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1. Introduction andMotivation
Quantum geometry [1, 2], a branch of quan-

tum mechanics exploring the distances and shapes
formed by quantum states in theHilbert space, plays
a crucial role in quantum computing, quantum in-
formation, and condensed matter physics [3, 4].
Quantum geometric metrics allow us to quantify

how “far apart” two quantum states are, enabling in-
sights into quantum state distinguishability, evolu-
tion, and information processing. The Bures met-
ric [5] for mixed states and the Fubini–Study met-
ric [6, 7] for pure states are especially well docu-
mented, as they maximize the information content
of the set of states. In computer science parlance,
these metrics can be viewed as specialized kernels
for quantum data analysis.
Despite the significance of quantum metrics, an

automatic method to uncover new metrics directly
fromquantumstates that optimizes an interestedob-
jective remains elusive.
To address this gap, we introduce a methodology

leveraging symbolic regression [8, 9, 10, 11] to unsu-
pervisedly discover such problem-specific quantum
metrics. We show that, with a defined target objec-
tive/loss function, symbolic regression can identify
analytic expressions of the optimal metrics, thereby
opening anewway for exploring quantumgeometry.

2. Methodology
Our approach to discovering metrics comprises

the following steps:

1. Quantum State Generation: We generate
datasets in various Hilbert space dimensions
(starting from 2 upwards). For pure states,
we create random complex state vectors. For
mixed states, we create randomHermitian den-
sity matrices by normalizing random positive
semi-definite matrices.

2. Symbolic Regression with Objective: We then
apply symbolic regression to learn a function of
a pair of quantum states that maximizes a cho-
sen objective function.

3. Trangular Inequality Validation: We validate
the learned metric by checking if it satisfies the
triangle inequality and discard all expressions
that fail this test.

4. Scoring and Selection: The symbolic expres-
sions are scored based on both their loss and
complexity, so that the best formula achieves

the optimal trade-off between accuracy and
simplicity.

This approach allows researchers to rediscover
known quantum metrics or discover new ones
customized for a specific application.

3. Results
In our experiments, symbolic regression accu-

rately reproduces known metrics from simulated
datasets.
We set the objective function to be the sum ofmu-

tual information over all pairs of states. For pure
states, we aim to learn a function d(ψ1 − ϕ1, ψ2 −
ϕ2, . . . , ψn − ϕn) of a pair of state vector |ψ⟩ and |ϕ⟩;
for mixed states, we aim to learn a function d(ρ11 −
σ11, ρ12 −σ12, . . . , ρnn −σnn) of a pair of density ma-
trices ρ and σ.
Table 1 illustrates the recovery of the Fubini–

Studydistance inpure states, while Table 2 shows the
rediscovery of the Bures distance in mixed states.
Notice in each case the best symbolic expression

matches the known analytic formula, thereby con-
firming the effectiveness of the methodology.

4. Conclusion and Outlook
We have demonstrated how symbolic regression

can automatically learn quantum geometric met-
rics from numerical data, recovering known formu-
las (e.g. Fubini–Study and Bures) in a transparent,
closed-form fashion. Beyond these canonical ex-
amples, the same approach opens the door to ex-
ploring customized quantum metrics that maximize
a problem-specific objective.
Moving forward, onemay: (1) Extend themethod-

ology to more complex quantum states. (2) Develop
loss functions tailored to practical quantum comput-
ing tasks. (3) Explore hybrid strategies that com-
bine symbolic regression with other machine learn-
ing approaches.
We envision that combining symbolic regression

with domain knowledge will spur new ways to inter-
pret, design, and optimize quantum technologies.
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Table 1: Symbolic regression results on pure states, maximizing mutual information. We show a snippet of
the discovered candidate formulae. The best result recovers the known formula for the FS distance dFS =
arccos(F ) where F = |⟨ψ|ϕ⟩| is the the overlap (fidelity).

Score Equation Complexity Loss
0.000000 1.0130168 1 2.553290× 10−1

16.338898 arccos(F ) 2 2.047420× 10−8

0.002554 arccos(F )− 2.2369306× 10−8 4 2.036989× 10−8

0.001832
√
(arccos(F )− 1.7406188× 10−9)2 6 2.029538× 10−8

0.009961 arccos(F )− 1.8471347× 10−8F 2 7 2.009422× 10−8

0.003343
√
(arccos(F ) + 5.4268083× 10−9)2 + 7.167× 10−9 8 2.002716× 10−8

Table 2: Symbolic regression results on mixed states, maximizing mutual information. We show a snippet
of the discovered candidate formulae. The best result recovers the known formula for the Bures distance
dB =

√
2(1− F ) where F (ρ, σ) = Tr

(√√
ρ σ

√
ρ
)
is the Uhlmann fidelity.

Score Equation Complexity Loss
0.000000 0.6523421 1 2.575764× 10−2

4.396659 arccos(F ) 2 3.172936× 10−4

0.989465 0.97597754× arccos(F ) 4 4.385534× 10−5

4.399256
√

1.0000458−F
0.5 6 6.620290× 10−9

7.624512
√

(F
F −F )

0.5
8 1.578737× 10−15

0.002821
√

(F
F −F )/0.27199987

1.8382362 10 1.569855× 10−15
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