
Published as a conference paper at ICLR 2025

CUT YOUR LOSSES
IN LARGE-VOCABULARY LANGUAGE MODELS

Erik Wijmans∗ Brody Huval Alexander Hertzberg Vladlen Koltun Philipp Krähenbühl
Apple

ABSTRACT

As language models grow ever larger, so do their vocabularies. This has shifted
the memory footprint of LLMs during training disproportionately to one single
layer: the cross-entropy in the loss computation. Cross-entropy builds up a logit
matrix with entries for each pair of input tokens and vocabulary items and, for
small models, consumes an order of magnitude more memory than the rest of the
LLM combined. We propose Cut Cross-Entropy (CCE), a method that computes
the cross-entropy loss without materializing the logits for all tokens into global
memory. Rather, CCE only computes the logit for the correct token and evalu-
ates the log-sum-exp over all logits on the fly. We implement a custom kernel that
performs the matrix multiplications and the log-sum-exp reduction over the vocab-
ulary in flash memory, making global memory consumption for the cross-entropy
computation negligible. This has a dramatic effect. Taking the Gemma 2 (2B)
model as an example, CCE reduces the memory footprint of the loss computa-
tion from 24 GB to 1 MB, and the total training-time memory consumption of the
classifier head from 28 GB to 1 GB. To improve the throughput of CCE, we lever-
age the inherent sparsity of softmax and propose to skip elements of the gradient
computation that have a negligible (i.e., below numerical precision) contribution
to the gradient. Experiments demonstrate that the dramatic reduction in memory
consumption is accomplished without sacrificing training speed or convergence.

https://github.com/apple/ml-cross-entropy

1 INTRODUCTION

Progress in large language models (LLMs) has been fueled in part by an increase in parameter count,
context length, and vocabulary size (the number of tokens that can be used to represent the input).
As LLMs grew, so did the associated infrastructure. Large mini-batch gradient descent (Goyal et al.,
2017) combined with data-parallelism (Hillis & Steele, 1986) enabled the harnessing of increasing
computational power. ZeRO (Rajbhandari et al., 2020) broke the dependence between the number
of GPUs and the memory used for model parameters, gradients, and optimizer state. Activation
checkpointing (Chen et al., 2016) reduced the amount of memory used for activations, supporting the
development of deeper models. FlashAttention (Dao et al., 2022) reduced the memory used in self-
attention from O(N2) to O(N), thereby supporting longer context windows. These improvements
gradually shifted the memory consumption of LLM training to one single layer – the cross-entropy
loss, whose memory footprint grows with the product of vocabulary size and number of tokens per
batch. The cross-entropy loss is responsible for up to 90% of the memory footprint of modern
LLM training (see Fig. 1a). The problem grows only more acute with time, since even the largest
contemporary vocabularies (e.g., 256K tokens) may benefit from further expansion (Tao et al., 2024).

We propose a cross-entropy implementation, Cut Cross-Entropy (CCE), that has a negligible mem-
ory footprint and scales to arbitrarily large vocabularies. Our key insight is that computation of the
loss and its gradient only depends on a single log-probability, that of the ground-truth label. With an
arithmetic reformulation, we decompose the cross-entropy loss into an index matrix multiplication
over a single ground-truth label and a log-sum-exp operation over all vocabulary entries for each
token. Each operation has small and well-defined inputs – the network embeddings and classifier

∗Corresponding author: ewijmans@apple.com

1

https://github.com/apple/ml-cross-entropy

Published as a conference paper at ICLR 2025

0 1 2 3 4 5 6

Jul 2023

Jun 2024

Jan 2024

Feb 2019

Mar 2021

GPT 2

GPT Neo
1.3B

GPT Neo
2.7B

Llama 2
7B

Llama 2
13B

Phi 1.5Mistral 7B

Mixtral
8x7B

Qwen
1.5 7B

Gemma 2B

Phi 3
Medium

Gemma 2
27B

Llama 3.1
70B

Llama 3.1
8B

Gemma 2
2B

Max batch size (M Tokens)

Re
le

as
e

Da
te

(a) Regular cross-entropy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 70

Log Probabilities
Weights + Optimizer + Gradients
Activation Checkpoints

GPT 2

GPT Neo 1.3BGPT Neo 2.7B

Phi 1.5

Llama 2
7B

Llama 2
13B

Mistral 7B

Mixtral
8x7B

Qwen
1.5 7B

Gemma 2B

Phi 3
Medium

Gemma 2
27B

Llama 3.1
70B

Llama 3.1
8B

Gemma 2
2B

Max batch size (M Tokens)

(b) Cut cross-entropy (ours)

Figure 1: Memory use and maximum attainable batch size (in millions of tokens) for a vari-
ety of frontier models on a 16-GPU (80 GB each) fully-sharded data-parallel setup (Rajbhan-
dari et al., 2020) with activation checkpointing (Chen et al., 2016) and a mixed-precision 16-bit
(fp16/bf16) AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019). For each model,
we break its memory use down into weights and optimizer states, activation checkpoints, and the
log-probabilities computed by the cross-entropy loss layer. Our Cut Cross-Entropy (CCE) enables
increasing the batch size by 1.5x (Llama 2 13B) to 10x (GPT 2, Gemma 2 2B), with no sacrifice in
speed or convergence. Exact values in Table A4.

matrix – and a single scalar output per token. Both operations do, however, rely on a large interme-
diate logit matrix that computes the score for each token and potential vocabulary entry. We show
that there is no need to materialize this logit matrix in GPU memory. Instead, we compute logits as
needed in SRAM in a series of custom CUDA kernels. The result is a cross-entropy computation
that has negligible memory footprint, with no detrimental effect on latency or convergence. See
Fig. 1b for a breakdown of memory savings and consequent batch size increases afforded by CCE.

2 RELATED WORK

Attention mechanisms. The effectiveness of transformers (Vaswani et al., 2017) in modeling lan-
guage has drawn attention to their compute and memory requirements. Multiple works have pro-
posed alternatives to scaled dot-product attention that reduce transformers’ computation and mem-
ory (Kitaev et al., 2020; Wang et al., 2020; Choromanski et al., 2021). Other model classes, such as
structured state-space models (Gu et al., 2022; Gu & Dao, 2023), have also shown promising results.
We study a different part of the model – its classifier head – that is not considered in these works.

Attention implementations. In addition to alternative attention mechanisms, the community has
also tackled the daunting memory consumption of LLMs via efficient implementations. Rabe &
Staats (2021) developed a self-attention implementation that makes use of chunking. Chen et al.
(2023) proposed an implementation that broke the operation into two stages, reduction and matrix
multiplication. This makes efficient use of GPU memory and registers but requires recomputation in
the forward pass. FlashAttention (Dao et al., 2022) uses an online softmax (Milakov & Gimelshein,
2018) and, like CCE, materializes blocks of the N2-sized self-attention matrix in on-chip SRAM
rather than slower global DRAM. This is one of the key ideas that CCE builds on to develop a
memory-efficient cross-entropy formulation.

Vocabulary reduction. One way to minimize the amount of memory used by the log-probabilities
over the tokens is to reduce the number of ‘active’ tokens in the vocabulary. Grave et al. (2017)
proposed to use a vocabulary with a hierarchical structure, thereby requiring the log-probabilities
for only a subset of the vocabulary at any given time. Yu et al. (2023) explore tokenization-free
byte-level models that operate on dramatically smaller vocabularies.

Sequence and model parallelism. Sequence parallelism (Jacobs et al., 2023; Li et al., 2023) enables
training very large models (with large vocabularies) by splitting an individual input sequence across

2

Published as a conference paper at ICLR 2025

multiple GPUs. Various model parallelism techniques (Huang et al., 2019; Narayanan et al., 2019;
Shoeybi et al., 2019) achieve the same goal of training very large models (with large vocabularies)
by distributing the computation and memory consumption of different pieces across multiple GPUs.

Efficient cross-entropy implementations. A number of recent implementations use chunking to
reduce the memory usage of the cross-entropy layer. Yet chunking induces a trade-off. Memory
footprint is minimized when the number of chunks is high, but latency is minimized when the
number of chunks is low. CCE utilizes only on-chip SRAM and minimizes both memory footprint
and latency. Liger Kernels (Hsu et al., 2024) make efficient use of the GPU via chunking and by
computing the loss+gradient simultaneously. The latter requires that any transform applied to the
loss (such as masking) is implemented in the kernel itself. CCE has separate forward and backward
stages, enabling user-defined transformations on the loss.

3 PRELIMINARIES

Let P (x) =
∏N

i=1 P (xi | x1 . . . xi−1) be a Large Language Model (LLM) over a vocabulary V .
The LLM parameterizes an autoregressive distribution over all possible tokens xi ∈ V given the
preceding N − 1 tokens. Specifically, this distribution is the combination of a backbone network
f : x1 . . . xi−1 → RD and a linear classifier C ∈ RD×|V |:

P (xi | x1 . . . xi−1) = softmaxxi
(C⊤f(x1 . . . xi−1)), (1)

softmaxk(v) =
exp(vk)∑
j exp(vj)

. (2)

The backbone network f(x1, . . . , xi−1) ∈ RD encodes a token sequence in the D-dimensional
feature vector. The linear classifier C ∈ RD×|V | projects the embedding into an output space of
the vocabulary V . The softmaxk(v) produces the probability over all vocabulary entries from the
unnormalized log probabilities (logits) produced by C⊤f(x1 . . . xi−1).

3.1 VOCABULARY

LLMs represent their input (and output) as a set of tokens in a vocabulary V . The vocabulary is
typically constructed by a method such as Byte Pair Encoding (BPE) (Gage, 1994). BPE initializes
the vocabulary with all valid byte sequences from a standard text encoding, such as utf-8. Then,
over a large corpus of text, BPE finds the most frequent pair of tokens and creates a new token that
represents this pair. This continues iteratively until the maximum number of tokens is reached.

Large vocabularies enable a single token to represent multiple characters. This reduces the length of
both input and output sequences, compresses larger and more diverse documents into shorter context
windows, thus improving the model’s comprehension while reducing computational demands.

3.2 INFERENCE AND TRAINING

Even with a large vocabulary, sampling from an LLM is memory-efficient at inference time. Specif-
ically, the LLM produces one token at a time, computing P (xi|x1 . . . xi−1) and sampling from this
distribution (Kwon et al., 2023). Because the distribution over the vocabulary is only needed for a
single token at a time, the memory footprint is independent of sequence length.

At training time, the LLM maximizes the log-likelihood of the next token:

ℓ(x̂) =

N∑
i=1

logP (x̂i|x̂1, . . . , x̂i−1). (3)

Due to the structure of most backbones (Vaswani et al., 2017; Gu et al., 2022; Gu & Dao, 2023),
f(x1), f(x1, x2), . . . , f(x1, . . . , xN) is efficiently computed in parallel. However, activations for
non-linear layers have to be saved for the backward pass, consuming significant memory. Most
LLM training frameworks make use of aggressive activation checkpointing (Chen et al., 2016),
sharding (Rajbhandari et al., 2020), and specialized attention implementations (Dao et al., 2022) to
keep this memory footprint manageable.

3

Published as a conference paper at ICLR 2025

C⊤

En

xn

Indexed
load

dot
prod.

anC⊤
xn ⊗

(a) Indexed matmul
(forward)

|V|

N

En

C⊤
v

LSEn

LSEnv

Blk.
matmul
Blk. LSE

log(exp(LSEn)

+exp(LSEnv))

Anv

D

D

(b) Linear-log-sum-exp,
forward pass

C⊤
v

∇En

∇C⊤
vŜnE⊤

n

Atomic
Add

Atomic
Add

C⊤
n Ŝnv

If
any(Snv >ε)

Snv =
exp(Anv−

LSEn)

En

LSEn ∇LSEn

Anv Ŝnv

Ŝnv =
Snv ⋅ ∇LSEn

(c) Linear-log-sum-exp,
backward pass

Figure 2: Access patterns and computation of blockwise (a) indexed matrix multiplication, (b)
linear-log-sum-exp forward pass, and (c) linear-log-sum-exp backward pass. See Algorithms 1 to 3
for the corresponding algorithms.

With the aforementioned optimizations, the final (cross-entropy loss) layer of the LLM becomes
by far the biggest memory hog. For large vocabularies, the final cross-entropy layer accounts for
the majority of the model’s memory footprint at training time (Fig. 1a). For example, the log-
probabilities materialized by the cross-entropy layer account for 40% of the memory consumption
of Phi 3.5 (Mini) (Abdin et al., 2024) (|V | = 32,064), 65% of the memory consumption of Llama
3 (8B) (Dubey et al., 2024) (|V | = 128,000), and 89% of the memory consumption of Gemma 2
(2B) (Rivière et al., 2024) (|V | = 256,128). In fact, the log-probabilities of Gemma 2 (2B) for a
single sequence x with length N = 80,000 use the entire available memory of an 80GB H100 GPU.
(The sequence length is a factor due to the use of teacher forcing for parallelism.)

We show that a reformulation of the training objective leads to an implementation that has negligible
memory consumption above what is required to store the loss and the gradient.

4 CUT CROSS-ENTROPY

Consider the cross-entropy loss ℓi over a single prediction of the next token P (xi|x1 . . . xi−1):

ℓi(x) = log softmaxxi

(
C⊤Ei

)
= C⊤

xi
Ei − log

∑
j

exp
(
C⊤

j Ei

)
.

Here the first term is a vector product over D-dimensional embeddings Ei = f(x1 . . . xi−1) and a
classifier C. The second term is a log-sum-exp operation and is independent of the next token xi.
During training, we optimize all next-token predictions ℓ = [ℓ1 . . . ℓN] jointly using teacher forcing:

ℓ =
(
C⊤E

)
x
− log

∑
j

exp(C⊤
j E), (4)

where E = [E1 . . . EN] and
(
C⊤E

)
x
=

[
C⊤

x1
E1 . . . C

⊤
xN

EN

]
. The first term in Equation (4)

is a combination of an indexing operation and matrix multiplication. It has efficient forward and
backward passes, in terms of both compute and memory, as described in Section 4.1. The second
term in Equation (4) is a joint log-sum-exp (LSE) and matrix multiplication operation. Section 4.2
describes how to compute the forward pass of this linear-log-sum-exp operation efficiently using a
joint matrix multiplication and reduction kernel. Section 4.3 describes how to compute its backward
pass efficiently by taking advantage of the sparsity of the gradient over a large vocabulary. Putting
all the pieces together yields a memory-efficient low-latency cross-entropy loss.

4.1 MEMORY-EFFICIENT INDEXED MATRIX MULTIPLICATION

A naive computation of indexed matrix multiplication involves either explicit computation of the
logits C⊤E with an O(N |V |) memory cost, or indexing into the classifier Cx = [Cx1 . . . CxN

] with

4

Published as a conference paper at ICLR 2025

Algorithm 1 Memory-efficient indexed matrix multiplication

Inputs: E ∈ RD×N , C ∈ RD×|V |, x ∈ RN .
Block sizes NB and DB .

Outputs: o = (C⊤E)x ∈ RN

for blocks En, xn do ▷ Divide E and x into blocks of size D ×NB and NB , respectively
on = 0NB

▷ Zero vector of size NB in on-chip SRAM
for blocks En,d do ▷ Divide En into blocks of size DB ×NB

c = Cxn,d ▷ Indexed load into on-chip SRAM
on += En,d · c ▷ Column-wide dot product

end for
write on ▷ From on-chip SRAM to main GPU memory

end for

an O(ND) memory cost. Our implementation fuses the classifier indexing Cx with the consecutive
dot product between columns Cxi and Ei in a single CUDA/Triton kernel (Tillet et al., 2019). Our
kernel retrieves the value xi, the xi-th column from C, and the i-th column from E, and stores them
in on-chip shared memory (SRAM). It then performs a dot product between Cxi and Ei and writes
the result into global memory. The kernel uses only on-chip SRAM throughout and does not allocate
any GPU memory. For efficiency, we perform all operations blockwise to make the best use of GPU
cache structure. Algorithm 1 and Fig. 2a summarize the computation and access patterns.

4.2 MEMORY-EFFICIENT LINEAR-LOG-SUM-EXP, FORWARD PASS

Implementing a serial memory-efficient linear-log-sum-exp is fairly straightforward: use a triple for-
loop. The innermost loop computes the dot product between Cv and En for the v-th token and the
n-th batch element. The middle loop iterates over the vocabulary, updating the log-sum-exp (LSE)
along the way. Finally, the outermost loop iterates over all batch elements. Parallelizing over the
outermost loop is trivial and would expose enough work to saturate the CPU due to the number of
tokens in training batches (commonly in the thousands). Parallelization that exposes enough work
to saturate the GPU is more challenging.

Let us first examine how efficient matrix multiplication between the batch of model output embed-
dings E ∈ RD×N and the classifier C ∈ RD×|V | is implemented on modern GPUs (Kerr et al.,
2017). A common method is to first divide the output O = C⊤E ∈ R|V |×N into a set of blocks
of size VB ×NB . Independent CUDA blocks retrieve the corresponding parts En of E with size
D ×NB and blocks Cm of C with size D × VB , and perform the inner product Onm = C⊤

mEn

along the D dimension. Due to limited on-chip SRAM, most implementations use a for-loop for
large values of D. They loop over smaller size DB ×NB and DB × VB blocks and accumulate
Onv =

∑
d C

⊤
vdEnd in SRAM. Each CUDA block then writes Onm back into global memory. This

method exposes enough work to the GPU and makes efficient use of SRAM and L2 cache.

To produce log-sum-exp(C⊤E), we use the same blocking and parallelization strategy as matrix
multiplication. Each block first computes a matrix multiplication, then the log-sum-exp along the
vocabulary dimension m for its block, and finally updates LSE with its result.

Note that multiple CUDA blocks are now all writing to the same location of LSE. This includes
blocks in the same input range n but different vocabulary ranges m. We use a spin-lock on an
atomic operation in global memory to synchronize the updates by different CUDA blocks as this is
simple to implement in our Triton framework and incurs little overhead. Alternative methods, such
as an atomic compare-and-swap loop, may perform better when implementing in CUDA directly.

Algorithm 2 and Fig. 2b summarize the computation and access patterns.

4.3 MEMORY-EFFICIENT LINEAR-LOG-SUM-EXP, BACKWARD PASS

The backward pass needs to efficiently compute two gradient updates:

∇E = λ⊤ ∂

∂E
log

∑
exp(C⊤E) and ∇C = λ⊤ ∂

∂C
log

∑
exp(C⊤E)

5

Published as a conference paper at ICLR 2025

Algorithm 2 Memory-efficient linear-log-sum-exp, forward pass

Inputs: E ∈ RD×N and C ∈ RD×|V |.
Block sizes NB , VB , and DB .

Outputs: LSE = log
∑

j exp(C
⊤
j E) ∈ RN

LSE = −∞N ▷ −∞ vector of size N in main GPU memory
for all pairs of blocks En, Cv do ▷ Divide E and C into blocks of size D ×NB and D × VB

Anv = 0VB×NB
▷ Zero matrix of size VB ×NB in on-chip SRAM

for blocks En,d, Cv,d do ▷ Divide En and Cv into blocks of DB ×NB and DB × VB

Anv += C⊤
v,d ·En,d ▷ Blockwise matrix multiplication

end for
LSEnv = log

∑
exp(A⊤

nv) ▷ Numerically stable implementation with max
LSEn = log(exp(LSEn) + exp(LSEnv)) ▷ Locking thread-safe log-add-exp

end for

for a backpropagated gradient λ = ∇LSE. Formally, the gradient is defined as

∇E⊤ = (S · ∇LSE)C and ∇C⊤ = (S · ∇LSE)
⊤
E

where S = softmax(C⊤E) and · refers to the row-by-row elementwise multiplication of the soft-
max S and the gradient ∇LSE: Ŝ = S · ∇LSE.

Computationally, the backward pass is a double matrix multiplication C⊤E and ŜC or Ŝ⊤E with
intermediate matrices S and Ŝ that do not fit into GPU memory and undergo a non-linear operation.
We take a similar approach to the forward pass, recomputing the matrix C⊤E implicitly in the GPU’s
shared memory. For the backward pass, we do not need to compute the normalization constant of
the softmax, since S = softmax(C⊤E) = exp(C⊤E − LSE). This allows us to reuse the global
synchronization of the forward pass, and compute S efficiently in parallel.

We implement the second matrix multiplication in the main memory of the GPU, as a canonical
blockwise implementation would require storing or synchronizing S. Algorithm 3 and Fig. 2c sum-
marize the computation and access patterns. A naive implementation of this algorithm requires zero
additional memory but is slow due to repeated global memory load and store operations. We use
two techniques to improve the memory access pattern: gradient filtering and vocabulary sorting.

Gradient filtering. By definition, the softmax S sums to one over the vocabulary dimension. If
stored in bfloat16 with a 7-bit fraction, any value below ε = 2−12 will likely be ignored due to
truncation in the summation or rounding in the normalization.1 This has profound implications
for the softmax matrix S: For any column, at most 1

ε = 4096 entries have non-trivial values and
contribute to the gradient computation. All other values are either rounded to zero or truncated. In
practice, the sparsity of the softmax matrix S is much higher: empirically, in frontier models we
evaluate, less than 0.02% of elements are non-zero. Furthermore, the sparsity of the softmax matrix
grows as vocabulary size increases. In Algorithm 3, we take advantage of this sparsity and skip
gradient computation for any block whose corresponding softmax matrix Snm has only negligible
elements. We chose the threshold ε = 2−12 to be the smallest bfloat16 value that is not truncated.
In practice, this leads to a 3.5x speedup without loss of precision in any gradient computation. See
Section 5 for a detailed analysis.

The efficiency of gradient filtering is directly related to the block-level sparsity of the softmax matrix.
We cannot control the overall sparsity pattern without changing the output. However, we can change
the order of the vocabulary to create denser local blocks for more common tokens.

Vocabulary sorting. Ideally the vocabulary would be ordered such that all tokens with non-trivial
gradients would be contiguously located. This reduces the amount of computation wasted by par-
tially populated blocks – ideally blocks would either be entirely empty (and thus skipped) or entirely
populated. We heuristically group the non-trivial gradients by ordering the tokens by their average
logit. Specifically, during the forward pass (described in Section 4.2) we compute the average logit

1The 5 extra bits above the fractional size (7) account for rounding rules, and the consideration that small
but not tiny values will likely not get truncated due to the blocking strategies used to compute a sum.

6

Published as a conference paper at ICLR 2025

Algorithm 3 Memory-efficient linear-log-sum-exp, backward pass

Inputs: E ∈ RD×N , C ∈ RD×|V |, LSE ∈ RN , and ∇LSE ∈ RN .
Block sizes NB , VB , and DB .
Accuracy threshold ε.

Outputs: ∇E ∈ RD×N , ∇C ∈ RD×|V |

for all pairs of blocks En, Cv do ▷ Divide E and C into blocks of size D ×NB and D × VB

Anv = 0VB×NB
▷ Zero matrix of size VB ×NB in on-chip SRAM

for blocks En,d, Cv,d do ▷ Divide En and Cv into blocks of DB ×NB and DB × VB

Anv += C⊤
v,d ·En,d ▷ Blockwise matrix multiplication

end for
Snv = exp(Anv − LSEn) ▷ Compute the softmax
if all(Snv < ε) then

skip ▷ Skip computation if below desired numerical precision
end if
for blocks En,d, Cv,d do ▷ Divide En and Cm into blocks of DB ×NB and DB × VB

∇E⊤
n,d += (Snv · ∇LSEn)Cv,d ▷ Locking thread-safe gradient update

∇C⊤
v,d += (Snv · ∇LSEn)

⊤
En,d ▷ Locking thread-safe gradient update

end for
end for

per token using an atomic addition. For the backward pass, we divide the vocabulary dimension |V |
into blocks with similar average logit instead of arbitrarily. This requires a temporary buffer of size
O(|V |), about 1 MB for the largest vocabularies in contemporary LLMs (Rivière et al., 2024).

Putting all the pieces together, we arrive at forward and backward implementations of cross-entropy
that have a negligible incremental memory footprint without sacrificing speed. Note that in practice,
we found it to be easier and more memory-efficient to merge the indexed matrix-multiplication
backward implementation with the backward pass of the linear-log-sum-exp operator (Algorithm 3).
The two operations share much of the computation and memory access pattern, see Algorithm 4.

5 ANALYSIS

5.1 RUNTIME AND MEMORY

First we examine the runtime and memory of various implementations of the cross-entropy loss
log softmaxxi(C

⊤E). We consider a batch of 8,192 tokens with a vocabulary size of 256,000 and
hidden dimension 2,304. This corresponds to Gemma 2 (2B) (Rivière et al., 2024). We use the
Alpaca dataset (Taori et al., 2023) for inputs and labels and Gemma 2 (2B) Instruct weights to
compute E and for C. The analysis is summarized in Table 1.

The baseline implements the loss directly in PyTorch (Paszke et al., 2019). This is the default in
popular frameworks such as Torch Tune (Torch Tune Team, 2024) and Transformers (Wolf et al.,
2019). This method has reasonable throughput but a peak memory usage of 28,000MB of GPU
memory to compute the loss+gradient (Table 1 row 5). Due to memory fragmentation, just com-
puting the loss+gradient for the classifier head requires an 80GB GPU. torch.compile (Ansel
et al., 2024) is able to reduce memory usage by 43% and computation time by 33%, demonstrat-
ing the effectiveness of kernel fusion (Table 1 row 4 vs. 5). Torch Tune (Torch Tune Team, 2024)
includes a method to compute the cross-entropy loss that divides the computation into chunks and
uses torch.compile to save memory. This reduces memory consumption by 65% vs. Baseline and
by 40% vs. torch.compile (to 9,631MB, see Table 1 row 3 vs. 4 and 5). Liger Kernels (Hsu et al.,
2024) provide a memory-efficient implementation of the cross-entropy loss that, like Torch Tune,
makes uses of chunked computation to reduce peak memory usage. While very effective at reducing
the memory footprint, using 95% less memory than Baseline, it has a detrimental effect on latency,
more than doubling the wall-clock time for the computation (Table 1, row 2 vs. 4). The memory

2The gradient and loss are computed simultaneously, not in separate forward/backward passes.

7

Published as a conference paper at ICLR 2025

Loss Gradient Loss+Gradient

Method Memory Time Memory Time Memory Time

Lower bound 0.004MB 1,161MB 1,161MB

1) CCE (Ours) 1MB 46ms 1,163MB 100ms 1,164MB 145ms
2) Liger Kernels (Hsu et al., 2024)2 1,474MB 304ms 1,474MB 304ms
3) Torch Tune Team (2024) (8 chunks) 8,000MB 55ms 1,630MB 115ms 9,631MB 169ms
4) torch.compile 4,000MB 49ms 12,000MB 92ms 16,000MB 143ms
5) Baseline 24,000MB 82ms 16,000MB 122ms 28,000MB 208ms

6) CCE (No Vocab Sorting) 0.09MB 45ms 1,162MB 115ms 1,162MB 159ms
7) CCE (No Grad. Filter) 0.09MB 45ms 1,163MB 314ms 1,162MB 357ms
8) CCE-Kahan 1MB 47ms 2,325MB 114ms 2,326MB 160ms
9) CCE-Kahan-FullC 1MB 47ms 2,326MB 268ms 2,326MB 313ms
10) CCE-Kahan-FullE 1MB 47ms 2,326MB 247ms 2,326MB 292ms

Table 1: Peak memory footprint and time to compute the loss, its gradient, and their combination.
Note that intermediate buffers can often (but not always) be reused between the loss and gradient
computation, resulting in lower peak memory consumption than the sum of the parts. Batch of 8,192
tokens with a vocabulary size of 256,000 and hidden dimension 2304. Embedding and classifier
matrix taken during Gemma 2 (2B) training on Alpaca. Measured on an A100-SXM4 GPU with
80GB of RAM, PyTorch 2.4.1, CUDA 12.4, rounded to closest MB. Some numbers are multiples of
1,000 due to dimensions chosen and PyTorch’s allocation strategy. ‘Lower bound’ is the amount of
memory required for the output buffer(s), i.e., ∇E and ∇C, this is the lower bound for the memory
footprint of any method. Results averaged over 5 seeds.

usage of CCE grows with O(N+|V |), as opposed to O(N×|V |) for Baseline, torch.compile, and
Torch Tune, and O(N ×D) for Liger Kernels. In practice, CCE has a negligible memory footprint
regardless of vocabulary size or sequence length.

Compared to the fastest method, torch.compile, CCE computes the loss slightly faster (5%, 4ms,
Table 1 row 1 vs. 4). This is because CCE does not write all the logits to global memory. CCE
computes the loss+gradient slightly slower (6%, 2ms). While CCE needs to recompute C⊤E, it
is able to save time in other parts of the computation. See Appendix C.1 for a breakdown of the
backwards pass of CCE and Baseline. This increase is largely negligible as the forward+backward
pass for even a small LLM (2B parameters) is on the order of seconds.

N-th most likely token (log-scale)

Pr
ob

ab
ili

ty
 (l

og
-s

ca
le

)

100 101 102 103 104 105

10−14

10−11

10−8

10−5

10−2

Token Probabilities
BF16 Cutoff

Figure 3: Average probability for the ith most
likely token, log-log plot. The probabilities very
quickly vanish below numerical precision.

The performance of CCE is enabled several fac-
tors. Without vocabulary sorting CCE takes
15% (23ms) longer (Table 1 row 1 vs. 6) and
without gradient filtering it is 3.4x (356ms)
longer (row 1 vs. 7). CCE utilizes the final
gradient floating point type (typically bf16) for
summation in global memory. For increased
numerical stability, we experiment with Kahan
summation (Kahan, 1965) with a higher time
and memory cost (Table 1 row 1 vs. 8). We can
further incraese the numerical stability by se-
lectively applying gradient filtering to just ∇E
and ∇C. When combined with Kahan sum-
mation, removing gradient filtering from either
∇C or ∇E results in a similar decrease of per-
formance (Table 1 row 9 or 10 vs. 8). The last
variant (CCE-Kahan-FullC) is particularly in-
teresting for pretraining, where the numerical precision makes a difference. For fine-tuning all
variants of CCE perform equivalently, as shown in Section 5.3.

In Appendix B, we demonstrate that CCE (and other methods) can be made up to 3 times faster by
removing tokens that are ignored. In Appendix C we benchmark with more models. We find that as
the vocabulary size (|V |) to hidden size (D) ratio decreases, CCE’s advantage in computation time
for Loss+Gradient decreases, but continues to save a substantial amount of memory.

8

Published as a conference paper at ICLR 2025

00 100100 200200 300300 400400 500500 600600 700700
0.70.7

0.80.8

0.90.9

11

1.11.1

1.21.2

1.31.3

Gradient Steps

Tr
ai

ni
ng

 L
os

s

0 200 400 600

0.8

0.9

1.1

1.2

1.3

700100 300 500

1

0.7

(a) Gemma 2 2B

00 100100 200200 300300 400400 500500 600600 700700
0.70.7

0.80.8

0.90.9

11

1.11.1

1.21.2

1.31.3
p95 Confidence Rangep95 Confidence Range
torch.compile cross entropytorch.compile cross entropy
CCE-FullC (Ours)CCE-FullC (Ours)

Confidence Interval (p=0.95)
torch.compile
Cut Cross-Entropy (Ours)

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3
p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

0 200 400 600

0.8

0.9

1.1

1.2

1.3

Gradient Steps

Tr
ai

ni
ng

 L
os

s

700100 300 500

1

0.7

(b) Phi 3.5 Mini

00 100100 200200 300300 400400 500500 600600 700700
0.70.7

0.80.8

0.90.9

11

1.11.1

1.21.2

1.31.3

Gradient Steps

Tr
ai

ni
ng

 L
os

s

0 200 400 600

0.8

0.9

1.1

1.2

1.3

700100 300 500

1

0.7

(c) Qwen 2.5 7B

00 100100 200200 300300 400400 500500 600600 700700
0.70.7

0.80.8

0.90.9

11

1.11.1

1.21.2

1.31.3

Tr
ai

ni
ng

 L
os

s

Gradient Steps
0 200 400 600

0.8

0.9

1.1

1.2

1.3

700100 300 500

1

0.7

(d) Mistral Nemo

Figure 4: Training loss curves for four models on the Alpaca dataset (Taori et al., 2023). The loss
curves for CCE and torch.compile are nearly indistinguishable, showing that the gradient filtering
in CCE does not impair convergence. Results averaged over 5 seeds.

5.2 GRADIENT FILTERING

Fig. 3 shows the sorted softmax probability of vocabulary entries. Note that the probabilities vanish
very quickly and, for the top 105 most likely tokens, there is a linear relationship between log rank
and log probability. Second, by the ∼50th most likely token, the probability has fallen bellow our
threshold for gradient filtering.

This explains why we are able to filter so many values from the gradient computation without af-
fecting the result. At these sparsity levels, most blocks of the softmax matrix S are empty.

5.3 TRAINING STABILITY

Fine-tuning. We fine-tune Qwen 2.5 7B Instruct (Qwen Team, 2024), Phi 3.5 Mini Instruct (Abdin
et al., 2024), Gemma 2 2B Instruct (Rivière et al., 2024), and Mistral NeMo (Mistral AI Team, 2024)
on the Alpaca Dataset (Taori et al., 2023) using CCE and torch.compile as the control. CCE and
torch.compile have indistinguishable loss curves, demonstrating that the gradient filtering in CCE
does not impair convergence (Fig. 4).

Pretraining. In our initial experiments using CCE for pretraining, we found that validation per-
plexity suffered due to two sources of error. First, gradient filtering when applied to ∇C causes no
gradient to be propagated to tokens that have little to no support in the training set. This does not
cause issues when fine-tuning but does when pretraining. Second, CCE performs a summation in
global memory. It is most efficient to perform this reduction in the desired final floating point type.
In pretraining, the resulting loss of precision reduces performance. We use Kahan summation (Ka-
han, 1965) to recover this loss of precision. This changes correspond to CCE-Kahan-FullC.

We pretrain Qwen 2.5 7B Instruct (Qwen Team, 2024), Phi 3.5 Mini Instruct (Abdin et al., 2024),
Gemma 2 2B Instruct (Rivière et al., 2024), and Mistral NeMo (Mistral AI Team, 2024) on the 5%
of the Open WebText Dataset (Gokaslan et al., 2019) using CCE-Kahan-FullC and torch.compile.
We report validation perplexity on a held-out 0.25% of Open WebText and find that CCE-Kahan-
FullC produces identical curves as torch.compile (Fig. 5).

We make two notes about CCE-Kahan-FullC. First, the increased memory usage of CCE-Kahan-
FullC vs. CCE is due to temporary buffers used in the backward pass. The size of these buffers

9

Published as a conference paper at ICLR 2025

500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps
15001000500

40
60
80

100
120
140
160
180
200

(a) Gemma 2 2B

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

p95 Confidence Rangep95 Confidence Range
torch.compile cross entropytorch.compile cross entropy
CCE-FullC (Ours)CCE-FullC (Ours)

15001000500
40
60
80

100
120
140
160
180
200

Confidence Interval (p=0.95)
torch.compile
CCE-Kahan-FullC (Ours)

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3
p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

(b) Phi 3.5 Mini

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

15001000500
40
60
80

100
120
140
160
180
200

(c) Qwen 2.5 7B

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

Va
lid

at
io

n
Pe

rp
le

xi
ty

15001000500
40
60
80

100
120
140
160
180
200

(d) Mistral Nemo

Figure 5: Validation perplexity curves for four models on trained using 5% of the Open WebText
dataset (Gokaslan et al., 2019). The validation set is a 0.25% subset of Open WebText that does
not overlap with the train set. We find that CCE-Kahan-FullC matches torch.compile. Results
averaged over 5 seeds.

is typically less than the amount of free memory needed to rematerialize activations when using
activation/gradient checkpoint (Chen et al., 2016). Thus CCE-Kahan-FullC often shares the same
memory saving benefits as CCE. Second, the increased computation time of CCE-Kahan-FullC vs.
torch.compile is often offset by the larger batch sizes CCE-Kahan-FullC enables. In our experi-
ments with Mistral NeMo, CCE-Kahan-FullC enabled doubling the batch size, thereby decreasing
training time by 2 hours (16%) compared to torch.compile.

6 DISCUSSION

As vocabulary size |V | has grown in language models, so has the memory footprint of
the loss layer. The memory used by this one layer dominates the training-time memory
footprint of many recent language models. We described CCE, an algorithm to compute
ℓi = log softmaxi(C

T f(x1 . . . xi−1)) and its gradient with negligible memory footprint.

Beyond the immediate impact on compact large-vocabulary LLMs, as illustrated in Fig. 1, we expect
that CCE may prove beneficial for training very large models. Specifically, very large models are
trained with techniques such as pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019).
Pipeline parallelism works best when all stages are equally balanced in computation load. Achiev-
ing this balance is easiest when all blocks in the network have similar memory-to-computation
ratios. The classification head is currently an outlier, with a disproportionately high memory-to-
computation ratio. CCE may enable better pipeline balancing or reducing the number of stages.

We implemented CCE using Triton (Tillet et al., 2019). Triton creates efficient GPU kernels and
enables rapid experimentation but has some limitations in control flow. Specifically, the control flow
must be specified at the block level and therefore our thread-safe log-add-exp and gradient filtering
are constrained to operate at the block level as well. We expect that implementing CCE in CUDA
may bring further performance gains because control flow could be performed at finer-grained levels.

It could also be interesting to extend CCE to other classification problems where the number of
classes is large, such as image classification and contrastive learning.

10

Published as a conference paper at ICLR 2025

REFERENCES

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, et al. Phi-3 technical
report: A highly capable language model locally on your phone, 2024. URL https://arxiv.
org/abs/2404.14219.

Jason Ansel, Edward Z. Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL http://arxiv.org/abs/1604.06174.

Yu-Hui Chen, Raman Sarokin, Juhyun Lee, Jiuqiang Tang, Chuo-Ling Chang, Andrei Kulik, and
Matthias Grundmann. Speed is all you need: On-device acceleration of large diffusion mod-
els via GPU-aware optimizations. In Conference on Computer Vision and Pattern Recognition,
Workshops, 2023.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Neural Information Processing Systems,
2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019. URL
http://Skylion007.github.io/OpenWebTextCorpus.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training Ima-
geNet in 1 hour, 2017. URL http://arxiv.org/abs/1706.02677.

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Efficient
softmax approximation for gpus. In International Conference on Machine Learning, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Commun. ACM, 29(12):1170–1183,
1986.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, and Siyu Zhu. Liger-
Kernel: Efficient Triton kernels for LLM training, 2024. URL https://github.com/linkedin/
Liger-Kernel.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: Efficient
training of giant neural networks using pipeline parallelism. In Neural Information Processing
Systems, 2019.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
http://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2407.21783
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/2312.00752
https://github.com/linkedin/Liger-Kernel
https://github.com/linkedin/Liger-Kernel

Published as a conference paper at ICLR 2025

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song,
Samyam Rajbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations for en-
abling training of extreme long sequence transformer models, 2023. URL https://doi.org/
10.48550/arXiv.2309.14509.

William Kahan. Pracniques: further remarks on reducing truncation errors. Communications of the
ACM, 1965.

Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. CUTLASS: Fast lin-
ear algebra in CUDA C++, 2017. URL https://developer.nvidia.com/blog/
cutlass-linear-algebra-cuda/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Symposium on Operating Systems Principles, 2023.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
Long sequence training from system perspective. In Association for Computational, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax, 2018. URL
http://arxiv.org/abs/1805.02867.

Mistral AI Team. Mistral NeMo, 2024. URL https://mistral.ai/news/mistral-nemo/.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline paral-
lelism for DNN training. In ACM Symposium on Operating Systems Principles, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. In Neural Information Processing Systems, 2019.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Markus N. Rabe and Charles Staats. Self-attention does not need O(n2) memory, 2021. URL
https://arxiv.org/abs/2112.05682.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. In International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020.

Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, et al. Gemma
2: Improving open language models at a practical size, 2024. URL https://arxiv.org/abs/
2408.00118.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism, 2019. URL http://arxiv.org/abs/1909.08053.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin,
and Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies, 2024.
URL https://arxiv.org/abs/2407.13623.

12

https://doi.org/10.48550/arXiv.2309.14509
https://doi.org/10.48550/arXiv.2309.14509
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
http://arxiv.org/abs/1805.02867
https://mistral.ai/news/mistral-nemo/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
http://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2407.13623

Published as a conference paper at ICLR 2025

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model,
2023. URL https://github.com/tatsu-lab/stanford alpaca.

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: An intermediate language and
compiler for tiled neural network computations. In ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, 2019.

Torch Tune Team. torchtune, 2024. URL https://github.com/pytorch/torchtune.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s trans-
formers: State-of-the-art natural language processing, 2019.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
MEGABYTE: Predicting million-byte sequences with multiscale transformers. In Neural Infor-
mation Processing Systems, 2023.

13

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/pytorch/torchtune
https://arxiv.org/abs/2006.04768

Published as a conference paper at ICLR 2025

A NOTATION

Throughout the paper, we use the following notation conventions. Matrices are bold, capital letters,
e.g., A. Indexed matrices are capital letters and are indexed by column and then, optionally, row.
For example, given A ∈ RN×M , then e.g., Aj is the length N vector that is the jth column for A,
Aj,i is then the ith value in the vector Aj . When we combine indexing and transposing, we always
index and then transpose.

Vectors are bold lower-case letters, e.g., x, with the exception of LSE which is the vector containing
the log-sum-exp (LSE). Indexed vectors are lower-case letters, xi.

In addition to scalar indexing, we also block index matrices when describing how our algorithms
are implemented. In these cases, the matrix and vector will maintain their bold to indicate that the
indexing refers to a block and thus are still a matrix or vector.

Notation Description

E A D ×N matrix containing batch of inputs.
Ei A D-dimensional vector containing the embedding for the ith input.
C A D × |V | classifier matrix used to compute the logit for each token.
Ci A D-dimensional vector used to create the logit for the ith token.
x A length N vector containing the inputs.
xi A scalar that is the ith input.
Cxi A length D containing the vector used to create the logit for the xith token.
C⊤E A |V | ×N matrix containing the logits over the vocabulary for each input.(
C⊤E

)
x

A length N vector where the ith entry is the logit for the xith token.
LSE A length N vector containing the log-sum-exp (LSE) for each input over the vocabulary.
En The nth D ×NB block of E.
En,d The dth DB ×NB block of En.[[

a = b⊤]] An indicator matrix where the value at the ith column and jth row is 1 if aj = bi and 0 otherwise.

B REMOVING IGNORED TOKENS

It is common to have tokens that have no loss computation when training LLMs in practice. Ex-
amples include padding, the system prompt, user input, etc.. While these tokens must be processed
by the backbone – to enable efficient batching in the case of padding or to give the model the cor-
rect context for its prediction in the case of system prompts and use inputs – they do not contribute
directly to the loss.

In all implementations we are aware of, the logits and loss for these ignored tokens is first com-
puted and then set to zero. We notice that this is unnecessary. These tokens can be removed before
logits+loss computation with no change to the loss/gradient and save a significant amount of com-
putation.

Table A1 shows the performance of all methods in Table 1 with a filter that removes ignored tokens
before logits+loss computation. This represents a significant speed up for all methods but Liger
Kernels. Due to heavy chunking in Liger Kernels to save memory, it is bound by kernel launch
overhead, not computation, and therefore reducing the amount of computation does not increase
speed. Filtering ignored tokens is also a significant memory saving for most all but CCE (because
CCE already uses the minimum amount of memory possible).

C ADDITIONAL RESULTS

C.1 FURTHER PERFORMANCE ANALYSIS

Table A2 shows a breakdown of the time spent for different components of in the backward pass of
CCE and Baseline. For CCE, we selectively disabled/enabled portions of the kernel and measured
the time saved to determine the amount of time taken by that component. For Baseline, we manually
implemented each operation of the backward pass and timed them seperately.

3The gradient and loss are computed simultaneously, not in separate forward/backward passes.

14

Published as a conference paper at ICLR 2025

Loss Gradient Loss+Gradient

Method Memory Time Memory Time Memory Time

Lower bound 0.004MB 1,161MB 1,161MB

1) CCE (Ours) 245MB 17ms 1,163MB 37ms 1,164MB 54ms
2) Liger Kernels (Hsu et al., 2024)3 1,316MB 301ms 1,314MB 303ms
3) Torch Tune Team (2024) (8 chunks) 3,688MB 23ms 2,789MB 54ms 6,157MB 77ms
4) torch.compile 1,847MB 19ms 5,490MB 34ms 7,337MB 53ms
5) Baseline 10,997MB 30ms 7,320MB 44ms 12,826MB 75ms

6) CCE (No Vocab Sorting) 0.06MB 17ms 1,162MB 43ms 1,163MB 60ms
7) CCE (No Grad. Filter) 0.06MB 17ms 1,163MB 110ms 1,163MB 126ms
8) CCE-Kahan 1MB 18ms 2,325MB 42ms 2,327MB 59ms
9) CCE-Kahan-FullC 1MB 18ms 2,326MB 98ms 2,327MB 114ms
10) CCE-Kahan-FullE 1MB 18ms 2,325MB 92ms 2,327MB 109ms

Table A1: Table 1 where all methods include a filter that removes tokens that are ignored in loss
computation. This simple change represents large improvements in practice. Results averaged over
5 seeds.

Component Baseline CCE

logits = softcap
(
C⊤E

)
recomputation 45ms (43.2%)

∇ log softmaxx (logits) 35ms (28.5%) 4.7ms (4.4%)

Gradient Filter 1.3ms (1.2%)

∇softcap
(
C⊤E

)
17ms (13.7%) 4.7ms (4.4%)

∇E 37ms (30.0%) 31ms (29.6%)

∇C 34ms (27.7%) 18ms (17.3%)

Table A2: Performance breakdown for the backward pass of CCE and Baseline. Gemma 2 (2B)
model. Batch of 8192 tokens. Alpaca dataset used to generate inputs.

CCE spends considerably less time on the cross-entropy loss and softcap portions of the gradient
computation. For Baseline, these are very memory intensive operations as there is relatively very
little computation done compared the amount of reading/writing. For CCE, the logits are already in
SRAM (they were just recomputed) and CCE does not write the result of this computation to main
memory, saving a significant amount of time.

Coincidentally, CCE spends a very similar amount of time computing the gradient wrt. the embed-
dings. CCE spends less time computing the gradient wrt. the classifier. This is because the axis we
reduce along for the classifier, N, is shorter than the axis for the embeddings, —V—, and thus leads
to less contention on global memory.

Compared to Baseline, CCE saves 30ms on the gradient of the logits wrt. cross-entropy loss, 12ms
on the gradient wrt. softcapping, 5ms on the gradient wrt. E, and 15ms on the gradient wrt. C. This
saving of 62ms more than offsets the 45ms spent re-computing and applying the gradient filter.

C.2 ADDITIONAL RUNTIME AND MEMORY

Table A3 shows additional results for Gemma 2 (9B), Gemma 2 (27B), Qwen 2.5 (7B) (Qwen
Team, 2024), Qwen 2.5 (32B), PHI 3.5 Mini (Abdin et al., 2024), and Mistral NeMo (Mistral AI
Team, 2024) in the same setting as Table 1. For each model CCE is able to reduce the total memory
consumed by the loss by an order of magnitude from the baseline. For forward (Loss) and backward
(Gradient) passes combined, CCE is within 3MB of the lowest possible memory consumption.
Compared to Gemma 2 (2B) all these models have a smaller ratio of the vocabulary size to hidden
dimension. This has two impacts.

15

Published as a conference paper at ICLR 2025

First, the number of tokens that have a significant gradient is largely constant (it is dependent on the
data type). Therefore proportionally less of the gradient will be filtered out.

Second, for all other methods increasing the hidden dimension increase the amount of parallelism
that can be achieved. Liger Kernels (Hsu et al., 2024) sets its chunk size based on |V |/D – the
lower that ratio, the bigger the chunk size. As |V |/D continues to decrease, Liger Kernels is able
to make better use of the GPU. All other methods use two matrix multiplications to compute the
gradient. The amount of work that can be performed in parallel to compute ∇E and ∇C is B ×D
and |V | × D, respectively4. The amount of parallel work for CCE is B × |V |, thus increasing D
increases the amount of work but not the amount of parallelism. It may be possible leverage ideas
from split-k matrix multiplication kernels to expose more parallelism to CCE for large values of D.

For the smallest |V |/D considered, Phi 3.5 Mini (|V |=32,064, D=3,072) ours is approximately 50%
slower (12ms) than torch.compile (although it uses substantially less memory). In our exper-
iments, this increase in linear-cross-entropy loss computation time is largely negligible and only
increases training time by one to two percent.

We also consider how changing the number of tokens changes performance (Figs. A1 and A2). We
find that CCE behaves very similarly to Baseline and torch.compile. Further, because CCE does
not utilize chunking, it does not reach a point where the overhead of dispatching all the kernels
becomes the dominating factor. We also find that while CCE-Kahan-FullC is slower than the Liger
Kernel and Torch Tune baselines with a large number of tokens, it becomes more performant than
those baselines as the number of tokens reduces.

D MEMORY USE METHOD DETAILS

Table A4 contains the raw numbers used to create Fig. 1. The maximum batch size for 16 GPUs was
calculated by assuming that the total amount of memory available is 75× 16 (i.e., each 80GB GPU
will be fully occupied expect for a 5GB buffer for various libraries), then subtracting the memory
used for weights + optimizer + gradients and then diving by the memory used per token.

The numbers in Table A4 are computed using the following methods. When present, the number of
tokens is assumed to be 65,536.

We compute the amount of memory used for intermediate activations as the number of layers times
the hidden size times number of tokens times 2 bytes per bfloat16. This assumes the use of activa-
tion/gradient checkpointing (Chen et al., 2016) for transformer layer.

The amount of memory used by the logits is the number of tokens times the vocabulary size times 4
bytes per float32. This likely undercounts the amount of memory used for computing the probability
distribution, as its common to also keep a copy of the logits in bfloat16 and, for models like Gemma
2 (Rivière et al., 2024) that use logit softcapping, an additional copy of the logits after softcapping
may be needed. However, this method can be uniformly applied to all models.

The amount of memory used by Weights+Opt+Grad is the number of parameters times 4 (parame-
ters, gradient, and Adam first and second moments) times 2 bytes per bfloat16.

E FLOATING POINT ADDITION

Here we provide a brief explanation of floating point addition and how it relates to our proposed
gradient filtering.

Given two numbers a and b represented using floating point, such that |a| < |b|, the following steps
are performed

1. Separate the mantissa (the fractional part) and the exponent from both numbers a and b.
2. Re-write the mantissa of the smaller number (a in our case) such that it shares the same

exponent as the b.
3. Add the re-written mantissa of a to the mantissa of b.

4Ignoring split-k matrix multiplication kernels for simplicity.

16

Published as a conference paper at ICLR 2025

Loss Gradient Loss+Gradient

Method Memory Time Memory Time Memory Time

Gemma 2 (9B) (Rivière et al., 2024) (|V |=256,000, D=3,584)
Lower bound 0.004MB 1,806MB 1,806MB

CCE (Ours) 1MB 68ms 1,808MB 141ms 1,809MB 208ms
Liger Kernels (Hsu et al., 2024) 2,119MB 418ms 2,119MB 419ms
Torch Tune Team (2024) (8 chunks) 8,000MB 75ms 3,264MB 168ms 11,264MB 243ms
torch.compile 4,000MB 70ms 12,000MB 134ms 16,000MB 207ms
Baseline 24,000MB 102ms 16,000MB 164ms 28,000MB 271ms

CCE-Kahan-FullC 1MB 68ms 3,558MB 384ms 3,559MB 450ms

Gemma 2 (27B) (Rivière et al., 2024) (|V |=256,000, D=4,608)
Lower bound 0.004MB 2,322MB 2,322MB

CCE (Ours) 1MB 83ms 2,324MB 200ms 2,325MB 281ms
Liger Kernels (Hsu et al., 2024) 2,948MB 361ms 2,948MB 363ms
Torch Tune Team (2024) (8 chunks) 8,000MB 91ms 4,768MB 204ms 12,768MB 296ms
torch.compile 4,000MB 86ms 12,000MB 168ms 16,000MB 256ms
Baseline 24,000MB 119ms 16,000MB 197ms 28,000MB 322ms

CCE-Kahan-FullC 1MB 83ms 4,574MB 513ms 4,575MB 593ms

Mistral NeMo (Mistral AI Team, 2024) (|V |=131,072, D=5,120)
Lower bound 0.004MB 1,360MB 1,360MB

CCE (Ours) 0.6MB 52ms 1,361MB 129ms 1,362MB 180ms
Liger Kernels (Hsu et al., 2024) 1,872MB 166ms 1,872MB 167ms
Torch Tune Team (2024) (8 chunks) 2,048MB 49ms 3,348MB 113ms 5,396MB 161ms
torch.compile 2,048MB 48ms 6,144MB 94ms 8,192MB 143ms
Baseline 10,240MB 58ms 8,192MB 100ms 12,288MB 161ms

CCE-Kahan-FullC 0.6MB 52ms 2,641MB 291ms 2,642MB 342ms

Phi 3.5 Mini (Abdin et al., 2024) (|V |=32,064, D=3,072)
Lower bound 0.004MB 236MB 236MB

CCE (Ours) 0.2MB 8ms 236MB 26ms 236MB 34ms
Liger Kernels (Hsu et al., 2024) 487MB 26ms 488MB 26ms
Torch Tune Team (2024) (8 chunks) 502MB 9ms 451MB 18ms 953MB 30ms
torch.compile 502MB 8ms 1,504MB 15ms 2,006MB 22ms
Baseline 2,506MB 11ms 2,004MB 16ms 3,006MB 27ms

CCE-Kahan-FullC 0.2MB 8ms 424MB 46ms 424MB 54ms

Qwen 2.5 (7B) (Qwen Team, 2024) (|V |=152,064, D=3,584)
Lower bound 0.004MB 1,096MB 1,096MB

CCE (Ours) 0.6MB 43ms 1,098MB 93ms 1,097MB 136ms
Liger Kernels (Hsu et al., 2024) 1,394MB 171ms 1,394MB 171ms
Torch Tune Team (2024) (8 chunks) 2,379MB 42ms 2,540MB 96ms 4,921MB 138ms
torch.compile 2,376MB 41ms 7,128MB 79ms 9,504MB 121ms
Baseline 11,880MB 53ms 9,504MB 86ms 14,256MB 142ms

CCE-Kahan-FullC 0.6MB 43ms 2,138MB 225ms 2,138MB 267ms

Qwen 2.5 (32B) (Qwen Team, 2024) (|V |=152,064, D=5,120)
Lower bound 0.004MB 1,565MB 1,565MB

CCE (Ours) 0.6MB 60ms 1,566MB 133ms 1,567MB 193ms
Liger Kernels (Hsu et al., 2024) 2,159MB 192ms 2,161MB 192ms
Torch Tune Team (2024) (8 chunks) 2,376MB 57ms 3,882MB 130ms 6,259MB 186ms
torch.compile 2,376MB 56ms 7,128MB 108ms 9,504MB 165ms
Baseline 11,880MB 68ms 9,504MB 115ms 14,256MB 186ms

CCE-Kahan-FullC 0.6MB 61ms 3,052MB 326ms 3,053MB 384ms

Table A3: Memory usage and time of CCE, Liger Kernels, Torch Tune, torch.compile, and Base-
line for additional models. Batch of 8,192 tokens. Results averaged over 5 seeds.

4. Combine the resulting mantissa and exponent of b and then convert them into normalized
form.

Step 2 is where truncation happens and the intuition of gradient filtering comes from. In bfloat16, if
the exponent of b is more than 27 times larger than that of a, the 7-bit mantissa no longer has enough
precision to represent any of a’s mantissa and in the process of re-writing, a will be, in effect, set to
zero. For gradient filtering, we are only concerned with values in the range [0, 1], so the threshold
of 2−12 means that we only keep values that don’t get rounded to zero when b = 2−5.

17

Published as a conference paper at ICLR 2025

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

300

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(a) Gemma 2 2B

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

100

200

300

400

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

100

200

300

400

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(b) Gemma 2 9B

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

120

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

100

200

300

400

500

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

100

200

300

400

500

600

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(c) Gemma 2 27B

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

50

60

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

300

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

300

350

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(d) Mistral NeMo

Figure A1: Performance of CCE and baselines for all models with a varying batch sizes. Results
averaged over 5 seeds. Continued in Fig. A2.

18

Published as a conference paper at ICLR 2025

28 210 212

Num Tokens (Log Base 2 Scale)

0

2

4

6

8

10
R

un
ti

m
e

(m
s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

50

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(a) Phi 3.5 Mini

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

50

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(b) Qwen 2.5 7B

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

50

60

70

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

300

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

100

200

300

400

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

CCE-Kahan-FullC

(c) Qwen 2.5 32B

Figure A2: Performance of CCE and baselines for all models with a varying batch sizes. Results
averaged over 5 seeds.

Model Logits Activations Weights+Opt+Grad Max Batch Size (Before) Max Batch Size (After) Increase

GPT 2 12,564MB 1,152MB 1,045MB 5,866,190 69,845,595 11.9×
GPT Neo (1.3B) 12,564MB 6,144MB 10,421MB 4,268,047 12,996,042 3.0×
GPT Neo (2.7B) 12,564MB 10,240MB 20,740MB 3,471,784 7,731,585 2.2×
Gemma (2B) 64,000MB 4,608MB 19,121MB 1,155,515 17,204,330 14.9×
Gemma 2 (27B) 64,000MB 26,496MB 207,727MB 739,448 2,525,554 3.4×
Gemma 2 (2B) 64,000MB 7,488MB 19,946MB 1,108,206 10,580,057 9.5×
Llama 2 (13B) 8,000MB 25,600MB 99,303MB 2,203,057 2,891,512 1.3×
Llama 2 (7B) 8,000MB 16,384MB 51,410MB 3,164,429 4,709,560 1.5×
Llama 3 (70B) 32,064MB 81,920MB 538,282MB 397,019 552,414 1.4×
Llama 3 (8B) 32,064MB 16,384MB 61,266MB 1,579,333 4,670,136 3.0×
Mistral 7B 8,000MB 16,384MB 55,250MB 3,154,108 4,694,200 1.5×
Mixtral 8x7B 8,000MB 16,384MB 356,314MB 2,344,949 3,489,944 1.5×
Phi 1.5 12,574MB 6,144MB 10,821MB 4,264,482 12,991,781 3.0×
Phi 3 Medium 8,003MB 25,600MB 106,508MB 2,188,824 2,873,067 1.3×
Qwen 1.5 (7B) 37,912MB 16,384MB 58,909MB 1,412,087 4,679,564 3.3×

Table A4: Raw data for Fig. 1. Memory usage calculated using a global batch size of 65,536.

19

Published as a conference paper at ICLR 2025

Algorithm 4 Memory-efficient linear-cross-entropy loss, backward pass

Inputs: E ∈ RD×N , C ∈ RD×|V |, LSE ∈ RN , ∇CEL ∈ RN , and x ∈ RN .
Block sizes NB , VB , and DB .
Accuracy threshold ε.
v = [1, . . . , |V |].

Outputs: ∇E ∈ RD×N , ∇C ∈ RD×|V |

for all pairs of blocks En, Cv do ▷ Divide E and C into blocks of size D ×NB and D × VB

Anv = 0VB×NB
▷ Zero matrix of size VB ×NB in on-chip SRAM

for blocks En,d, Cv,d do ▷ Divide En and Cv into blocks of DB ×NB and DB × VB

Anv += C⊤
v,d ·En,d ▷ Blockwise matrix multiplication

end for
Snv = exp(Anv − LSEn) ▷ Compute the softmax
Gnv =

[[
vv = x⊤

n

]]
− Snv ▷ Gradient of cross-entropy loss wrt. logits

if all(|Gnv| < ε) then
skip ▷ Skip computation if below desired numerical precision

end if
for blocks En,d, Cv,d do ▷ Divide En and Cm into blocks of DB ×NB and DB × VB

∇E⊤
n,d += (Gnv · ∇CELn)Cv,d ▷ Locking thread-safe gradient update

∇C⊤
v,d += (Gnv · ∇CELn)

⊤
En,d ▷ Locking thread-safe gradient update

end for
end for

20

