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Introduction

A central task in TDA is the computation of the bottle-
neck distance between two persistence diagrams. For
diagrams induced by the Rips filtration, all dimension
zero signatures are born at the start of the filtration,
capturing cluster merging dynamics akin to that ob-
served by hierarchical clustering methods. This is il-
lustrated in Figure 1.

Figure 1:A Rips filtration produces dimension zero persistence diagrams
whose birth times are all zero and death times correspond to the merge
heights in a dendrogram.

The first, and for a long time the only, publicly avail-
able implementation of the bottleneck distance for per-
sistence diagrams is in the library Dionysus, released
by Morozov [1] in 2010. In 2017, Morozov et al. [2]
provided an improved implementation in the library
Hera by exploiting geometry. We take inspiration
from this idea of exploiting the geometry of persis-
tence diagrams to extract computational speed-up. By
considering dimension 0 persistence diagrams induced
from the Rips filtration, we can approach the prob-
lem via a different framework, birthing a new efficient
algorithm for computing the bottleneck distance.

Bypassing Matchings

To bypass the overwhelming matching step, the key
idea is to begin with a specific initial bijection that one
can methodically modify to optimize the norm between
matched points. Let X and Y be two 0-dimensional
persistence diagrams whose death times are arranged
from largest to smallest. Let N be the length of X
and define Z = [zi]|Y |1 where

zi =


|xi − yi| if i ≤ N

yi/2 otherwise
and l = arg max(Z). Then the following hold.

.

Lemma 1
If N < |Y | and max(Z) ≤ yN+1/2, then dB(X, Y ) =
yN+1/2 where yN+1 is the largest death time of a point
in Y matched to the diagonal.
Lemma 2
Let ζ be the second largest entry of Z.
1. If max(Z) ≤ max(xl, yl)/2, then

dB(X, Y ) = max(Z).
2. If ζ < max(xl, yl)/2 < max(Z), then

dB(X, Y ) = max(xl, yl)/2.
3. If ζ ≥ max(xl, yl)/2 and m ≥ l for every m such
that zm ≥ max(xl, yl)/2, then

dB(X, Y ) = max(xl, yl)/2.
4. If ζ ≥ max(xl, yl)/2 and there exists m < l such
that zm ≥ max(xl, yl)/2, then there exists a bijection τ
between X and Y such that one of the three preceding
cases holds and where

max ||x− τ (x)||∞ < max ||x− φ(x)||∞.

Benchmarking

We benchmark Lumáwig against the current state-
of-the-art implementation of the bottleneck distance
in Hera. We simulate 100 0-dimensional persistence
diagrams, pair each diagram with another simulated
diagram with as much as 80% more or fewer points,
then compute the bottleneck distance between the
pair. The running time distributions for 100 computa-
tion of bottleneck distance on increasing diagram sizes
(from 1,000 to 30,000 points) are plotted in Figure 2.

Empirical Tests For Complexity

We examine Lumáwig’s running time in the compu-
tation of dimension zero bottleneck distance in four
settings. We vary the size of the diagrams and the
range of values the death times are drawn from. The
four settings are (i) equal size and range; (ii) equal size
but different range; (iii) different size but equal range;
and (iv) different size and range. We increase the di-
agram size from 1,000 points to 1 million points for
the first two settings. However, due to increased com-
putational time, we increase to only 100,000 points in
the third setting, and to 400,000 points in the fourth
setting. In all settings we perform 100 computations.

Running time of Lumáwig vs Hera.
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Figure 2:Running time (seconds in log scale) of Lumáwig versus the current state-of-the-art implementation in Hera. Five boxplots for the
running time of the original algorithm in Dionysus are superimposed for reference.
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Figure 3:Median running time in the computation of bottleneck distance
between two diagrams with varying size and range settings fitted with
regression curves. The plots are stacked from top to bottom based
respectively on the four setting defined above.

Conclusion

Lumáwig outperforms by several orders of magni-
tude, the state-of-the art implementation of dimen-
sion zero bottleneck distance in terms of running time.
In [3], we show that Lumáwig also recovers the ex-
act bottleneck distance produced by Dionysus. As
Lumáwig generally enjoys linear complexity as shown
by our empirical tests, we are able to present in this
work the first instance, to the best of our knowledge,
that the bottleneck distance is used in practice on data
of magnitude and scale in the order of up to a million.
This opens the opportunity to scale TDA to data sets
of sizes encountered in machine learning and utilize
persistence diagrams in a manner that goes beyond
the simple use of the most persistent components. We
believe that Lumáwig is a significant contribution in
this direction as it affords a viable tool to process and
utilize dimension zero persistence diagrams in compar-
ing evolving connectivity information between larger
data sets.
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