
A Proofs for Section 3.2586

We present rigorous proofs for Lemma 3.2, Theorems 3.3 and 3.4 in Section 3.2, justifying the587

soundness and optimality of our VERIX approach. For better readability, we repeat each lemma and588

theorem before their corresponding proofs.589

A.1 Proof for Lemma 3.2590

Lemma 3.2. If the CHECK sub-procedure is sound, then, at the end of each for-loop iteration591

(Lines 7–12) in Algorithm 1, the irrelevant set of indices B satisfies592
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Proof. Recall that the sub-procedure CHECK is sound means the deployed automated reasoner returns593

True only if the specification actually holds. That is, from Line 10 we have594
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Specifically, we prove this through induction on the number of iteration i. When i is 0, pre-condition597

� is initialized as > and the specification holds trivially. In the inductive case, suppose CHECK returns598

False, then the set B is unchanged as in Line 12. Otherwise, if CHECK returns True, which makes599

HOLD become True, then the current feature index i is added into the irrelevant set of feature indices600

B as in Line 11, with such satisfying specification601
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As the iteration proceeds, each time CHECK returns True, the irrelevant set B is augmented with the602

current feature index i, and the specification always holds as it is explicitly checked by the CHECK603

reasoner.604

A.2 Proof for Theorem 3.3605

Theorem 3.3 (Soundness). If the CHECK sub-procedure is sound, then the value xA returned by606

Algorithm 1 is a robust explanation – this satisfies Equation (1) of Definition 2.1.607

Proof. The for-loop from Line 6 indicates that Algorithm 1 goes through every each feature xi in608

input x by traversing the set of indices ⇥(x). Line 5 means that ⇡ is one such instance of ordered609

traversal. When the iteration ends, all the indices in ⇥(x) are either put into the irrelevant set of610

indices by B 7! B+ as in Line 11 or the explanation index set by A 7! A [ {i} as in Line 12. That611

is, A and B are two disjoint index sets forming ⇥(x); in other words, B = ⇥(x) \A. Therefore,612

combined with Lemma 3.2, when the reasoner CHECK is sound, once iteration finishes we have the613

following specification614
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holds on network f , where �̂
B is the variable representing all the possible assignments of irrelevant615

features xB, i.e., 8 xB0
, and the pre-condition �̂

⇥\B = �
⇥\B fixes the values of the explanation616

features of an instantiated input x. Meanwhile, the post-condition |ĉ� c|  � where c 7! f(x) as in617

Line 3 ensures prediction invariance such that � is 0 for classification and otherwise a pre-defined618

allowable amount of perturbation for regression. To this end, for some specific input x we have the619

following property620
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holds. Here we prove by construction. According to Equation (1) of Definition 2.1, if the irrelevant621

features xB satisfy the above property, then we call the rest features xA a robust explanation with622

respect to network f and input x.623
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A.3 Proof for Theorem 3.4624

Theorem 3.4 (Optimality). If the CHECK sub-procedure is sound and complete, then the robust625

explanation xA returned by Algorithm 1 is optimal – this satisfies Equation (2) of Definition 2.1.626

Proof. We prove this by contradiction. From Equation (2) of Definition 2.1, we know that explanation627

xA is optimal if, for any feature � in the explanation, there always exists an ✏-perturbation on � and628

the irrelevant features xB such that the prediction alters. Let us suppose xA is not optimal, then there629

exists a feature � in xA such that no matter how to manipulate this feature � into �
0 and the irrelevant630

features xB into xB0
, the prediction always remains the same. That is,631
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where � denotes concatenation of two features. When we pass this input x and network f into the632

VERIX framework, suppose Algorithm 1 examines this feature � at the i-th iteration, then as in633

Line 7, the current irrelevant set of indices is B+ 7! B[ {i}, and accordingly the pre-conditions are634
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Because �̂
B[{i} is the variable representing all the possible assignments of irrelevant features xB635

and the i-th feature �, i.e., 8 xB0
,�

0, and meanwhile636

�̂
⇥\(B[{i}) = �

⇥\(B[{i}) (11)

indicates that the other features are fixed with specific values of this x. Thus, with c 7! f(x) in637

Line 3, we have the specification � ) |ĉ� c|  � holds on input x and network f . Therefore, if the638

reasoner CHECK is sound and complete,639

CHECK(f,� ) |ĉ� c|  �) (12)

will always return True. Line 10 assigns True to HOLD, and index i is then put into the irrelevant640

set B thus i-th feature � in the irrelevant features xB. However, based on the assumption, feature641

� is in explanation xA, so � is in xA and xB simultaneously – a contradiction occurs. Therefore,642

Theorem 3.4 holds.643
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B Supplementary experimental results644

B.1 Sensitivity vs. random traversal to generate explanations645

(a) GTSRB “priority road”; sensitivity; explanations from sensitivity (green) and random (red) traversals.

(b) MNIST “0”; sensitivity; explanations from sensitivity (green) and random (red) traversals.

(c) Empty intersection of 6 (top) and 8 (bottom) random explanations for “priority road” and “0”, respectively.

(d) Sensitivity vs. random traversals in explanation size. Each blue triangle denotes 1 deterministic explanation
from sensitivity ranking, and each bunch of circles represents 100 explanations from random traversals.

Figure 10: VERIX explanations when using sensitivity (green) and random (red) traversals.

To show the advantage of the sensitivity traversal, Figure 10 compares VERIX explanations using646

sensitivity-based and random traversal orders. The first column of Figures 10a and 10b shows the647

original image; the second a heatmap of the sensitivity (with deletion T (�) = 0 for GTSRB and648

reversal T (�) = � � � for MNIST because deleting background pixels of MNIST images may649

contribute to little confidence change as they often have zero values); and the third and fourth columns650

show explanations using the sensitivity and random traversals, respectively. Sensitivity, as shown in651

the heatmaps, prioritizes pixels that have more influence on the network’s prediction. In contrast,652

a random ranking is simply a shuffling of all the pixels. We observe that the sensitivity traversal653

generates smaller and more sensible explanations. Furthermore, we also explore the idea of using654

intersections of explanations generated from random traversals. Specifically, for both images, we655

randomly traverse all input features 10 times and produce 10 explanations. In Figure 10c, we show656

the result of the first random explanation, followed by the result of intersecting this explanation with657

more and more random explanations. The end result is an empty set (last one in each row). This658

strongly emphasizes the necessity of a sensible traversal, for which we propose the feature-level659

sensitivity traversal. In Figure 10d, we compare explanation sizes for the first 10 images (to avoid660

potential selection bias) of the MNIST test set. For each image, we show 100 random traversal661

explanations compared to the deterministic explanation from sensitivity traversal. We observe that662

the latter is almost always smaller, often significantly so, suggesting that sensitivity-based traversals663

are a reasonable heuristic for attempting to approach globally optimal explanations.664
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B.2 Runtime performance665

Table 3: Average execution time (seconds) of CHECK and VERIX for complete verification. In
particular, magnitude ✏ is set to 3% across the Dense, Dense (large), CNN models and the MNIST,
TaxiNet, GTSRB datasets for sensible comparison.

Dense Dense (large) CNN

CHECK VERIX CHECK VERIX CHECK VERIX
MNIST (28⇥ 28) 0.013 160.59 0.055 615.85 0.484 4956.91
TaxiNet (27⇥ 54) 0.020 114.69 0.085 386.62 2.609 8814.85
GTSRB (32⇥ 32⇥ 3) 0.091 675.04 0.257 1829.91 1.574 12935.27

Table 4: Average execution time (seconds) of CHECK and VERIX for incomplete verification. Magni-
tude ✏ is 3% for both MNIST-sota and GTSRB-sota models.

# ReLU # MaxPool CHECK VERIX
MNIST-sota 50960 5632 2.31 1841.25
GTSRB-sota 106416 5632 8.54 8770.15

Figure 11: Sound but incomplete CHECK procedure CROWN contributes to robust but not optimal
(larger than necessary) VERIX explanations for the convolutional network MNIST-sota.

We analyze the empirical time complexity of our VERIX approach in Table 3. The model structures666

are described in Appendix D.4. Typically, the individual pixel checks (CHECK) return a definitive667

answer (True or False) within a second on dense models and in a few seconds on convolutional668

networks. For image benchmarks such as MNIST and GTSRB, larger inputs or more complicated669

models result in longer (pixel- and image-level) execution times for generating explanations. As for670

TaxiNet as a regression task, while its pixel-level check takes longer than that of MNIST, it is actually671

faster in total time on dense models because TaxiNet does not need to check against other labels.672

The scalability of VERIX can be improved if we perform incomplete verification, for which we673

re-emphasize that the soundness of the resulting explanations is not undermined though optimality is674

no longer guaranteed, i.e., they may be larger than necessary. To illustrate, we deploy the incomplete675

CROWN [64] analysis (implemented in Marabou) to perform the CHECK sub-procedure. Table 4676

reports the runtime performance of VERIX when using incomplete verification on state-of-the-art677

network architectures with hundreds of thousands of neurons. See model structures in Appendix D,678

Tables 6 and 8. Moreover, in Figure 11, we include some example explanations for the convolutional679

model MNIST-sota when using the sound but incomplete CHECK procedure CROWN. We can see680

that they indeed appear larger than the optimal explanations when the complete Marabou reasoner is681

used. We remark that, as soundness of the explanations is not undermined, they still provide guarantees682

against perturbations on the irrelevant pixels. Interestingly, MNIST explanations on convolutional683

models tend to be less scattered than these on fully-connected models, as shown in Figures 4b and684

5b, due to the effect of convolutions. In general, the scalability of VERIX will grow with that of685

verification tools, which has improved significantly in the past several years as demonstrated by the686

results from the Verification of Neural Networks Competitions (VNN-COMP) [3].687
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C Supplementary related work688

C.1 Related work (cont.)689

Continued from Section 5, our work expands on [31] in four important ways: (i) we focus on ✏-ball690

perturbations and perception models, whose characteristics and challenges are different from those of691

NLP models; (ii) whereas [31] simply points to existing work on hitting sets and minimum satisfying692

assignments for computing OREs, we provide a detailed algorithm with several illustrative examples,693

and include a concrete traversal heuristic that performs well in practice; we believe these details694

are useful for anyone wanting to produce a working implementation; (iii) we note for the first time695

the relationship between OREs and counterfactual explanations; and (iv) we provide an extensive696

evaluation on a variety of perception models. We also note that in some aspects, our work is more697

limited: in particular, we use a simpler definition of ORE (without a cost function) as our algorithm698

is specialized for the case of finding explanations with the fewest features.699

We discuss some further related work in the formal verification community that are somewhat centered700

around interpretability or computing minimal explanations. [13] uses formal techniques to identify701

input regions around an adversarial example such that all points in those regions are also guaranteed to702

be adversarial. Their work improves upon previous work on identifying empirically robust adversarial703

regions, where points in the regions are empirically likely to be adversarial. Analogously, our work704

improves upon informal explanation techniques like Anchors. [11] is similar to [13] in that it also705

computes pre-images of neural networks that lead to bad outputs. In contrast, we compute a subset of706

input features that preserves the neural network output. [65] is more akin to our work, with subtle yet707

important differences. Their goal is to identify a minimal subset of input features that when corrected,708

changes a network’s prediction. In contrast, our goal is to find a minimal subset of input features709

that when fixed, preserves a network’s prediction. These two goals are related but not equivalent:710

given a correction set found by [65], a sound but non-minimal VERIX explanation can be obtained711

by fixing all features not in the correction set along with one of the features in the correction set.712

Symmetrically, given a VERIX explanation, a sound but non-minimal correction can be obtained by713

perturbing all the features not in the explanation along with one of the features in the explanation.714

This relation is analogous to that between minimal correction sets and minimal unsatisfiable cores in715

constraint satisfaction (e.g., [33]). Both are considered standard explanation strategies in that field.716

C.2 Verification of neural networks717

Researchers have investigated how automated reasoning can aid verification of neural networks with718

respect to formally specified properties [34, 20], by utilizing reasoners based on abstraction [64, 44, 16,719

47, 39, 52, 53, 2, 63, 55, 57] and search [14, 28, 29, 21, 54, 46, 19, 7, 12, 42, 60, 59, 5, 30, 15, 56, 58].720

Those approaches mainly focus on verifying whether a network satisfies a certain pre-defined property721

(e.g., robustness), i.e., either prove the property holds or disprove it with a counterexample. However,722

this does not shed light on why a network makes a specific prediction. In this paper, we take a step723

further, repurposing those verification engines as sub-routines to inspect the decision-making process724

of a model, thereby explaining its behavior (through the presence or absence of certain input features).725

The hope is that these explanations can help humans better interpret machine learning models and726

thus facilitate appropriate deployment.727
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D Model specifications728

Apart from those experimental settings in Section 4, we include detailed model specifications for729

reproducibility and reference purposes. Although evaluated on the MNIST [32], GTSRB [45], and730

TaxiNet [27] image datasets – MNIST and GTSRB in classification and TaxiNet in regression, our731

VERIX framework can be generalized to other machine learning applications such as natural language732

processing. As for the sub-procedure CHECK of Algorithm 1, while VERIX can potentially incor-733

porate existing automated reasoners, we deploy the neural network verification tool Marabou [29].734

While it supports various model formats such as .pb from TensorFlow [1] and .h5 from Keras [8], we735

employ the cross platform .onnx format for better Python API support. When importing a model with736

softmax as the final activation function, we remark that, for the problem to be decidable, one needs737

to specify the outputName parameter of the read_onnx function as the pre-softmax logits. As a738

workaround for this, one can also train the model without softmax in the last layer and instead use739

the SoftmaxLoss loss function from the tensorflow_ranking package. Either way, VERIX produces740

consistent results.741

D.1 MNIST742

For MNIST, we train a fully-connected feed-forward neural network with 3 dense layers activated743

with ReLU (first 2 layers) and softmax (last classification layer) functions as in Table 5, achieving744

92.26% accuracy. While the MNIST dataset can easily be trained with accuracy as high as 99.99%,745

we are more interested in whether a very simple model as such can extract sensible explanations – the746

answer is yes. Meanwhile, we also train several more complicated MNIST models, and observe that747

their optimal explanations share a common phenomenon such that they are relatively more scattered748

around the background compared to the other datasets. This cross-model observation indicates749

that MNIST models need to check both the presence and absence of white pixels to recognize the750

handwritten digits correctly. Besides, to show the scalability of VERIX, we also deploy incomplete751

verification on state-of-the-art model structure as in Table 6.752

D.2 GTSRB753

As for the GTSRB dataset, since it is not as identically distributed as MNIST, to avoid potential754

distribution shift, instead of training a model out of the original 43 categories, we focus on the top755

first 10 categories with highest occurrence in the training set. This allows us to obtain an appropriate756

model with high accuracy – the convolutional model we train as in Table 7 achieves a test accuracy757

of 93.83%. It is worth mentioning that, our convolutional model is much more complicated than the758

simple dense model in [24], which only contains one hidden layer of 15 or 20 neurons trained to759

distinguish two MNIST digits. Also, as shown in Table 4 of Section B.2, we report results on the760

state-of-the-art GTSRB classifier in Table 8.761

D.3 TaxiNet762

Apart from the classification tasks performed on those standard image recognition benchmarks, our763

VERIX approach can also tackle regression models, applicable to real-world safety-critical domains.764

In this vision-based autonomous aircraft taxiing scenario [27] of Figure 9, we train the regression765

model in Table 9 to produce an estimate of the cross-track distance (in meters) from the ownship to766

the taxiway centerline. The TaxiNet model has a mean absolute error of 0.824 on the test set, with no767

activation function in the last output layer.768

D.4 Dense, Dense (large), and CNN769

In Section B.2, we analyze execution time of VERIX on three models with increasing complexity:770

Dense, Dense (large), and CNN as in Tables 10, 11, and 12, respectively. To enable a fair and771

sensible comparison, those three models are used across the MNIST, TaxiNet, and GTSRB datasets772

with only necessary adjustments to accommodate each task. For example, in all three models h⇥w⇥c773

denotes different input size height⇥ width⇥ channel for each dataset. For the activation function774

of the last layer, softmax is used for MNIST and GTSRB while TaxiNet as a regression task needs no775

such activation. Finally, TaxiNet deploys he_uniform as the kernel_initializer parameter in the776

intermediate dense and convolutional layers for task specific reason.777
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Table 5: Structure for the MNIST classifier.

Layer Type Parameter Activation
Input 28⇥ 28⇥ 1 –

Flatten – –
Fully Connected 10 ReLU

Fully Connected 10 ReLU

Fully Connected 10 softmax

Table 6: Structure for the MNIST-sota classifier.

Type Parameter Activation
Input 28⇥ 28⇥ 1 –

Convolution 3⇥ 3⇥ 32 ReLU

Convolution 3⇥ 3⇥ 32 ReLU

MaxPooling 2⇥ 2 –
Convolution 3⇥ 3⇥ 64 ReLU

Convolution 3⇥ 3⇥ 64 ReLU

MaxPooling 2⇥ 2 –
Flatten – –

Fully Connected 200 ReLU

Dropout 0.5 –
Fully Connected 200 ReLU

Fully Connected 10 softmax

Table 7: Structure for the GTSRB classifier.

Type Parameter Activation
Input 32⇥ 32⇥ 3 –

Convolution 3⇥ 3⇥ 4 (1) –
Convolution 2⇥ 2⇥ 4 (2) –

Fully Connected 20 ReLU

Fully Connected 10 softmax

Table 8: Structure for the GTSRB-sota classifier.

Type Parameter Activation
Input 28⇥ 28⇥ 1 –

Convolution 3⇥ 3⇥ 32 ReLU

Convolution 3⇥ 3⇥ 32 ReLU

Convolution 3⇥ 3⇥ 64 ReLU

MaxPooling 2⇥ 2 –
Convolution 3⇥ 3⇥ 64 ReLU

Convolution 3⇥ 3⇥ 64 ReLU

MaxPooling 2⇥ 2 –
Flatten – –

Fully Connected 200 ReLU

Dropout 0.5 –
Fully Connected 200 ReLU

Fully Connected 10 softmax
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Table 9: Structure for the TaxiNet model.

Type Parameter Activation
Input 27⇥ 54⇥ 1 –

Flatten – –
Fully Connected 20 ReLU

Fully Connected 10 ReLU

Fully Connected 1 –

Table 10: Structure for the Dense model.

Layer Type Parameter Activation
Input h⇥ w⇥ c –

Flatten – –
Fully Connected 10 ReLU

Fully Connected 10 ReLU

Fully Connected 10 / 1 softmax / –

Table 11: Structure for Dense (large).

Layer Type Parameter Activation
Input h⇥ w⇥ c –

Flatten – –
Fully Connected 30 ReLU

Fully Connected 30 ReLU

Fully Connected 10 / 1 softmax / –

Table 12: Structure for the CNN model.

Layer Type Parameter Activation
Input h⇥ w⇥ c –

Convolution 3⇥ 3⇥ 4 –
Convolution 3⇥ 3⇥ 4 –

Fully Connected 20 ReLU

Fully Connected 10 / 1 softmax / –
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