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Supplementary Material

1. More Experiments in Feature Matching

In this section, we demonstrate the effectiveness of our pro-
posed geometry optimization module in improving the per-
formance of the detector-free feature matcher without any
geometry information from the detector-based method. The
fundamental matrix is initialized by the top half of confident
matches.

Figure 1. We propose continuous changes along three variable
scale/distance d - the radius of the circle, α - the angle between
the camera axis and x-axis, β - the angle between the projection of
the camera axis on xz plane and z-axis.

1.1. Matching Precision

Dataset To understand the performance variations in the
context of viewpoint changes, and our proposed opti-
mization module’s performance with different detector-free
backbones. We generate a synthetic dataset with depth
maps and camera poses using CARLA [5]. As illustrated
in Figure 1, given an image pair IA and IB , we use the
minimum value of a given variable for image IA, 10 for
distance, 0 for α and β. Then we maintain a consistent in-
cremental unit of 1 for such variable for image IB starting
from 5 units of difference, while the other two variables re-
main the same for both images. We sample 25 image pairs
per increment, culminating in a total of 900 image pairs per
sequence. Then all images are resized with their longer di-
mensions adjusted to 832 for the testing.

Metrics and Comparing Methods The average match-
ing precision of 25 image pairs is reported for each step,
with correct matches defined based on a symmetric epipo-
lar error threshold of less than 1e−4. Our methods are
compared against three detector-free counterparts, namely
LoFTR [17], ASpanFormer [2], and MatchFormer [19]. All
models are trained on MegaDepth [10].

Results on Our Dataset. For all methods, we observed
that the performance drops as the view differences between
two images increase, as shown in Figure 2. Our methods
consistently outperform the baseline methods, demonstrat-
ing a more gradual decline in precision as geometric dispari-
ties become more pronounced. While ASpanFormer [2] and
MatchFormer [19] show robustness against scale variations
and changes in the α angle, they are noticeably impacted
by larger β angle differences. This is particularly apparent
when the camera that captures image IB moves horizon-
tally away from the camera of image IA, resulting in more
significant changes in appearance features compared to the
other two scenarios. In contrast, LoFTR [17], despite per-
forming adequately under conditions with minimal geomet-
ric variation, demonstrates a marked decrease in its ability
to find accurate matches as view differences grow.

The integration of our module into these methods has led
to substantial improvements in precision. This is indicative
of the module’s ability to enhance matching accuracy, es-
pecially in scenarios where view differences are significant.
The result suggests that our approach, by introducing direct
geometry constraints early in the matching stage, can miti-
gate the impact of increasing view geometry challenges.

Method AUC ↑
@3px @5px @10px

SuperGlue [14] 53.9 68.3 81.7
LoFTR [17] 65.9 75.6 84.6
TopicFM [8] 67.3 77.0 85.7
3DG-STFM [13] 64.7 73.1 81.0
ASpanFormer [2] 66.1 75.9 84.8
PDC-Net+ [18] 66.7 76.8 85.8
Ours-ASpan 67.4 77.6 86.8
DKM [6] 71.3 80.6 88.5

Table 1. Homography estimation on HPatches, measured in AUC
(higher is better).



Figure 2. Results on our Dataset. The above illustrates our dataset and the precision evaluation of view changes. In the first row, α
difference ranges from 5◦ to 40◦; in the second row, β difference ranges from 5◦ to 40◦; in the third row, distance/scale difference ranges
from 5m to 40m. All examples show the largest differences 40◦ for α, 40◦ for β, and 40m for distance. As view differences increase,
there is a notable decline in the performance of all methods tested. Notably, our proposed method exhibits superior performance, and the
margins of this advantage further escalate with augmented view differences.

1.2. Homography Estimation

Datasets Following [14, 17, 19], we evaluate our feature
matching method in widely adopted HPatches dataset [1]
for homography estimation. Hpatches contain a total of 108
sequences with significant illumination changes and large
viewpoint changes. We follow the evaluation protocol of
LoFTR [17], resizing the shorter size of the image to 480.
AUCs at 3 different thresholds are reported.

Results In Table 1, we can see that our proposed mod-
ule can improve the performance of our baseline ASpan-
Former [2] on HPatches in homography estimation under
all error thresholds and only worse than the dense feature
matching method DKM [6] which is optimized for two view
pose estimation.

Method Pose Estimation AUC ↑

@3◦ @5◦ @10◦

LoFTR [17] 52.0 68.4 80.5
Ours-LoFTR 52.9 68.8 80.5
MatchFormer [19] 51.2 68.5 81.2
Ours-MatchFormer 52.8 69.3 81.3
ASpanFormer [2] 53.0 69.8 81.8
Ours-Aspan 55.1 70.9 82.4

Table 2. Evaluation on MegaDepth [10] The best performance
is highlighted by bold text. The results show that our proposed
method can significantly improve the feature matching perfor-
mance of Detector-free Methods [2, 17, 19]



Figure 3. Qualitative Results on MegaDepth. Qualitative Comparison on MegaDepth [10]. The first column is LoFTR [17], the second
column is Ours+LoFTR, the third is ASpanFormer and the Forth is Ours+AspanFormer [2]. The green line indicates correct matches in
which the symmetric epipolar error is less than 1e−4, and the red line indicates wrong matches. By introducing the geometry constraints,
one can see that the accuracy of matches is improved noticeably.

Figure 4. The distribution of track length using different feature matchers on IMC 2021 phototourism dataset [9]

1.3. Relative Pose Estimation

Dataset Following [14, 17], we use MegaDepth [10] for
outdoor pose estimation. MegaDepth [10] is a large outdoor
dataset containing over 1 million internet images from 196

different outdoor scenes. The camera pose is reconstructed
by COLMAP [15, 16], and the depth maps are calculated
from the multi-view stereo. We follow SuperGlue [14] to
obtain the ground truth matches from the depth map and



camera pose. We use the same test split as [2, 17, 19]. Im-
ages are resized such that their longer dimension is equal
to 840/832 for training and 832 for testing on all methods.
(ASpanFormer [2] use 832 due to their need for an image
resolution divisible by 16).

Metrics and Comparing Methods We follow Super-
Glue [14] to report the AUC of recovered pose under thresh-
old (5◦, 10◦, and 20◦). The camera poses are recovered
from solving RANSAC with predicted matches. We com-
pared our method to several state-of-the-art methods Su-
perPoint+SuperGlue [14], LoFTR [17], MatchFormer [19],
AspanFormer [2].

Results on MegaDepth As depicted in Table 2, our pro-
posed method outperforms baseline methods. This im-
provement can be attributed to the early engagement of
epipolar constraints, which effectively eliminates geome-
try inconsistencies among matches. The incorporation of
geometry verification during prediction results in more ac-
curate and robust matches, as visually demonstrated in Fig-
ure 3.

2. Track Length Distribution
Track length measures the number of consecutive frames in
which a feature point in the scene can be reliably tracked,
reflecting the quality of a reconstructed model. Longer track
length implies more accurate reconstruction and more ro-
bust feature points. Table 3 shows that our method achieves
longer track length on average. The distribution of the track
length for all methods is shown in Figure 4, where the x-
axis is the track length and the y-axis is the frequency. Our
method demonstrates a more consistent track length distri-
bution compared to other methods.

SIFT [12] SP [4]+SG [14] ALIKED [20]+LG [11] DKM [6] RoMa [7] Ours

Track Length 12.74 13.06 21.3 3.04 3.12 23.74

Table 3. Average track length on IMC 2021 [9]. Results are aver-
aged across different scenes.

3. Failure Cases
Distortion When images are from different camera mod-
els, such as fisheye and perspective cameras, our pipeline
would generate two separate models. One model primarily
consists of perspective images with a few fisheye images,
while the other predominantly contains fisheye images with
a few perspective images.

Incorrect Initial Matches Our pipeline relies on a back-
bone model for fundamental matrix estimation. If the
initial matches provided by the backbone model are

misleading, the pipeline may produce dense correspon-
dences that are not necessarily correct, leading to inac-
curate 3D reconstructions. A common failure case oc-
curs with repetitive patterns, particularly symmetrical build-
ings.
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IMC Dataset
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Figure 5. Qualitative results. Our method is qualitatively compared with other feature matching methods on IMC 2021 Phototourism
Dataset[9]. Green cameras have less than 3◦absolute pose error, while red cameras have an error larger than 3◦.



ScanNet
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Figure 6. Qualitative results. Our method is qualitatively compared with other feature matching methods on ScanNet Dataset[3]. Green
cameras have less than 3◦absolute pose error, while red cameras have an error larger than 3◦.



ScanNet
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Figure 7. Qualitative results. Our method is qualitatively compared with other feature matching methods on ScanNet Dataset[3]. Green
cameras have less than 3◦absolute pose error, while red cameras have an error larger than 3◦.



Figure 8. Qualitative Matching Results on Collected Air-to-Ground Set 2. Our method is able to find reliable matches for cross-view
images.

Figure 9. Qualitative Results of 3D gaussain splatting on Collected Air-to-Ground Set 2. All 3D Gaussians are trained for 30,000
iterations. SIFT+NN fails in registering ground images with UAV images
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