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A SYNTHETIC DATASETS

In the supplementary materials, we provide further details on the three network models: BA model,
PSO model, and Fitness model.

• Barabási–Albert (BA) model: The BA model generates networks through preferential
attachment. Starting with a small fully connected graph, each new node added to the net-
work connects to an existing node with probability p ∝ k, where k is the degree (number
of connections) of the existing node. This model reflects the power-law degree distribution
found in many natural networks, where a few nodes dominate with many connections. The
construction of the BA model used in this work is as follows:

1. Generate an ER random network with the number of nodes N0 = 10 and connection
probability q = 0.5 as the initial network of the BA model.

2. At every time step, a single new node is introduced to the network.
3. The new node connects to n existing nodes in the network. The existing nodes are

selected by the rule of preferential attachment, in which the nodes are selected with
the probability proportional to their degree. Mathematically, the probability Pa that a
new node added at time step t connects to an existing node a is given by:

Pa =
ka∑Nt

b=1 kb
,

where ka is the degree of node a, Nt is the number of the existing nodes at time step
t, and kb is the degree of node b.

4. Iterate steps 2 and 3 until all nodes and edges are added.
• Popularity-similarity-optimization (PSO) model: The PSO model is designed to capture

both popularity and similarity between nodes. Nodes are embedded in hyperbolic space,
where each new node introduced at time step t is assigned a radial coordinate r = ln t and
a random angular coordinate. The connection between the new node and existing nodes
is determined by minimizing the product of the birth time s of the existing nodes and the
angular distance θst between the new and existing nodes, such that nodes with the smallest
sθst values are selected to connect. The radial distance corresponds to node popularity,
while the angular distance represents their similarity. The parameters used in this work are
set as m = 5, L = 5, γ = 2.1, T = 0.4, and ζ = 1. This model effectively simulates social
networks where both popularity and shared interests influence connections.

• Fitness model: In the Fitness model, each node is characterized by a fitness value ηi, re-
flecting its intrinsic ability to attract connections. The probability of a new node connecting
to an existing node is given by:

Pa =
ηaka∑Nt

b=1 ηbkb

where ηa and ηb represent the fitness of nodes a and b, respectively, and ka is the degree of
node a at time t. The fitness values are drawn from a power-law distribution, P (η) = η−3.5,
emphasizing the heterogeneity in node attractiveness. This model is commonly used to
simulate networks where both competitiveness and popularity influence connections, such
as academic citation or business networks.
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