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A PROOFS

Theorem 1 (Impossibility Theorem). Let H be a non-trivial hypothesis space and L :
(X ,Y)(m×n) → H be the learner for an FL system. There exists a client participation pro-
cess F , a distribution P , and a target function f ∈ H with minh∈HRP (h, f) = 0, such that
PS∼P

[
RP (L(F(S), f)) > 1−α

8

]
> 1

20 .

Proof. Denote S the dataset with size Mn i.i.d. sampled from distribution P , F(·) the sampling
process of FL system, and S̄ = F(S) the training dataset selected by FL system with size mn.
Consider a distribution P with support on only two points {x1, x2} such that PP (x1) = 1 −
4ε and PP (x2) = 4ε with ε = 1−α

8 .

First we show that the rare points x2 appears at most (1 − α)Mn times with constant probability.
Let ŝ be the number of x2 points in S, then ŝ ∼ B(Mn, ε) is a binomial random variable. By the
Chernoff bound,

P[ŝ ≥ (1− α)Mn] = P[ŝ ≥ (1 + 1)4εMn] ≤ e− 4εMn
3 = e−

(1−α)Mn
6 ≤ e− 1

6 ≤ 17

20
.

So P[ŝ < (1− α)Mn] > 3
20 .

Next, we consider the following sampling process with dataset S =

{(x′1, f(x
′

1)), . . . , (x
′

M×n, f(x
′

M×n))}: choosing as many data (x
′

i, f(x
′

i)), i ∈ [mn] such
that x

′

i = x1 as possible to form the training set S̄. Let f1, f2 ∈ H be two target functions whose
existence is guaranteed by the non-trivial definition ofH and f1(x1) = f2(x1), f1(x2) = −f2(x2),
and S be the set of all datasets in (X ,Y)(M×n) such that ŝ < (1− α)MN .

Let R(hs, f) = PP [L(F(S))(x) 6= f1(x) ∩ x 6= x1], the following holds for these two target
functions f1 and f2:

R(hs, f1) +R(hs, f2) = PP [L(F(S))(x) 6= f1(x) ∩ x 6= x1] + PP [L(F(S))(x) 6= f2(x) ∩ x 6= x1]

= 1L(F(S))(x1)6=f1(x1)P(x2) + 1L(F(S))(x1)6=f2(x2)P(x1)

= 4ε.

The above result hold in expectation since it holds for any S ∈ S . Hence, there exists a target function
f ∈ H such that ES∈SR(hs, f) ≥ 2ε. NoteR(hs, f) ≤ P(x 6= x1) = 4ε, then by decomposing the
expectation into two parts we obtain:

2ε ≤ ES∈SR(hs, f) =
∑

S:R(hs,f)≥ε

R(hs, f)P[R(hs, f)] +
∑

S:R(hs,f)<ε

R(R(hs, f)P[R(hs, f)]

≤ 4εPS∈S [R(hs, f) ≥ 4ε] + ε(1− PS∈S [R(hs, f) ≥ ε])
= ε+ 3εPS∈S [R(hs, f) ≥ ε].

That is,

PS∈S [R(hs, f) ≥ ε] ≥ 1

3
.

Note R(hs, f) = PP [L(F(S))(x) 6= f1(x) ∩ x 6= x1] ≤ R(L(F(S))) = PP [L(F(S))(x) 6=
f1(x)], then we have the final results:

PS∼P [RP (L(F(S)), f) ≥ ε] ≥ PS∼P [R(hs, f) ≥ ε]
≥ PS∈S [R(hs, f) ≥ ε]P[S ∈ S]

>
1

3

3

20
=

1

20
.

Theorem 2 (Generalization Error Bound for SA-FL). For an SA-FL system with arbitrary system and
data heterogeneity, if distributions P and Q satisfy Assumption 1 and are (α, β)-positively-related,
then with probability at least 1− δ for any δ ∈ (0, 1), it holds that

εP (ĥ∗Q)=Õ

((
dH

nT +nS

) 1
2−βQ

+

(
dH

nT +nS

) β
2−βQ

)
, (1)
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where dH denotes the finite VC dimension for hypotheses classH, and parameters {P,Q, nT , nS , β,
βQ} are defined the same as before.

Proof.

εP (ĥ∗Q) = RP (ĥ∗Q)−RP (h∗P )

= [RP (ĥ∗Q)−RP (h∗P )− (RQ(ĥ∗Q)−RQ(h∗Q))] +RQ(ĥ∗Q)−RQ(h∗Q)

≤ |εP (ĥ∗Q)− εQ(ĥ∗Q)|+ εQ(ĥ∗Q)

≤ αεQ(ĥ∗Q)β + εQ(ĥ∗Q).

Combining with Lemma 1, the proof is complete.

Lemma 1 (Auxiliary Lemma (Massart & Nédélec, 2006; Koltchinskii, 2006; Hanneke & Kpotufe,
2019; 2020)). For any m ∈ N and δ ∈ (0, 1), define A(m, δ) = dH

m log( mdH + 1
m log( 1

δ )) With

probability at least 1− δ, ∀h, ĥ ∈ H,

R(h)−R(ĥ) ≤ R̂(h)− R̂(ĥ) + c

√
min {PS(h 6= ĥ), P̂S(h 6= ĥ)}A(m, δ) + cA(m, δ),

1

2
PS(h 6= ĥ)− cA(m, δ) ≤ P̂S(h 6= ĥ) ≤ 2PS(h 6= ĥ) + cA(m, δ),

εQ(ĥ∗Q) = [A(m, δ)]
1

2−βQ ,

where PS(·) = E[P̂S(·)], S is the i.i.d. dataset with size m drawn form distribution Q, c ∈ (0,∞) is
a constant.

Theorem 3 (SA-FL Being No Worse Than Centralized Learning). Consider an SA-FL system with
arbitrary system and data heterogeneity. If Assumption 1 holds and additionally R̂P (ĥ∗Q) ≤ R̂P (h∗Q)

and εP (h∗Q) = O(A(nT , δ)), where A(nT , δ) = dH
nT

log(nTdH + 1
nT

log( 1
δ )), then with probability at

least 1 − δ for any δ ∈ (0, 1), it holds that εP (ĥ∗Q) = Õ
(

(dH/nT )
1

2−βP

)
. Other parameters are

the same as defined in Theorem 2.

Proof. Without loss of generality, we use c serve as a generic constant since we focus on the order in
terms of the sample number and thus omit the constant factor.

εP (ĥ∗Q) = RP (ĥ∗Q)−RP (h∗P )

≤ R̂P (ĥ∗Q)− R̂P (h∗P ) + c
√

min {P (ĥ∗Q 6= h∗P ), P̂ (ĥ∗Q 6= h∗P )}A(nT , δ) + cA(nT , δ)

≤ c
√
εβPP (ĥ∗Q)A(nT , δ) + cA(nT , δ).

The first inequality is due to Lemma 1 and second inequality follows from Lemma 2 and Noise
assumption 1. Then we have the following result, which completes the proof:

εP (ĥ∗Q) ≤ cA(nT , δ)
1

2−βP .

Lemma 2. If R̂P (ĥ∗Q) ≤ R̂P (h∗Q), with probability at least 1− δ,

R̂P (ĥ∗Q)− R̂P (h∗P ) = εP (h∗Q) +O(A(nT , δ)).
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Proof.

R̂P (ĥ∗Q)− R̂P (h∗P ) ≤ R̂P (h∗Q)− R̂P (h∗P )

≤ RP (h∗Q)−RP (h∗P ) + c
√

min {P (h∗Q 6= h∗P ), P̂ (h∗Q 6= h∗P )}A(nT , δ) + cA(nT , δ)

= εP (h∗Q) +O(A(nT , δ)).

Theorem 4 (Convergence Rate for SAFARI ). Under Assumptions 2 and 3, let constant learning
rate η satisfy ( 1

2 − 4LKη − 20K(L+ 4KL3η)η2) > 0. Then, the sequence {xr} generated by the
SAFARI algorithm satisfies:

1

R

R−1∑
t=0

E‖∇F (xr)‖2 ≤
1

c

[
F (x0)− F (x∗)

ηKR

]
+

1

c

[(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2
]

+
1

c

[(
1

K2
+
Lη

K

)
1

R

R−1∑
t=0

c2r

]
,

where c is a constant and x∗ denotes an optimal solution.

Proof. Let ∆̄r = 1
|Sr|

∑
i∈Sr ∆̂i

r, ḡr = ∆0
r + 1

|Sr|
∑
i∈Sr ∆̂i

r = ∆0
r + ∆̄r.

Let Er[·] denote the conditional expectation conditioned on xr, which is averaged over all realizations
of the random dataset T , we have

Er[F (xr+1)] ≤ F (xr) +
〈
∇F (xr),Er[xr+1 − xr]

〉
+
L

2
Er[‖xr+1 − xr‖2]

= F (xr) +
〈
∇F (xr), ηErḡr

〉
+
L

2
η2Er[‖ḡr‖2]

= F (xr)− ηK‖∇F (xr)‖2 +
〈
∇F (xr), ηK∇F (xr) + ηEr

[
∆0
r + ∆̄r

] 〉︸ ︷︷ ︸
A1

+
L

2
η2Er

[
‖∆0

r + ∆̄r‖2
]

︸ ︷︷ ︸
A2

.

The we can bound A1 and A2 separately as follows.

A1 =
〈
∇F (xr), ηK∇F (xr) + ηEr

[
∆0
r + ∆̄r

] 〉
= ηK

〈
∇F (xr),∇F (xr) +

1

K
Er
[
∆0
r + ∆̄r

] 〉
≤ 1

2
ηK‖∇F (xr)‖2 +

1

2
ηK

∥∥∥∥∇F (xr) +
1

K
Er
[
∆0
r + ∆̄r

]∥∥∥∥2

Note that ∆0
r = −

∑K−1
k=0 ∇F (x0

r,k, ξ
0
r,k). We have

1

2
ηK

∥∥∥∥∇F (xr) +
1

K
Er
[
∆0
r + ∆̄r

]∥∥∥∥2

≤ ηK
∥∥∥∥∇F (xr) +

1

K
Er
[
∆0
r

]∥∥∥∥2

+ ηK

∥∥∥∥ 1

K
Er
[
∆̄r

]∥∥∥∥2

≤ ηK

∥∥∥∥∥∇F (xr)− Er

[
1

K

K−1∑
k=0

∇F (x0
r,k, ξ

0
r,k)

]∥∥∥∥∥
2

+
η

K
Er
∥∥∆̄r

∥∥2

= ηK

∥∥∥∥∥∇F (xr)−
1

K

K−1∑
k=0

∇F (x0
r,k)

∥∥∥∥∥
2

+
η

K
Er

∥∥∥∥∥ 1

|Sr|
∑
i∈Sr

∆̂i
r

∥∥∥∥∥
2

≤ η
K−1∑
k=0

∥∥∇F (xr)−∇F (x0
r,k)
∥∥2

+ η
1

|Sr|
Er
∑
i∈Sr

‖∆̂i
r‖2

≤ ηL
K−1∑
k=0

‖xr − x0
r,k‖2 +

η

K
c2r.
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Note the first equality follows from the fact that Er[·] is over all realizations of the random dataset T
uniformly and independently sampled from P , rather than a single realization (i.e., a fixed dataset).
This implies that ξ0

r,k is an i.i.d. data sample from a random dataset T which is uniformly sampled
from P .

So, we can bound A1 as following:

A1 ≤
1

2
ηK‖∇F (xr)‖2 + ηL

K−1∑
k=0

‖xr − x0
r,k‖2 +

η

K
c2r.

A2 =
L

2
η2E

[
‖∆0

r + ∆̄r‖2
]
≤ Lη2Er

[
‖∆0

r‖2
]

+ Lη2Er
[
‖∆̄r‖2

]
.

Er
[
‖∆0

r‖2
]

= Er

∥∥∥∥∥
K−1∑
k=0

∇F (x0
r,k, ξ

0
r,k)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
K−1∑
k=0

∇F (x0
r,k)

∥∥∥∥∥
2

+ 2Kσ2

≤ 2

∥∥∥∥∥
K−1∑
k=0

[
∇F (x0

r,k)−∇F (xr) +∇F (xr)
]∥∥∥∥∥

2

+ 2Kσ2

≤ 4K

K−1∑
k=0

[
‖∇F (x0

r,k)−∇F (xr)‖2 + ‖∇F (xr)‖2
]

+ 2Kσ2

≤ 2Kσ2 + 4KL2
K−1∑
k=0

‖x0
r,k − xr‖2 + 4K2‖∇F (xr)‖2,

where the first inequality is due to assumption 1 and {∇F (x0
r,k, ξ

0
r,k)−∇F (x0

r,k)} form a martingale
difference sequence (see Lemma 4 in (Karimireddy et al., 2020)).

Hence, we can bound A2 as following:

A2 ≤ 2KLη2σ2 + 4KL3η2
K−1∑
k=0

‖x0
r,k − xr‖2 + 4LK2η2‖∇F (xr)‖2 + Lη2c2r.

By plugging the bound of A1 and A2 into the smoothness inequality and taking full expectation, we
have:

E[F (xr+1)− F (xr)] ≤ E
[
−ηK‖∇F (xr)‖2 +A1 +A2

]
≤ E

[
−ηK(

1

2
− 4LKη)‖∇F (xr)‖2 +

(
ηL+ 4KL3η2

)K−1∑
k=0

Er[‖x0
r,k − xr‖2] +

( η
K

+ Lη2
)
c2r + 2KLη2σ2

]
.

For the server, we have the following results for the norm of parameter changes for one local
computation:

Er[‖x0
r,k − xr‖2] = Er[‖x0

t,k−1 − xr − ηg0
t,k−1‖2]

= Er
[
‖x0

t,k−1 − xr − η∇F (x0
t,k−1)‖2

]
+ Er‖η

(
g0
t,k−1 −∇F (x0

t,k−1)
)
‖2

= (1 +
1

2K − 1
)Er

[
‖x0

t,k−1 − xr‖2
]

+ Er‖η
(
g0
t,k−1 −∇F (x0

t,k−1)
)
‖2

+ 2KEr‖η∇F (x0
t,k−1)− η∇F (xr) + η∇F (xr)‖2

= (1 +
1

2K − 1
)Er

[
‖x0

t,k−1 − xr‖2
]

+ Er‖η
(
g0
t,k−1 −∇F (x0

t,k−1)
)
‖2
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+ 4Kη2‖∇F (x0
t,k−1)−∇F (xr)‖2 + 4Kη2‖∇F (xr)‖2

≤ (1 +
1

2K − 1
+ 4KL2η2)Er

[
‖x0

t,k−1 − xr‖2
]

+ η2σ2 + 4Kη2‖∇F (xr)‖2

≤ (1 +
1

K − 1
)Er

[
‖x0

t,k−1 − xr‖2
]

+ η2σ2 + 4Kη2‖∇F (xr)‖2.

Unrolling the recursion, we obtain the following:

Er[‖x0
r,k − xr‖2] =

k−1∑
p=0

(1 +
1

K − 1
)p
(
η2σ2 + 4Kη2‖∇F (xr)‖2

)
≤ (K − 1)

[(
1 +

1

K − 1

)K
− 1

] (
η2σ2 + 4Kη2‖∇F (xr)‖2

)
≤ 5Kη2σ2 + 20K2η2‖∇F (xr)‖2.

Putting the pieces together, we obtain

E [F (xr+1)− F (xr)]

≤ E
[
−ηK(

1

2
− 4LKη − 20K(L+ 4KL3η)η2)‖∇F (xr)‖2

]
+ E

[
ηK

(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2 +

( η
K

+ Lη2
)
c2r

]
≤ E

[
−cηK‖∇F (xr)‖2 + ηK

(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2 +

( η
K

+ Lη2
)
c2r

]
.

The last inequality follows from that there exist such constant c if ( 1
2 − 4LKη − 20K(L +

4KL3η)η2) > 0.

Summing over r = 0 to R− 1, we have

1

R

R−1∑
t=0

E‖∇F (xr)‖2 ≤
1

c

[
F (x0)− F (x∗)

ηKR
+
(
5KLη2 + 20K2L3η3 + 2Lη

)
σ2

+

(
1

K2
+
Lη

K

)
1

R

R−1∑
t=0

c2r

]

B EXPERIMENTS

In this section, we provide the details of the numerical experiments and some additional experimental
results.

B.1 MODELS AND DATASETS

We test the SAFARI algorithm by running two models on two different types of datasets, including
1) multinomial logistic regression (LR) on MNIST, and 2) convolutional neural network (CNN) on
CIFAR-10. Both datasets are chose from a previous FL paper (McMahan et al., 2017), and they are
now widely used as benchmarks for FL research (Yang et al., 2021b; Li et al., 2020b).

MNIST and CIFAR-10 have ten classes of images separately. In order to impose the heterogeneity
of the data, we partition the dataset according to the number of classes (p) that each client contains.
We distribute these data to M = 10 clients, and each client only has a certain number of classes.
Specifically, each client randomly selects p classes of images and then evenly samples training and
test data-points within these p classes of images without replacement. For example, if p = 2, each
client only samples training and test data-points within two classes of images, which causes the
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Figure 3: Test Accuracy of FedAvg on CIFAR-10 with incomplete client participation. Larger
incomplete client participation index means less clients participate in the training, and smaller non-
i.i.d. index means the data across clients is more heterogeneous.

heterogeneity among different clients. If p = 10, each client contains training and test samples that
selects from ten classes. This situation is almost the same as i.i.d. case. Hence, the number of classes
(p) in each client’s local dataset can be used to represent the level of non-i.i.d. qualitatively. In addition,
to mimic incomplete client participation, we enforce s clients to be exempt from participation, where
the index s can be used to represent the degree of incomplete client participation. Specifically, we
assume there are M = 10 clients in total, and m = 5 clients participate in each communication round.
These clients are uniformly sampled from M − s clients. Larger incomplete client participation index
s means less clients participate in the training.

For both MNIST and CIFAR-10, the learning rate is 0.1, and the local epoch is 1. For MNIST, the
batch size is 64, and the total communication round is 150. For CIFAR-10, the batch size is 500, and
the total communication round is 4000. To simulate the data heterogeneity, we use p = [10, 5, 2, 1]
as a proxy to represent the degree of non-i.i.d. on MNIST and CIFAR-10 datasets. To emulate the
effect of incomplete client participation, we set s = [0, 2, 4] to represent the degree of incomplete
client participation for the SAFARI algorithm, the FedAvg algorithm, and the SGD algorithm. Last
two algorithms are employed as the baselines to compare with our algorithm. The hyper-parameter
ct in the SAFARI algorithm is set to 0.1 both on MNIST and CIFAR-10. To compare the effect of
the collaboration from server, we add [50, 100, 500, 1000] data to the server’s side for MNIST and
[500, 1000, 5000] for CIFAR-10.

B.2 ADDITIONAL EXPERIMENTAL RESULTS

In Figure B.2, we show the test accuracy of FedAvg algorithm on CIFAR-10 for different Non-IID
index p and incomplete client participation index s. In the case of p = 10, the test accuracy of s = 4
and s = 0 is not much different whereas the test accuracy of s = 4 is 25% lower than that of s = 1
in the case of p = 1. This finding on CIFAR-10 further support our first observation in Section 5.
Incomplete client participation has no impact on the performance for nearly homogeneous data, but it
causes catastrophical performance degradation for highly Non-IID data.

In Figure 4, we show the test accuracy of the SAFARI algorithm, the FedAvg algorithm, and the SGD
algorithm on MNIST for incomplete client participation s = 4 and different Non-IID index p. The
evidences of the observations in Section 5 are provided visually as follows:

• Compared to FedAvg in the case of p = 1 (see Figure 4(d)), with only 50 data at server’s
side (0.1% of the total training data), there is a non-negligible increase of test accuracy for
our SAFARI algorithm. This increase increases as more data is added to the server’s side.

• In nearly homogeneous case when p = 5 or p = 10 (see Figure 4(a) and 4(b)), there is
actually no improvement of the test accuracy with these auxiliary data added to the server’s
side, comparing SAFARI with FedAvg.
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(a) Non-IID Index p = 10
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(b) Non-IID Index p = 5
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(c) Non-IID Index p = 2
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(d) Non-IID Index p = 1

Figure 4: Test accuracy of SAFARI , FedAvg, and SGD algorithm on MNIST with incomplete client
participation s = 4 and different Non-IID index p. Smaller p means the data across clients is more
heterogeneous.

Table 3: Test accuracy improvement (%) for SAFARI compared with FedAvg on CIFAR-10 with
incomplete client participation s = 4. ‘-’ means no statistical difference within 2% error bar.

SERVER DATASIZE
NON-IID INDEX (p)
10 5 2 1

500 - - - -
1000 - - - 3.55
5000 - - 5.45 16.08

• Compared SAFARI with SGD (for centralized learning solely on server’s data) in nearly
homogeneous case when p = 5 or p = 10 (see Figure 4(a) and 4(b)), the collaborations
from clients significantly improves the performance, especially with less data on the server’s
side.

• In highly heterogeneous case when p = 2 or p = 1 (see Figure 4(c) and 4(d)), it shows no
obvious improvement from the collaboration of clients comparing SAFARI to SGD.

In Table 3, we show the comparison between our SAFARI algorithm and FedAvg algorithm on
CIFAR-10 for incomplete client participation s = 4. The observations in Section 5 are further
illustrated: 1) There is non-negligible increase of the test accuracy for SAFARI algorithm with small
amount of auxiliary data at server’s side. With 5000 data at server’s side, the test accuracy increases
by 16.08%. 2) There is actually no improvement with these auxiliary data for nearly homogeneous
case (e.g., p = 10 or p = 5), which is denoted by ‘-’ in the table.
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Table 4: Test accuracy improvement (%) of SAFARI under incomplete client participation s = 4
compared with SGD in centralized learning on CIFAR-10. Smaller Non-IID index means the data
across clients is more heterogeneous.

SERVER DATASIZE
NON-IID INDEX (p)

10 5 2 1
500 35.67 33.48 27.60 10.77

1000 31.23 28.46 22.36 7.62
5000 13.99 11.11 7.88 3.40

In Table 4, we show the difference between our SAFARI algorithm and SGD, which is for centralized
learning solely on server’s data, for incomplete client participation s = 4 on CIFAR-10. When
the size of data on server’s side is small, the collaborations from clients significantly improve the
performance of the SAFARI algorithm. Even in the highly heterogeneous case when p = 1, the test
accuracy can be improved by 10% for only 500 data on the server’s side (0.8% of the total training
data). This observation further validates our theoretical analysis in Theorem 2.
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