-quality data curation (Ramesh et al., 2022; Ho et al., 2022; Dai et al., 2023;
Blattmann et al., 2023a) have cut down training costs significantly. In terms of inference accelera-
tion, there exist two main approaches: (1) methods that require re-training such as step-distillation
(Salimans & Ho, 2022; Meng et al., 2023; Sauer et al., 2023; Liu et al., 2023b), consistency regu-
larization (Song et al., 2023; Luo et al., 2023), quantization (Li et al., 2023; Chen et al., 2024c; He
et al., 2024; Wang et al., 2024b; Deng et al., 2024), and architecture search/compression (Zhao et al.,
2023b; Yang et al., 2023b; Li et al., 2024b), or (2) methods that require no re-training such as token
reduction (Bolya & Hoffman, 2023; Li et al., 2024a; Kahatapitiya et al., 2024) and caching (Ma
et al., 2024c; Wimbauer et al., 2024; Habibian et al., 2024; Chen et al., 2024d; Zhao et al., 2024b).
Among these, training-free methods are more-attractive as they can be widely-adopted without any
additional costs. This becomes especially relevant for video diffusion models that are both expen-
sive to train and usually very slow at inference. In this paper, we explore a caching-based approach
tailored for video DiTs. Different from prior fixed caching schedules in UNet-based (Ma et al.,
2024c; Wimbauer et al., 2024; Habibian et al., 2024) and DiT-based (Chen et al., 2024d; Zhao et al.,
2024b) pipelines, we introduce a content-dependent (i.e., adaptive) caching scheme to squeeze out
the best quality-latency trade-off.

Content-adaptive Generation may focus on improving consistency (Couairon et al., 2022; Bar-
Tal et al., 2022; Avrahami et al., 2022; 2023; Wang et al., 2023b; Xie et al., 2023), quality (Suin
et al., 2024; Abu-Hussein et al., 2022), and/or efficiency (Tang et al., 2023; Nitzan et al., 2024; Ka-
hatapitiya et al., 2024; Starodubcev et al., 2024). Most region-based methods (e.g. image or video
editing) rely on a user-provided mask to ensue consistent generations aligned with context informa-
tion (Avrahami et al., 2023; Xie et al., 2023). Some others automatically detect (Suin et al., 2024)
or retrieve (Abu-Hussein et al., 2022) useful information to improve generation quality. Among
efficiency-oriented approaches, there exist proposals for selectively-processing a subset of latents
(Nitzan et al., 2024; Kahatapitiya et al., 2024), switching between diffusion models with varying
compute budgets (Starodubcev et al., 2024), or adaptively-controlling the number of denoising steps
(Tang et al., 2023; Wimbauer et al., 2024). AdaDiff (Tang et al., 2023) skips all subsequent compu-
tations in a denoising step, if an uncertainty threshold is met at a certain layer. Block caching (Wim-
bauer et al., 2024) introduces a caching schedule tailored for a given pretrained diffusion model.
Both these handle image generation tasks. In contrast, our proposed AdaCache— which also con-
trols #denoising-steps adaptively— provides better flexibility, and is applied to more-challenging
video generation. It is flexible in the sense that (1) it can selectively-cache any layer or even just a
specific module within a layer, and (2) it is tailored to each video generation instead of being fixed
for a given architecture. Thus, AdaCache gains more control over the diffusion process, enabling a
better-adaptive compute allocation.

3 NOT ALL VIDEOS ARE CREATED EQUAL

In this section, we motivate the need for a content-dependent denoising process, and show how it
can help maximize the quality-latency trade-off. This motivation is based on a couple of interesting
observations which we describe below.

First, we note that each video is unique. Hence, videos have varying levels of complexity. Here, the
complexity of a given video can be expressed by the rate-of-change of information across both space
and time. Simpler videos may contain more homogeneous regions and/or static content. In contrast,
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Figure 2: Not all videos are created equal: We show frames from 720p - 2s video generations
based on Open-Sora (Zheng et al., 2024). (Left) We try to break each generation by reducing the
number of diffusion steps. Interestingly, not all videos have the same break point. Some sequences
are extremely robust (e.g. first-two columns), while others break easily. (Right) When we plot the
difference between computed representations in subsequent diffusion steps, we see unique variations
(L1-dist vs. #steps). If we are to reuse similar representations, it needs to be tailored to each video.
Both these observations suggest the need for a content-dependent denoising process, which is the
founding motivation of Adaptive Caching. Best-viewed with zoom-in. Prompts in supplementary.

complex videos have more high-frequency details and/or significant motion. Standard video com-
pression techniques exploit such information to achieve best possible compression ratios without
sacrificing quality (Wiegand et al., 2003; Sullivan et al., 2012). Motivated by the same, we explore
how the compute cost affects the quality of video generations based on DiTs. We measure this
w.r.t. the number of denoising steps, and the observations are shown in Fig. 2 (Left). Some video se-
quences are very robust, and achieve reasonable quality even at fewer denoising steps. Others break
easily when we keep reducing the #steps, but the break point varies. This observation suggests that
the minimal #steps (or, computations) required to generate a video with a reasonable quality varies,
and having a content-dependent denoising schedule can exploit this to achieve the best speedups.

Figure 3: Videos generated at a capped-
budget: There exist different configurations for
generating videos at an approximately-fixed la-
tency (e.g. having arbitrary #denoising-steps,
yet only computing a fixed #representations and
reusing otherwise). We observe a significant
variance in quality in such videos. Best-viewed
with zoom-in. Prompts in supplementary.

Next, we observe how the computed represen-
tations (i.e., residual connections in attention or
MLP blocks within DiT) change during the de-
noising process, across different video genera-
tions. This may reveal the level of compute re-
dundancy in each video generation, enabling us
to reuse representations and improve efficiency.
More specifically, we visualize the feature dif-
ferences between subsequent diffusion steps as
histograms given in Fig. 2 (Right). Here, we
report L1-distance vs. #steps. We observe that
each histogram is unique. Despite having higher
changes in early/latter steps and smaller changes
in the middle, the overall distribution and the ab-
solute values vary considerably. A smaller change
corresponds to higher redundancy across subse-
quent computations, and an opportunity for re-
using. This motivates the need for a non-uniform
compute-schedule not only within the diffusion
process of a given video (i.e., at different stages
of denoising), but also across different videos.

Finally, we evaluate the video generation quality at a capped-budget (i.e., fixed computations or
latency). We can have multiple generation configurations at an approximately-fixed latency, by
computing a constant number of representations. For instance, we can cache and reuse representa-
tions more-frequently in a setup with more denoising steps, still having the same latency of a process
with fewer steps. The observations of a study with either 30 or 100 base denoising steps is shown
in Fig. 3. We see that the generation quality varies significantly despite spending a similar cost and
having the same underlying pretrained DiT. This motivates us to think about how best to allocate
our resources at inference, tailored for each video generation.
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4 ADAPTIVE CACHING FOR FASTER VIDEO DITS

Figure 4: Overview of Adaptive Caching: (Left) During the diffusion process, we choose to cache
residual computations within selected DiT blocks. The caching schedule is content-dependent, as
we decide when to compute the next representation based on a distance metric (ct). This metric
measures the rate-of-change from previously-computed (and, stored) representation to the current
one, and can be evaluated per-layer or the DiT as a whole. Each computed residual can be cached
and reused across multiple steps. (Right) We only cache the residuals (i.e., skip-connections) which
amount to the actual computations (e.g. spatial-temporal/cross attention, MLP). The iteratively de-
noised representation (i.e., ft+k, ft) always gets updated either with computed or cached residuals.

4.1 PRELIMINARIES: VIDEO DIFFUSION TRANSFORMERS

Video Diffusion Transformers are extended from Latent Diffusion Transformers (DiTs) (Peebles
& Xie, 2023) introduced for image generation. DiTs provide a much-more streamlined, scalable
architecture compared to prior UNet-based diffusion models (Rombach et al., 2022), by only hav-
ing transformer blocks with a homogeneous token resolution (instead of convolutional blocks with
up/downsampling). A simplified transformer block (i.e., w/o normalizing or timestep conditioning
layers) in a video DiT is shown in Fig. 4 (right)— gray block. It consists of spatial-temporal atten-
tion (STA), cross-attention (CA) and linear (MLP) layers. Depending on the implementation, STA
may be a single joint spatio-temporal attention layer, or separate spatial and temporal attention lay-
ers repeated within alternating blocks. Without loss of generality, let us denote a latent feature at the
input/output of such block by f l

t and f l+1
t , respectively. Here, l represents the layer index, and t, the

diffusion timestep. A simplified flow of computations within each block can be represented as,

plt = STA(f l
t) ; f̃ l

t = f l
t + plt , (1)

qlt = CA(f̃ l
t) ; f̄ l

t = f̃ l
t + qlt , (2)

rlt = MLP(f̄ l
t) ; f l+1

t = f̄ l
t + rlt . (3)

Here plt, q
l
t and rlt are residual connections corresponding to each compute-element. Such compu-

tations repeat through L layers, generating the noise prediction of each step t, and across a total
of T denoising steps. In the current streamlined video DiT architectures with homogeneous token
resolutions, each layer of each denoising step costs the same.

4.2 ADAPTIVE CACHING

In this subsection, we introduce Adaptive Caching (AdaCache), a training-free mechanism for
content-dependent compute allocation in video DiTs. The overview of Adaptive Caching is shown in
Fig. 4. Compared to a standard DiT that computes representations for all layers across all diffusion
steps, in AdaCache, we decide which layers or steps to compute, adaptively (i.e., dependent on each
video generation). This decision is based on the rate-of-change in the residual connections (e.g. plt,
qlt or rlt) across diffusion steps, which amount to all significant computations within the DiT. With-
out loss of generality, let us assume that the residuals in block l in current and immediately-prior
diffusion steps t and t+k are already computed. Here, step t+k is identified as ‘immediately-prior’
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to step t since any residuals between these two steps are not computed (i.e., cached residuals reused).
We make a decision on the next compute-step based on the distance metric (clt) given by,

clt = dist(plt+k, p
l
t) = ∥plt − plt+k∥ / k . (4)

Here, we use L1 distance by default, but other distance metrics can also be applied (e.g. L2, co-
sine). Once we have the distance metric, we select the next caching rate (τ lt ) based on a pre-defined
codebook of basis cache-rates that corresponds to the original denoising schedule (i.e., #steps). The
codebook is basically a collection of cache-rates coupled with metric thresholds to select them.

τ lt = codebook(clt) . (5)

For all denoising steps within t and t − τ , we reuse previously-cached representations and only
recompute after the current caching schedule (while also estimating the metric, again).

plt−k =

{
plt if k < τ lt ;

plt−k = STA(f l
t−k) if k = τ lt .

(6)

The same applies to other residual computations (e.g. qlt−k, rlt−k) as well. By design, we can have
unique caching schedules for each layer (and, each residual computation). However, we observe that
it will make the generations unstable. Therefore, we decide to have a common metric (i.e., clt = ct)
and hence, a common caching rate (i.e., τ lt = τt) across all DiT layers. For instance, we can consider
an averaged metric, or a metric computed at a certain layer to decide the caching schedule. Meaning,
when we recompute residuals in a certain step, we do so for the whole DiT rather than selectively
for each layer.

Overall, this setup allows us to adaptively-control the compute spent on each video generation. If
the rate-of-change between residuals is high, we will have a smaller caching rate, and otherwise,
we have a higher rate. The choice of a lightweight distance metric (e.g. L1) helps us avoid any
additional latency overheads.

4.3 MOTION REGULARIZATION

To further improve Adaptive Caching by making use of video information, we introduce a Motion
Regularization (MoReg). This is motivated by the observation that the optimal number of denoising
steps varies based on the motion content of each generated video. The core idea is to cache less
(i.e., recompute more) if a generated video has a high motion content. To regularize our caching
schedule, we estimate a latent motion-score (ml

t) based on residual frame differences. Without loss
of generality, let us denote residual latent frames of plt as {plt, n | n = 0, · · · , N − 1} where N is
the #frames in latent space (given by the VAE encoder). We estimate the motion-score as,

ml
t = ∥plt, i:N − plt, 0:N−i∥ . (7)

Here, i denotes the frame step-size (or, frame-rate), ∥ · ∥, the L1 distance, and i : j, all frames
within the corresponding range. However, since we operate on noisy-latents, we observe that our
motion estimate in early diffusion steps is not reliable. Meaning, it does not provide a reasonable
regularization in early steps (i.e., the change in caching schedule does not correlate well with the
observed motion of a generated video in pixel space). To alleviate this, we also compute a motion-
gradient (mglt) across diffusion steps, which can act as a reasonable early-predictor of motion that
we may observe in latter diffusion steps (that also correlates with the motion in pixel space).

mglt = (ml
t −ml

t+k) / k . (8)

Finally, we use both motion and motion-gradient as a multiplier for the distance metric (clt) to regu-
larize our caching schedule.

clt = clt · (ml
t +mglt) . (9)

This means, when we have a higher estimated motion, the distance metric will be increased and a
smaller basis cache-rate will be selected from the codebook. Similar to before, we enforce a common
motion-regularization to all DiT layers by computing a common motion score (i.e., ml

t = mt,
mglt = mgt), ensuring the stability of denoising process. We can also choose to compute motion at
different frame-rates, which we ablate in our experiments.
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Table 1: Quantitative evaluation of quality and latency: Here, we compare AdaCache with other
training-free DiT acceleration methods (e.g. ∆-DiT (Chen et al., 2024d), T-GATE (Zhang et al.,
2024a), PAB (Zhao et al., 2024b)) on mutliple video baselines (e.g. Open-Sora (Zheng et al., 2024)
480p - 2s at 30-steps, Open-Sora-Plan (Lab & etc., 2024) 512×512 - 2.7s at 150-steps, Latte (Ma
et al., 2024b) 512×512 - 2s at 50-steps). We measure the generation quality with VBench Huang
et al. (2024), PSNR, LPIPS and SSIM, while reporting complexity with FLOPs, latency and speedup
(measured on a single 80G A100 GPU). AdaCache-fast consistently shows the best speedups at a
comparable or slightly-lower generation quality. AdaCache-slow gives absolute-best quality while
still being faster than prior methods. Our motion-regularization significantly improves the genera-
tion quality consistently, with a minimal added-latency.

Method VBench (%) ↑ PSNR ↑ LPIPS ↓ SSIM ↑ FLOPs (T) Latency (s) Speedup

Open-Sora Zheng et al. (2024) 79.22 – – – 3230.24 54.02 1.00×
+∆-DiT (Chen et al., 2024d) 78.21 11.91 0.5692 0.4811 3166.47 – –
+ T-GATE (Zhang et al., 2024a) 77.61 15.50 0.3495 0.6760 2818.40 – –
+ PAB-fast (Zhao et al., 2024b) 76.95 23.58 0.1743 0.8220 2558.25 40.23 1.34×
+ PAB-slow (Zhao et al., 2024b) 78.51 27.04 0.0925 0.8847 2657.70 44.93 1.20×
+ AdaCache-fast 79.39 24.92 0.0981 0.8375 1331.97 24.16 2.24×
+ AdaCache-fast (w/ MoReg) 79.48 25.78 0.0867 0.8530 1383.66 25.71 2.10×
+ AdaCache-slow 79.66 29.97 0.0456 0.9085 2195.50 37.01 1.46×

Open-Sora-Plan (Lab & etc., 2024) 80.39 – – – 12032.40 129.67 1.00×
+∆-DiT (Chen et al., 2024d) 77.55 13.85 0.5388 0.3736 12027.72 – –
+ T-GATE (Zhang et al., 2024a) 80.15 18.32 0.3066 0.6219 10663.32 – –
+ PAB-fast (Zhao et al., 2024b) 71.81 15.47 0.5499 0.4717 8551.26 89.56 1.45×
+ PAB-slow (Zhao et al., 2024b) 80.30 18.80 0.3059 0.6550 9276.57 98.50 1.32×
+ AdaCache-fast 75.83 13.53 0.5465 0.4309 3283.60 35.04 3.70×
+ AdaCache-fast (w/ MoReg) 79.30 17.69 0.3745 0.6147 3473.68 36.77 3.53×
+ AdaCache-slow 80.50 22.98 0.1737 79.10 4983.30 58.88 2.20×

Latte (Ma et al., 2024b) 77.40 – – – 3439.47 32.45 1.00×
+∆-DiT (Chen et al., 2024d) 52.00 8.65 0.8513 0.1078 3437.33 – –
+ T-GATE (Zhang et al., 2024a) 75.42 19.55 0.2612 0.6927 3059.02 – –
+ PAB-fast (Zhao et al., 2024b) 73.13 17.16 0.3903 0.6421 2576.77 24.33 1.33×
+ PAB-slow (Zhao et al., 2024b) 76.32 19.71 0.2699 0.7014 2767.22 26.20 1.24×
+ AdaCache-fast 76.26 17.70 0.3522 0.6659 1010.33 11.85 2.74×
+ AdaCache-fast (w/ MoReg) 76.47 18.16 0.3222 0.6832 1187.31 13.20 2.46×
+ AdaCache-slow 77.07 22.78 0.1737 0.8030 2023.65 20.35 1.59×

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We select multiple prominent open-source video DiTs as backbone video generation pipelines in
our experiments, namely, Open-Sora-v1.2 (Zheng et al., 2024), Open-Sora-Plan-v1.1 (Lab & etc.,
2024) and Latte (Ma et al., 2024b). Since we focus on inference-based latency optimizations (i.e.,
without any re-training), we compare AdaCache against similar methods such as ∆-DiT (Chen et al.,
2024d), T-GATE (Zhang et al., 2024a) and PAB (Zhao et al., 2024b). In our main experiments, we
generate 900+ videos based on standard VBench (Huang et al., 2024) benchmark prompts at the cor-
responding generation settings of each baseline (e.g. 480p - 2s with 30-steps in Open-Sora, 512×512
- 2.7s with 150-steps in Open-Sora-Plan and 512×512 - 2s with 50-steps in Latte) measuring mul-
tiple quality-complexity metrics. We report VBench average and reference-based PSNR, SSIM and
LPIPS as quality metrics, and report FLOPs, Latency (s) and Speedup as complexity metrics. Here,
Latency is measured on a single 80G A100 GPU. In all our ablations and qualitative results, we ex-
periment on the standard prompts from Open-Sora benchmark gallery, generating 720p - 2s videos
with 100-steps.

5.2 MAIN RESULTS

In Table 1, we present a quantitative evaluation of quality and latency on VBench (Huang et al.,
2024) benchmark. We consider three variants of AdaCache: a slow variant, a fast variant with more
speedup and the same with motion regularization. We compare with other training-free acceleration
methods, showing consistently better speedups with a comparable generation quality. With Open-
Sora (Zheng et al., 2024) baseline, AdaCache-slow outperforms others on all quality metrics, while
giving a 1.46× speedup compared to PAB (Zhao et al., 2024b) with 1.20× speedup. AdaCache-fast
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Figure 5: Quality-Latency trade-off: We show quality vs. latency curves for different configura-
tions of AdaCache and PAB (Zhao et al., 2024b), with Open-Sora (Zheng et al., 2024) 720p - 2s
generations. AdaCache outperforms PAB consistently, showing a more-stable performance while
reducing latency. This stability is more-prominent in reference-free metric VBench (Huang et al.,
2024) compared to reference-based metrics, validating that AdaCache generations are aligned with
human preference even at its fastest speeds, despite not being exactly-aligned with the reference.

Figure 6: Visualizing the impact of Moiton Regularization: We show a qualitative comparison of
AdaCache and AdaCache (w/ MoReg), applied on top of Open-Sora (Zheng et al., 2024) baseline.
Here, we consider generation of 720p - 2s clips. Despite giving a 4.7× speedup, AdaCache can
also introduce some inconsistencies over time (e.g. artifacts, motion, color). Motion Regularization
helps avoid most of them by allocating more computations proportional to the amount of motion
(still giving a 4.5× speedup). Best-viewed with zoom-in. Prompts in supplementary.

gives the highest acceleration of 2.24× with a slight drop in quality. AdaCache-fast (w/ MoReg)
shows a clear improvement in quality compared to AdaCache-fast, validating the effectiveness of
our regularization and giving a comparable speedup of 2.10×. All AdaCache variants outperform
even the baseline (w/o any acceleration) on VBench average quality, which aligns better with human
preference compared to other reference-based metrics. Similar observations hold with the other
baselines as well. With Open-Sora-Plan (Lab & etc., 2024), AdaCache shows the best speedup of
3.70× compared to the previous-best 1.45× of PAB, and the best quality with a 2.20× speedup.
With Latte (Ma et al., 2024b), we gain the best speedup of 2.74× compared to prior 1.33×, and the
best overall quality with a 1.59× speedup.

5.3 ABLATION STUDY

Quality-Latency trade-off: In Fig. 5, we compare the quality-latency trade-off of AdaCache with
PAB (Zhao et al., 2024b). First, we note that AdaCache enables significantly higher reduction rates
(i.e., much-smaller absolute latency) compared to PAB. Moreover, across this whole range of latency
configurations, AdaCache gives a more-stable performance over PAB, on all quality metrics. Such
behavior is especially evident in reference-free metric VBench (Huang et al., 2024), that aligns
better with human preference. Even if we see a drop in reference-based scores (e.g. PSNR, SSIM) at
extreme reduction rates, the qualitative results suggest that the generations are still good (see Fig. 1),
despite not being aligned exactly with the reference.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation study: We evaluate different design decisions of AdaCache on Open-Sora (Zheng
et al., 2024) benchmark prompts, reporting VBench (Huang et al., 2024) scores (%), latency (s) and
speedup. Here, we consider 32 videos generated with 100 diffusion steps, and use VBench custom
dataset evaluation as suggested in the benchmark.

(a) AdaCache with Motion Regularization: We show dif-
ferent variants of AdaCache. All versions achieve signifi-
cant speedups. AdaCache + MoReg shows a better quality
with a slightly-lower speedup.

Method VBench Latency Speedup

Open-Sora (Zheng et al., 2024) 84.16 419.60 1.0×
+ AdaCache 83.40 89.53 4.7×
+ AdaCache + MoReg 83.50 93.50 4.5×
+ AdaCache + MoReg (w/o grad) 83.36 89.01 4.7×
+ AdaCache + MoReg (multi-step) 83.42 95.65 4.4×

(b) Speedups at different resolutions: We com-
pare AdaCache with baselines at different resolu-
tions. AdaCache generalizes across resolutions,
providing a stable acceleration.

Resolution AdaCache VBench Latency Speedup

480p - 2s ✗ 83.68 173.84 1.0×
✓ 83.18 38.52 4.5×

480p - 4s ✗ 82.77 349.90 1.0×
✓ 82.16 80.16 4.4×

720p - 2s ✗ 84.16 419.60 1.0×
✓ 83.40 89.53 4.7×

(c) Cache metric: Among dif-
ferent caching metrics, L1/L2
give similar performance com-
pared to cosine distance.

Cache metric VBench Latency

L1-distance 83.40 89.53
L2-distance 83.50 92.70
Cosine-distance 83.19 86.74

(d) Cache location: We
compute the cache met-
ric at mid-DiT, for best
quality-latency trade-off.

Cache loc. VBench Latency

Start 83.30 87.55
Mid 83.40 89.53
End 83.43 91.20
Multiple 83.41 90.27

(e) AdaCache Variants: We achieve a range
of speedups (and quality) by controlling the
basis cache-rates in AdaCache. Our default
configuration is AdaCache-fast.

AdaCache variant Basis-rates VBench Latency

AdaCache-fast 12-10-8-6-4-3 83.40 89.53
AdaCache-mid 8-6-4-2-1 83.94 143.87
AdaCache-slow 2-1 84.12 274.30

AdaCache with Motion Regularization: We compare AdaCache with different versions of mo-
tion regularization in Table 2a. Both vanilla and motion-regularized versions provide significant
speedups, 4.7× and 4.5× respectively, at a comparable quality with baseline Open-Sora (Zheng
et al., 2024). Considering motion-gradient as an early-prediction of motion at latter diffusion steps
helps (83.50 vs. 83.36 on VBench). We also estimate motion at different frame-rates by consider-
ing varying step-size in frame differences, which seems to increase the latency without improving
quality. Overall, we consider AdaCache + MoReg as the confifuration with best quality-latency
trade-off. This improvement in quality is more-prominent in qualitative examples shown in Fig. 6
and benchmark comparison in Table 1.

Speedups at different resolutions: In Table 2b, we compare the trade-offs of AdaCache at various
resolutions of video generations, namely, 480p - 2s, 480p - 4s and 720p - 2s, all at 100-steps.
AdaCache provides consistent speedups across different resolutions without affecting the quality.

Cache metric and location: When adaptively deciding the caching schedule, we consider different
metrics to compute the rate-of-change between representations, namely, L1/L2 distance or cosine
distance. Among these, L1/L2 give an absolute measure which aligns better with the actual change.
In contrast, cosine computes a normalized-distance, which is not a good estimate of change (e.g. if
the representations differ only by a scale, the distance will be zero, even though we want to have
a non-zero metric). This observation is verified by the results in Table 2c. Moreover, we consider
computing the cache metric at various locations (i.e., layers) in the DiT. Doing so at a single layer
(e.g. start, mid, end) is not significantly different from computing an aggregate over multiple-layers
(see Table 2d). By default, we compute the cache metric in the mid-layer as a reasonable choice
without extra overheads.

AdaCache variants: To achieve a range of speedups (and quality), we consider different basis
cache-rates in our AdaCache implementation. For instance, we can have higher-speedup with a
slightly-lower quality (e.g. AdaCache-fast), a lower-speedup with a higher-quality (e.g. AdaCache-
slow), or balance both (e.g. AdaCache-mid). We can conveniently control this by having corre-
sponding basis cache-rates as shown in Table 2e. By defualt, we resort to AdaCache-fast which
gives the best speedups.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Qualitative comparison: We show qualitative results on multiple video-DiT baselines
including Open-Sora (Zheng et al., 2024) (720p - 2s at 100-steps), Open-Sora-Plan (Lab & etc.,
2024) (512×512 - 2.7s at 150-steps) and Latte (Ma et al., 2024b) (512×512 - 2s at 50-steps), while
comparing against prior training-free inference acceleration method PAB (Zhao et al., 2024b). Ada-
Cache shows a comparable generation quality at much-faster speeds. Best-viewed with zoom-in.
Prompts in supplementary.

5.4 QUALITATIVE RESULTS

In Fig. 7, we present qualitative results on mutliple video DiT baselines, including Open-Sora
(Zheng et al., 2024), Open-Sora-Plan (Lab & etc., 2024) and Latte (Ma et al., 2024b). We compare
AdaCache against each baseline and prior training-free inference acceleration method for DiTs, PAB
(Zhao et al., 2024b). Here, we consider three different configurations: 720p - 2s generations at 100-
steps for Open-Sora, 512×512 - 2.7s generations at 150-steps for Open-Sora-Plan, and 512×512 - 2s
generations at 50-steps for Latte, while considering standard prompts from Open-Sora gallery (see
supplementary for prompt details). AdaCache shows comparable generation quality, while having
much-faster inference pipelines. In fact, it achieves 4.49× (vs. 1.26× in PAB), 3.53× (vs. 1.45×
in PAB), 2.46× (vs. 1.33× in PAB) speedups respectively on the three considered baseline DiTs.
In most cases our generations are aligned well with the baseline in the pixel-space. Yet this is not
a strict requirement, as the denoising process can deviate considerably from that of the baseline, at
high caching rates. Still, AdaCache is faithful to the text prompt and is not affected by significant
artifacts.

6 CONCLUSION

In this paper, we introduced Adaptive Caching (AdaCache), a plug-and-play component that im-
proves the the inference speed of video generation pipelines based on diffusion transformers, with-
out needing any re-training. It caches residual computations, while also devising the caching sched-
ule dependent on each video generation. We further proposed a Motion Regularization (MoReg) to
utilize video information and allocate computations based on motion content, improving the quality-
latency trade-off. We apply our contributions on multiple open-source video DiTs, showing com-
parable generation quality at a fraction of latency. We believe AdaCache is widely-applicable with
minimal effort, helping democratize high-fidelity long video generation.
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REPRODUCIBILITY STATEMENT

We use open-source video DiTs (w/ publicly-available code and pretrained-weights) in all our ex-
periments. As we rely on zero-shot (i.e., training-free) inference acceleration, we do not update
pretrained weights. All our quantitative evaluations and generated videos correspond to standard
benchmark prompts that are also publicly-available. Our method details all required steps to repro-
duce the proposed contributions. Finally, we pledge to release our code together with the paper to
support further research.
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Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Rachel Hornung, Hartwig
Adam, Hassan Akbari, Yair Alon, Vighnesh Birodkar, et al. Videopoet: A large language model
for zero-shot video generation. arXiv preprint arXiv:2312.14125, 2023.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

PKU-Yuan Lab and Tuzhan AI etc. Open-sora-plan, April 2024. URL https://doi.org/10.
5281/zenodo.10948109.

Xirui Li, Chao Ma, Xiaokang Yang, and Ming-Hsuan Yang. Vidtome: Video token merging for
zero-shot video editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7486–7495, 2024a.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 17535–17545, 2023.

13

https://doi.org/10.5281/zenodo.10948109
https://doi.org/10.5281/zenodo.10948109


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
Advances in Neural Information Processing Systems, 36, 2024b.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. In European Conference on Computer Vision, pp.
423–439. Springer, 2022.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9298–9309, 2023a.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023b.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022.

Haoyu Lu, Guoxing Yang, Nanyi Fei, Yuqi Huo, Zhiwu Lu, Ping Luo, and Mingyu Ding.
Vdt: General-purpose video diffusion transformers via mask modeling. arXiv preprint
arXiv:2305.13311, 2023.

Inc. Luma AI. Dream machine. URL https://lumalabs.ai/dream-machine, 2024.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378, 2023.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024a.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint
arXiv:2401.03048, 2024b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15762–15772, 2024c.

Yifang Men, Yuan Yao, Miaomiao Cui, and Bo Liefeng. Mimo: Controllable character video syn-
thesis with spatial decomposed modeling. arXiv preprint arXiv:2409.16160, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Yotam Nitzan, Zongze Wu, Richard Zhang, Eli Shechtman, Daniel Cohen-Or, Taesung Park, and
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A APPENDIX

A.1 TEXT PROMPTS USED IN QUALITATIVE EXAMPLES

Text prompts corresponding to the video generations in Fig. 1:

• A Japanese tram glides through the snowy streets of a city, its
sleek design cutting through the falling snowflakes with grace.
The tram’s illuminated windows cast a warm glow onto the snowy
surroundings, creating a cozy atmosphere inside. Snowflakes dance
in the air, swirling around the tram as it moves along its tracks.
Outside, the city is blanketed in a layer of snow, transforming
familiar streets into a winter wonderland. Cherry blossom trees,
now bare, stand quietly along the tram tracks, their branches
dusted with snow. People hurry along the sidewalks, bundled up
against the cold, while the tram’s bell rings softly, announcing
its arrival at each stop.

• a picturesque scene of a tranquil beach at dawn. the sky is
painted in soft pastel hues of pink and orange, reflecting on the
calm, crystal-clear water. gentle waves lap against the sandy
shore, where a lone seashell lies near the water’s edge. the
horizon is dotted with distant, low-lying clouds, adding depth to
the serene atmosphere. the overall mood of the video is peaceful
and meditative, with no text or additional objects present. the
focus is on the natural beauty and calmness of the beach, captured
in a steady, wide shot.

• a bustling night market scene with vibrant stalls on either side
selling food and various goods. the camera follows a person
walking through the crowded, narrow alley. string lights hang
overhead, casting a warm, festive glow. people of all ages
are talking, browsing, and eating, creating an atmosphere full
of lively energy. occasional close-ups capture the details of
freshly cooked dishes and colorful merchandise. the video is
dynamic with a mixture of wide shots and close-ups, capturing the
essence of the night market without any text or sound.

• a dynamic aerial shot showcasing various landscapes. the
sequence begins with a sweeping view over a dense, green forest,
transitioning smoothly to reveal a winding river cutting through
a valley. next, the camera rises to capture a panoramic view of
a mountain range, the peaks dusted with snow. the shot shifts to
a coastal scene, where waves crash against rugged cliffs under a
partly cloudy sky. finally, the aerial view ends over a bustling
cityscape, with skyscrapers and streets filled with motion and
life. the video does not contain any text or additional overlays.

• a cozy living room scene with a christmas tree in the corner
adorned with colorful ornaments and twinkling lights. a fireplace
with a gentle flame is situated across from a plush red sofa,
which has a few wrapped presents placed beside it. a window
to the left reveals a snowy landscape outside, enhancing the
festive atmosphere. the camera slowly pans from the window to the
fireplace, capturing the warmth and tranquility of the room. the
soft glow from the tree lights and the fire illuminates the room,
casting a comforting ambiance. there are no people or text in the
video, focusing purely on the holiday decor and cozy setting.

Text prompts corresponding to new video generations in Fig. 2:
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• a breathtaking aerial view of a river meandering through a lush
green landscape. the river, appearing as a dark ribbon, cuts
through the verdant fields and hills, reflecting the soft light
of the pinkish-orange sky. the sky, painted in hues of pink
and orange, suggests the time of day to be either sunrise or
sunset. the landscape is dotted with trees and bushes, adding
to the natural beauty of the scene. the perspective of the video
is from above, providing a bird’s eye view of the river and the
surrounding landscape. the colors , the river, the landscape,
and the sky all come together to create a serene and picturesque
scene.

• A cozy living room, surrounded by soft cushions and warm lighting.
Describe the scene in vivid detail, capturing the feeling of
comfort and relaxation.

• a nighttime scene in a bustling city filled with neon lights and
futuristic architecture. the streets are crowded with people,
some dressed in high-tech attire and others in casual cyberpunk
fashion. holographic advertisements and signs illuminate the
area in vibrant colors, casting a glow on the buildings and
streets. futuristic vehicles and motorcycles are speeding by,
adding to the city’s dynamic atmosphere. in the background,
towering skyscrapers with intricate designs stretch into the night
sky. the scene is filled with energy, capturing the essence of a
cyberpunk world.

• a close-up shot of a vibrant coral reef underwater. various
colorful fish swim leisurely around the corals, creating a
lively scene. the lighting is natural and slightly subdued,
emphasizing the deep-sea environment. soft waves ripple across
the view, occasionally bringing small bubbles into the frame. the
background fades into a darker blue, suggesting deeper waters
beyond. there are no texts or human-made objects visible in the
video.

• a neon-lit cityscape at night, featuring towering skyscrapers
and crowded streets. the streets are bustling with people
wearing futuristic attire, and vehicles hover above in organized
traffic lanes. holographic advertisements are projected onto
buildings, illuminating the scene with vivid colors. a light rain
adds a reflective sheen to the ground, enhancing the cyberpunk
atmosphere. the camera pans slowly through the scene, capturing
the energy and technological advancements of the city. the video
does not contain any text or additional objects.

• a breathtaking view of a mountainous landscape at sunset. the
sky is painted with hues of orange and pink, casting a warm glow
over the scene. the mountains, bathed in the soft light, rise
majestically in the background, their peaks reaching towards the
sky. in the foreground, a woman is seated on a rocky outcrop,
her body relaxed as she takes in the vie w. she is dressed in a
black dress and boots, her attire contrasting with the natural
surroundings. her position on the rock provides a vantage
point over a river that meanders through the valley below. the
river, a ribbon of blue, winds its way through the landscape,
adding a dynamic element to the scene. the woman’s gaze is
directed towards the river, suggesting a sense of contemplation
or admiration for the beauty of nature. the video is taken from
a high angle, looking down on the woman and the landscape. this
perspective enhances the sense of depth and scale in the image,
emphasizing the vastness of the mountains and the river.
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• an animated scene featuring a young girl with short black hair and
a bow tie, seated at a wooden desk in a warmly lit room. natural
light filters through a window, illuminating the girl’s wide eyes
and open mouth, conveying a sense of surprise or shock. she is
dressed in a blue shirt with a white collar and dark vest. the
room’s inviting atmosphere is complemented by wooden furniture and
a framed picture on the wall. the animation style is reminiscent
of japanese anime, characterized by vibrant colors and expressive
character designs.

Text prompts corresponding to new video generations in Fig. 3:

• a realistic 3d rendering of a female character with curly blonde
hair and blue eyes. she is wearing a black tank top and has
a neutral expression while facing the camera directly. the
background is a plain blue sky, and the scene is devoid of any
other objects or text. the character is detailed, with realistic
textures and lighting, suitable for a video game or high-quality
animation. there is no movement or additional action in the
video. the focus is entirely on the character’s appearance and
realistic rendering.

Text prompts corresponding to new video generations in Fig. 6:

• a breathtaking aerial view of a misty mountain landscape at
sunrise. the sun is just beginning to peek over the horizon,
casting a warm glow on the scene. the mountains, blanketed in
a layer of fog, rise majestically in the background. the mist
is so dense that it obscures the peaks of the mountains, adding
a sense of mystery to the scene. in the foregro und, a river
winds its way through the landscape, its path marked by the dense
fog. the river appears calm, its surface undisturbed by the early
morning chill. the colors in the video are predominantly cool,
with the blue of the sky and the green of the trees contrasting
with the warm orange of the sunrise. the video is taken from a
high vantage point, p roviding a bird’s eye view of the landscape.
this perspective allows for a comprehensive view of the mountains
and the river, as well as the fog that envelops them. the video
doe s not contain any text or human activity, focusing solely on
the natural beauty of the landscape. the relative positions of
the objects suggest a vast, untouched wilderness.

• a 3d rendering of a female character with curly blonde hair
and striking blue eyes. she is wearing a black tank top and
is standing in front of a fiery backdrop. the character is
looking off to the side with a serious expression on her face.
the background features a fiery orange and red color scheme,
suggesting a volcanic or fiery environment. the lighting in the
scene is dramatic, with the character’s face illuminated by a soft
light that contrasts with the intense colors of the background.
there are no texts or other objects in the image. the style of
the image is realistic with a high level of detail, indicative of
a high-quality 3d rendering.

Text prompts corresponding to new video generations in Fig. 7:

• a scenic shot of a historical landmark. the landmark is an
ancient temple with tall stone columns and intricate carvings.
the surrounding area is lush with greenery and vibrant flowers.
the sky above is clear and blue, with the sun casting a warm glow
over the scene. tourists can be seen walking around, taking
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pictures and admiring the architecture. there is no text or
additional objects in the video.

• a vibrant cyberpunk street scene at night. neon signs and
holographic advertisements illuminate the narrow street, casting
colorful reflections on the rain-slicked pavement. various
characters, dressed in futuristic attire, move along the
sidewalks while robotic street vendors sell their wares. towering
skyscrapers with glowing windows dominate the background, creating
a sense of depth. the camera takes a wide-angle perspective,
capturing the bustling and lively atmosphere of the cyberpunk
cityscape. there are no texts or other objects outside of the
described scene.
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