
Algorithm 2 CPA-VAE generative process

Require: X 2 RN⇥Dx , D 2 {0, 1}N⇥T

for t from 1 to T do
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end for
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Figure 5: CPA-VAE represented as an generative process (left) and as a graphical model (right).

A Appendix

A.1 Mini-batch optimization

In this section, we provide a detailed description of how the ELBO is computed from mini-batches
for optimization.

Replacing the expressions for the generative distribution 2 and correlated variational distribution 5 in
the ELBO 3, we have the following expression for the ELBO:
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During training, we iterate through shuffled versions of the training dataset and receive batches of
indices B = {i1, ..., i|B|}. Let nt =

PN
i=1 Di,t be the total number of samples in the training set

that have received perturbation t and let ñt =
P

i2B D̃i,t be the total number of samples in the batch
that have received perturbation t. Let P be a hyperparameter number of particles. We compute the
mini-batch loss as follows:
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nt
, which maintains the ratio from the full ELBO

between the prior terms on the perturbation masks and embeddings and the likelihood terms on
samples that received those perturbations while ensuring that the prior terms of treatments that are
not included in the mini-batch do not contribute to the mini-batch loss. Thus

EB,Zb,E,M lmb =
|B|
N

ELBO(�,✓;X,D).

A.2 CPA-VAE

Variational Family for CPA-VAE:
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A.3 Detailed comparison with prior work

A.3.1 Compositional Perturbation Autoencoder

Lotfollahi et al. [12] present Compositional Perturbation Autoencoder (CPA), a method for modeling
perturbation effects in cellular data. CPA has many similarities to SAMS-VAE and was a key
inspiration: CPA learns to encode observed cells into basal vectors, which are then added to learned
embeddings of perturbations and covariates to define a cell latent state, which is mapped to a predicted
phenotype through a neural network decoder. The model can be used to predict the effect of new
treatments by encoding observed cells to their latent basal states, shifting by the corresponding latent
embedding, and decoding.

However, there are a few key differences between our methods and CPA. First, our method explicitly
models sparsity in latent perturbation effects. Second, SAMS-VAE (and CPA-VAE) are fully defined
generative models. CPA does not specify a prior for the latent basal state, so any predictions must
start from an observed cell which is encoded; by contrast, SAMS-VAE specifies prior probability
distributions for all variables. This has a few benefits, including 1) allowing samples of p(x|d)
without having to define reference cells (we can sample from our prior on latent basal states, while
CPA needs to encode other observed cells to generate samples) and 2) allowing for estimates of the
likelihood p(x|d). Third, CPA requires an adversarial network to try to learn latent variables that
are not correlated with perturbations (we apply variational inference to our generative model, which
encourages this property). Fourth, CPA has a mechanism to encode dosages nonlinearly in their latent
space–this could be a useful modular addition to our work but was not needed for the datasets we
consider, which have have binary dosages (present or absent).

A.3.2 SVAE+

SAMS-VAE also shares similarities with SVAE+ [11]. SVAE+ is a generative model for modeling
perturbation effects in cells that explicitly models sparsity with a mask and embedding mechanism.
However, there are a couple key differences. SVAE+ does not have a mechanism to compose
interventions, whereas SAMS-VAE models a latent space where perturbations compose additively.
Second, SVAE+ does not explicitly model a cell’s latent basal state as a random variable: each cell
has its full latent embedding sampled from a learned prior (using type II maximum likelihood) that
is conditioned on the received treatment. This learned prior, along with the variational inference
families considered, are also substantial differences from SAMS-VAE.

A.3.3 Summary

The key contribution of SAMS-VAE is a generative model which combines useful key principles
that have been applied in prior work: like CPA, it models a cell’s latent state as a sum of a cell basal
state and learned perturbation embeddings, and like SVAE+ it is a generative model that explicitly
models sparsity in perturbation embeddings with a masking mechanism. We additionally gain some
performance improvements through careful inference using standard ML techniques.

A.4 Additional experiment details

Perturbseq data normalization We train all generative models directly on transcript counts as
described in Section 2.2. Input transcript counts are log transformed and standardized when provided
to the generative model encoders. to When computing differential expression and average treatment
effects, expression values are normalized by library size for each sample.

Encoder and decoder architectures All model encoders and decoders are fully connect neural
networks with residual connections and leaky ReLU non-linearities.

Conditional VAE treatment representation In the conditional VAE model, treatment dosage
vector di is directly concatenated to the latent state zi for decoding. As described in methods,
di, j = 1 if sample i received perturbation j and is 0 otherwise.

Replogle experiment additional details Each model was optimized with the Adam optimizer
for 150,000 steps with batch size 512, learning rate 0.0003, and weight decay 1E-6. Checkpoints
were saved every 2,000 training steps, and the checkpoint with the best validation ELBO was used
in test evaluation. Following the original paper, priors of the form Beta(1,K) were considered for
SVAE+. Specifically we consider K 2 {2, 5, 10} and find K = 2 performs best. We consider priors
of Bern(↵) for ↵ 2 {0.1, 0.01, 0.001} for SAMS-VAE. We find that the validation IWELBO is very
similar across this range, and choose ↵ = 0.001 based on our objective of identifying sparse latent
masks.
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Figure 6: Results of experiment with SAMS-VAE using simulation data

A.5 Simulation analysis

We perform a brief analysis of SAMS-VAE using simulated data to assess the relationship between
sparsity hyperparameters and mask recovery. We apply the simulation framework introduced in
Lopez et al. [11] with minor modifications. Briefly, we simulate data from the SAMS-VAE generative
process with latent dimension 15, latent perturbation masks sampled from Bern(0.1), and latent
embeddings sampled from N(5, 0.5) (large latent offsets matching prior work). Latent basal variation
is sampled from N(0, 1). Observations (50 features per cell) are sampled from a Gaussian likelihood
N(µ✓(zi),�2

I), where µ✓ is an MLP with 2 20-dimensional hidden layers. Following Lopez et al.
[11], the weights of the decoder MLP are initialized to orthogonal matrices for injectivity. �2 is set
such that 80% of the variance in each feature is due to µ✓(z). We emphasize that we do not expect
this simulation to correspond to the true generative process of biological datasets and focus on using
the simulation to explore how prior hyperparameters relate to inferred masks.

We generate simulated training datasets with 50, 100, and 200 samples per treatment. We then fit
SAMS-VAE in two settings: fixed prior, where the mask Bernoulli prior is set to ↵ = 0.1 and fixed

sparsity, where the mask prior probability is adjusted so that the inferred mask has sparsity close to
0.1. We set the prior on the perturbation embeddings as a relatively uninformative prior N(0, 10) to
accommodate the large offsets, and set the encoder and decoder neural networks to two-layer MLPs
with 100 hidden dimensions. Following Lopez et al. [11], we compute the F1 score between the
inferred and simulated masks after thresholding the inferred mask at p = 0.5 and permuting columns
to maximize the true positive rate between the true and inferred binary masks.

Focusing first on the fixed prior experiment, we observe that the inferred mask is more dense than
the simulated mask, and that the mask becomes more dense as the sample size increases. Looking
at the equation for the SAMS-VAE ELBO (and IWELBO), we observe that the the prior terms for
global variables do not scale with sample size, while the observation likelihoods do. Thus, the loss
increasingly prioritizes observation likelihoods over the global variable priors. This is generally
a desirable property: for example, we want the priors on perturbation embeddings to be weighed
against and updated based on all of the samples we observe. However, given the challenges of model
mismatch, stochastic optimization, and approximate inference, this can lead to dense masks, revealing
a limitation to the semantics of framing mask sparsity as a global prior when we aim to assert sparsity
for the purposes of downstream analysis. Motivated by this observation, we also consider adjusting
the prior strength or reweighting the ELBO to achieve a desired level of sparsity. In this experimental
setup, we find that setting the mask prior probability to ↵ = 10�

9
50nt , where nt is the number of

samples for each treatment, maintains a mask sparsity of approximately 0.1 and effectively recovers
the simulated mask (F1 > 0.9). These conclusions align with challenges identified by Lopez et al.
[11].

A.6 Supplementary Figures
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Figure 7: Hierarchical clustering and UMAP of inferred latent embeddings in the
replogle-filtered dataset. SAMS-VAE and CPA-VAE models were trained with the fully
correlated inference strategy. Pathway annotations are provided in Replogle et al. [16].
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Figure 8: Hierarchical clustering and UMAP of inferred latent embeddings in the
replogle-filtered dataset. SAMS-VAE and CPA-VAE models were trained with the fully
correlated inference strategy. Pathway annotations are provided in Replogle et al. [16].
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SAMS-VAE MSE: 0.43     Linear MSE: 0.83

SAMS-VAE MSE: 0.05     Linear MSE: 0.97 SAMS-VAE MSE: 0.07     Linear MSE: 0.59

SAMS-VAE MSE: 0.10     Linear MSE: 0.33

Genes

Figure 9: Visualization of SAMS-VAE predictions of held-out combinations with strong nonlinear
effects in norman-ood. We visualize perturbation combinations and corresponding gene expression
features identified to exhibit strong nonlinear genetic interactions in Roohani et al. [17]. We observe
that SAMS-VAE improves prediction beyond a naive linear model that predicts the sum of each
perturbation independently, though it still faces difficult predicting some nonlinear interactions (e.g
DUSP9 + ETS2)

.
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Out-of-Distribution Combinations
Test combinations not
observed in training

Combination cells uniformly subsampled
from full training setAll combinations

observed in training

Relative
IWELBO

Average
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Combination Data Efficiency

Figure 10: Extended ablation results from norman-ood and norman-data-efficiency experi-
ments (see 4). Within splits, test IWELBO values are plotted relative to the test IWELBO for
SAMS-VAE trained with 0 combinations on that split (relative IWELBO) to enable comparison
across splits.
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