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ABSTRACT

Diffusion transformer (DiT), a rapidly emerging architecture for image genera-
tion, has gained much attention. However, despite ongoing efforts to improve
its performance, the understanding of DiT remains superficial. In this work, we
delve into and investigate a critical conditioning mechanism within DiT, adaLN-
Zero, which achieves superior performance compared to adaLN. Our work studies
three potential elements driving this performance, including an SE-like structure,
zero-initialization, and a “gradual” update order, among which zero-initialization
is proved to be the most influential. Building on this insight, we heuristically
leverage Gaussian distributions to initialize each condition modulation, termed
adaLN-Gaussian, leading to more stable and effective training. Extensive exper-
iments following DiT on ImageNet1K demonstrate the effectiveness and gener-
alization of adaLN-Gaussian, e.g., a notable improvement of 2.16% in FID score
over adaLN-Zero.

1 INTRODUCTION

Diffusion transformer (DiT) (Peebles & Xie, 2023) has recently emerged as a powerful architecture
for image synthesis, and has gained vast attention for its superior performance over UNet-based
diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022). As DiTs continues to drive
breakthroughs in image generation, there is a growing interest in pushing its performance boundaries
even further. Current efforts could be roughly categorized into two categories: 1) those incorporating
advanced techniques (Chu et al., 2024; Ma et al., 2024b; Lu et al., 2024; Tian et al., 2024; Zhu et al.,
2024), like VisionLLama (Chu et al., 2024), which introduces language model-based tricks such as
RoPE2D (Su et al., 2024) and SwishGLU (Shazeer, 2020), to boost the performance; and 2) those
leveraging stronger and more informative conditions (Esser et al., 2024; Chen et al., 2023; 2024a;
Ma et al., 2024a; Li et al., 2024), such as PixArt-α (Chen et al., 2023) that extends DiTs to the
text-to-image realm to enable more exquisite image generation.

Despite these advances, our understanding of the mechanisms driving DiT’s performance remains
superficial. One critical aspect that requires further investigation is adaLN-Zero, an important con-
ditioning mechanism that significantly enhances DiT’s performance compared to the original adaLN
(20.02 vs. 24.13 in FID). Fully understanding the underlying mechanism of adaLN-Zero is essential
and may provide deeper insights for further optimizing DiT, especially given the increasing preva-
lence of DiT in the field of diffusion generation (Karras et al., 2022; Dhariwal & Nichol, 2021;
Karras et al., 2024).

In this work, we uncover the mechanism behind adaLN-Zero’s performance boost, providing key
insights into DiT’s conditioning process. By studying the differences between adaLN-Zero and
adaLN, our analysis studies three elements that collectively contribute to the performance enhance-
ment: 1) an Squeeze-and-Excitation-like (SE-like) structure (Hu et al., 2018), 2) zero-initialized
value (a well-optimized location in the optimization space), and 3) a “gradual” update order of
model weights. The SE-like structure arises from introducing scaling element α and the latter two
stem from adaLN-Zero’s zero-initialization strategy for α. By empirical experiments, we find that
a good zero-initialized location itself plays a more significant role among the three elements. We
reveal that compared to other initialization, zero-initialization enables the weights that derive α to
morphologically more closely approximate the well-trained distribution which resembles a Gaus-
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sian distribution. Interestingly, we find all the weights of condition modulations in DiT’s blocks
gradually form Gaussian-like distributions as training progresses.

Based on these findings, we propose to replace adaLN-Zero by initializing the weights of each
condition modulation with Gaussian distributions, which we call adaLN-Gaussian. To validate the
effectiveness and generalization of adaLN-Gaussian, we conduct comprehensive experiments fol-
lowing DiT on ImageNet1K (Russakovsky et al., 2015), testing across different training durations,
DiT variants, and DiT-based models. Our contributions can be summarized as follows:

• We study three key factors that collectively contribute to the superior performance of adaLN-Zero:
an SE-like structure, a good zero-initialized value, and a gradual weight update order. Among them,
we find that the a good zero-initialized value plays the most pivotal role.

• Based on the distribution variation of condition modulation weights, we heuristically leverage
Gaussian distributions to initialize each condition modulation, termed adaLN-Gaussian.

• Extensive experiments following DiT on ImageNet1K across different settings demonstrate
adaLN-Gaussian’s effectiveness and generalization, showing a promising pathway for future gen-
erative models.

2 RELATED WORK

Transformer in Diffusion. With the extensively demonstrated scalability and remarkable capa-
bilities of transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020), they have recently been
introduced into diffusion generation (Chai et al., 2023; Gao et al., 2023; Mo et al., 2023; Feng
et al., 2023; 2024; Bao et al., 2023; Fei et al., 2024; Chen et al., 2024b; Levi et al., 2023; Crowson
et al., 2024). Gao et al. propose an asymmetric masking diffusion transformer to explicitly enhance
contextual relation learning among object semantic parts. DiffiT (Hatamizadeh et al., 2023) intro-
duces hybrid hierarchical vision transformers with a U-shaped encoder and decoder. More recently,
DiT (Peebles & Xie, 2023) replaces the widely-used UNet with transformers in diffusion generation,
empirically demonstrating excellent performance and promising scalability. Subsequently, more ef-
forts have been devoted to improving diffusion transformers. Following this research line, FiT (Lu
et al., 2024) and VisionLLama (Chu et al., 2024) introduce large language model (LLM) techniques,
such as RoPE2D (Su et al., 2024) and SwishGLU, to further enhance DiT. SiT (Ma et al., 2024b)
proposes a scalable interpolant framework built on the backbone of DiTs. SD-DiT (Zhu et al.,
2024) incorporates masking operations into DiT to accelerate model convergence and improve per-
formance. Pixart-α and Pixart-σ (Chen et al., 2023; 2024a) extends DiT to text-to-image synthesis
and produces high-quality and exquisite images. U-DiT(Tian et al., 2024) argues that the effective-
ness of the U-Net inductive bias is meaningful but has been neglected in DiTs, reintroducing the
U-shaped architecture to enhance performance. Different from these efforts, our work is motivated
by elevating the understanding of DiT given its great prevalence in the generation realm, and focuses
primarily on a crucial conditioning mechanism called adaLN-Zero.

Weight Initialization. In a neural network, weight initialization is a crucial operation as it directly
determines the initial position in the optimization space (Narkhede et al., 2022). Typically, good
initialization aids model training. Common methods include random initialization with (truncated)
normal or uniform distributions. Glorot & Bengio introduced a properly scaled uniform distribution
for initialization, known as “Xavier" initialization, in Jia et al. (2014). However, this strategy is
not suitable for the ReLU activation function (Nair & Hinton, 2010), as ReLU can map negative
values to zero, thereby altering the entire variance. To address this, He et al. proposed “Kaiming"
initialization, which assumes that half of the neurons are activated while the rest are zero. In the
deep learning era, the zero-initialization strategy can be traced back to Goyal et al. (2017), where
it was used to accelerate large-scale training potentially via nullifying certain output pathways to
implicitly adjust the propagation of backward signals in a supervised learning setting. More re-
cently, it has been widely adopted in diffusion generation (Ho et al., 2020; Rombach et al., 2022)
to ease optimization. In DiT (Peebles & Xie, 2023), the impact of zero-initialization is particularly
notable, leading to significant performance improvement. Motivated by this, we delve deeper into
the underlying reasons, hoping that our findings will inspire further research.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0K 100K 200K 300K 400K
Training Step

15

25

35

45

55

65

75

85

95

105

FI
D5

0K

adaLN-Zero
adaLN-Step1
adaLN
adaLN-Mix
adaLN-Gaussian

300K 350K 400K
22

24

26

28

30

Figure 1: Comparing adaLN-Zero with adaLN,
adaLN-Step1, adaLN-Mix, and adaLN-Gaussian on
FID50K. We use the largest model DiT-XL/2 in all
experiments on ImageNet1K 256× 256.
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Figure 2: Illustration of adaLN, adaLN-
Step1, and adaLN-Zero. The complete data
flow in a DiT block is shown in Alg. 1.

3 UNVEILING THE SECRET OF ADALN-ZERO IN DIT

To unveil the underlying mechanism, we perform a detailed comparison between adaLN-Zero and
adaLN. In Fig. 2 we find that adaLN-Zero introduces two additional steps: first, it introduces scaling
element α (as denoted in DiT) for all transformer blocks; second, it zero-initializes corresponding
linear layers to output zero vectors for all α. Given these differences, one may naturally wonder:
how do these two steps contribute to the performance gap between adaLN-Zero and adaLN in DiT?

3.1 DECOUPLING ADALN-ZERO BY EVALUATING STEP ONE IN ISOLATION

To answer this question, we decouple adaLN-Zero by introducing only the first step and initial-
izing the linear layer’s weights by default. For convenience, we denote this intermediate state as
adaLN-Step1 as shown in Fig. 2 (middle). Then we train the three variants following the same train-
ing setting in DiT (Peebles & Xie, 2023) on ImageNet1K for 400K iterations using the largest and
best-performing model, i.e., DiT-XL/2. Similarly, we measure FID (Heusel et al., 2017) by using
ADM’s TensorFlow evaluation suite (Dhariwal & Nichol, 2021) following DiT and compare the
performance of adaLN-Step1 with adaLN-Zero and adaLN in Fig. 1. One can see that adaLN-Step1
outperforms adaLN even without zero-initializing the linear layer’s weights, indicating that barely
introducing scaling element α is beneficial as well. Similar results on Inception Score (IS) (Sal-
imans et al., 2016) could be found in App. A.1. Intuitively, adding scaling element α enhances
adaLN’s capability of expression, making model optimization easier and more flexible. Upon closer
examination from overall structure, module function, and mathematical formula, we speculate that
this improvement might be due to a Squeeze-and-Excitation-like (SE-like) architecture (Hu et al.,
2018) 1. Specifically, first, adaLN-Zero and SE module both serve as a side pathway compared to
the main path. Second, scaling element α and SE module play a similar role, both of which aim to
perform a channel-wise modulation operation. Third, formally, omitting the bias term, we illustrate
the formulation of α in DiT in Eq. 1 and SE module (Hu et al., 2018) in Eq. 2, respectively, with
slight adjustments to make the two formulas more comparable:

F (c) = (c⊙ Sigmoid(c))︸ ︷︷ ︸
SiLU

∗Wα = (c⊙ (Sigmoid(I ∗ c))) ∗Wα , (1)

SE(c) = (ReLU(W1 ∗ c)) ∗W2 = (1⊙ (ReLU(W1 ∗ c))) ∗W2 , (2)
where ∗ is matrix multiplication, ⊙ is Hadamard product, and 1 is a vector full of element 1. To
some extent, it is observed that F (c) shares a similar formulation with SE(c). Given that SE(c)
has been extensively demonstrated to enable a general enhancement over various vision tasks (Hu
et al., 2018), this similarity may contribute to the improved performance of adaLN-Step1.

On the other hand, it is worth noting that while adaLN-Step1, i.e., the first step, does contribute
positively, there remains a large performance disparity between adaLN-Zero and adaLN-Step1. This
suggests that the zero-initialization strategy, i.e., the second step, is equally necessary. We explore
this further in the next subsection for clarity.

1In App. A.2, we provide the structure of SE module to better illustrate the similarity.
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Algorithm 1 Forward Process of DiT with One Block
Input: Noise disturbed latent x; A simplified DiT: PatchEmbed Wpat, matrix Wβ1 , Wγ1 , and Wα1 deriving

β1, γ1, and α1 for the first modulation, a linear layer Watt replacing self-attention, matrix Wβ2 , Wγ2 ,
and Wα2 deriving β2, γ2, and α2 for the second modulation, a linear layer Wffm replacing pointwise
feedforward, γf , βf , and Wf for the modulation and linear layer in FinalLayer, respectively;

Output: predicted ϵ̄;
1: xp = x * Wpat # Reshape and patchify x
2:
3: # DiT Block
4: xm1 = xp ⊙ (1 + γ1) + β1 # Modulation
5: xatt = xm1 * Watt # Replace attention
6: xout1 = xatt ⊙ α1 + xp # Skip connection
7: xm2 = xout1 ⊙ (1 + γ2) + β2 # Modulation
8: xffm = xm2 * Wffm # Replace FFM
9: xout2 = xffm ⊙ α2 + xout1 # Skip connection

10:
11: xf = xout2 ⊙ (1 + γf ) + βf # Modulation
12: ϵ̄ = xf * Wf

13: return ϵ̄

3.2 HOW ZERO-INITIALIZATION IMPROVES THE PERFORMANCE

For a typical initialization strategy, e.g., kaiming initialization (He et al., 2015), its fundamental role
is to determine the initial location of the model in the optimization space. Particularly, in the case
of zero-initialization, besides this function, Goyal et al. suggest that it also has an additional role.
Specifically, it can implicitly adjust the model structure by nullifying certain output pathways at the
beginning of training, more importantly, causing the forward/backward signals to initially propa-
gate through the identity shortcut (He et al., 2016), thereby easing the optimization at the start of
training (Goyal et al., 2017). However, is this additional role really responsible for the performance
gap between adaLN-Zero and adaLN-Step1? To answer this question, we first examine how this
additional role specifically impacts optimization through the lens of gradient update. Afterward,
we decouple this impact on gradient update during training to highlight the fundamental role of
zero-initialization.

3.2.1 ZERO-INITIALIZATION’S IMPACT ON GRADIENT UPDATE

Considering the complexity of the DiT model, we make three reliable modifications to simplify
our gradient derivation. First, we use only one DiT block, easing the computations of complex
chain rules. Second, we replace the multi-head self-attention and pointwise feedforward modules
within the DiT block with simple linear transformations, respectively. Though this replacement
alters the structure of the DiT block, from the view of backpropagation it does not affect the gradient
flow of other modules but itself which is not our emphasis. Therefore this adjustment could be
acceptable. Finally, for a linear layer, we omit the bias term in both the forward and backward passes.
These alterations significantly simplify our analysis without negatively impacting the conclusions.
We formally present the mathematical forward process in Alg. 1. Note that in DiT, LayerNorm
is learning-free, so we omit it from our formulation. The process of gradient derivation for each
module weight is provided in App. A.3.

To continue our analysis, reviewing the initialization strategy of DiT is necessary. adaLN and
adaLN-Zero both initialize the FinalLayer module to zero, indicating that γf (Wγf

), βf (Wβf
),

and Wf are all zero at the beginning. As shown in Fig. 2, adaLN and adaLN-Zero also zeros out
weights of all modulations including Wγ1 , Wβ1 , Wγ2 , and Wβ2 in a block, rendering γ1, β1, γ2,
and β2 zero. A key difference from adaLN is that adaLN-Zero not only introduces Wα1 and Wα2 to
produce scale parameters α1 and α2 (i.e., adaLN-Step1) but also zero out Wα1 and Wα2 to make
α1 and α2 become zero. See Tab. 1 2nd row.

Therefore, in this first forward pass, Wf = 0 and output is zero (Eq. 4). Interestingly, in the first
backward pass, the gradient of Wf , i.e., ∂L

∂Wf
, is not zero while the gradients of the rest, i.e., ∂L

∂Wffm
,

∂L
∂Watt

, ∂L
∂Wpat

, ∂L
∂Wγf

, ∂L
∂Wβf

, ∂L
∂Wα2

, ∂L
∂Wγ2

, etc., are zero as their gradient formulas all include Wf
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Time/Gradient ∂L
∂Wf

∂L
∂Wffm

∂L
∂Watt

∂L
∂Wpat

∂L
∂Wγf

∂L
∂Wβf

∂L
∂Wα2

∂L
∂Wγ2

∂L
∂Wβ2

∂L
∂Wα1

∂L
∂Wγ1

∂L
∂Wβ1

Initial weight 0 Wffm Watt Wpat 0 0 0 0 0 0 0 0

1st iteration ! % % % % % % % % % % %

2nd iteration ! % % ! ! ! ! % % ! % %

3rd iteration ! ! ! ! ! ! ! ! ! ! ! !

Table 1: Gradient of different weights during training. The first row is the state of parameters’
initial weight. 0 means that the weight is zero. !means that the gradient is not zero and the weight
effectively updates while%means the gradient is still zero and the weight does not update.

term and Wf = 0. Hence, only Wf is updated while the rest weights are kept. So how about
the next? In the second backward pass, though Wf is not zero, the zero-initialized α1 and α2

due to adaLN-zero cause ∂L
∂Wffm

, ∂L
∂Watt

, ∂L
∂Wγ2

, ∂L
∂Wβ2

, ∂L
∂Wγ2

, and ∂L
∂Wβ2

to remain zero. How
about the third iteration? To better illustrate the gradient variation of involved weights, we show
the gradient of all weights in the first several iterations in Tab. 1. One can see that all weights do
not update together as expected but gradually update. Specifically, in the 1st iteration, only Wf

updates. In the 2nd iteration, only Wf , Wpat, Wγf
, Wβf

, Wα2
, and Wα1

update, which is what
zero-initialization brings to the optimization update. In other words, zero-initialization introduces
an additional “gradual" update in the initial stage of optimization compared to adaLN-Step1.

Remark. It is worth noting that although our derivation is based on a simplified version of DiT, we
corroborate that this update order aligns with that of original DiT variants in which for a typical DiT
model (adaLN-Zero), Wf update first, subsequently, Wpat, Wγf

, Wβf
, and all Wα

2 can update,
and finally all parameters start to update. This verification demonstrates that our simplification is
reasonable and our derivation is right.

3.2.2 DECOUPLING THE IMPACT OF ZERO-INITIALIZATION

Based on Sec. 3.2.1, we know that beyond the difference of initial position in the optimization
space, the additional distinction between adaLN-Zero and adaLN-Step1 lies in the second iteration
of gradient optimization, where adaLN-Zero preferentially optimizes Wf , Wpat, Wγf

, Wβf
, and

all Wα
3 while adaLN-Step1 optimizes all weights. Considering the performance disparity between

adaLN-Zero and adaLN-Step1, is this update discrepancy crucial for enhancing model performance?
or is it just the zero-initialized position in optimization space that contributes more?
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Figure 3: Performance of different
variants in the initial stage.

Intuitively, if this update discrepancy is critical, we would see
a significant performance variation between adaLN-Zero and
adaLN-Step1 within the initial few iterations since this dis-
crepancy only occurs during the second iteration 4. Thus,
we evaluate model performance during the early iterations, as
shown in Fig. 3. The results indicate minimal performance
fluctuation between adaLN-Zero and adaLN-Step1 during the
first 160 iterations, suggesting that the discrepancy in update
order may not be as critical as initially expected. Similar re-
sults can be found for the Inception Score (IS) in App. A.1.

To formally verify our hypothesis, we design an ingenious ex-
periment to decouple the impact of zero-initialization on gradi-
ent update. Specifically, considering that the additional effect
on the gradient cannot be avoided when zeroing out Wα, we
adopt the initialization of adaLN-Step1 but enforce the update order of adaLN-Zero simultaneously.
We refer to this hybrid strategy as adaLN-Mix and compare its performance with adaLN-Zero and

2For brevity, we use Wα to denote all Wα1 and Wα2 in DiT’s blocks. Wγ and Wβ are the same.
3For adaLN-Step1 (as well as adaLN), the model begins updating all weights after the first iteration, unlike

typical initialization strategies where all weights are updated from the very beginning. We will explore the
impact of this difference in future work.

4In our view, if the discrepancy in gradient updates is crucial, it can significantly affect performance in the
short term. And as the update period extends, the impact of this discrepancy diminishes.
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Figure 4: Value distributions of all Wα during the training process. AdaLN-Zero and adaLN-Mix
are initialization strategies and 160, 10K, and 50K are timestamps.

adaLN-Step1 in Fig. 1. It is seen that while adaLN-Mix further enhances the performance of adaLN-
Step1, it still lags significantly behind adaLN-Zero. This first indicates that the update order resulting
from zero-initialization does contribute independently to performance. However, this contribution is
not the primary reason for the substantial performance improvement seen in adaLN-Zero. In other
words, it is the zero-initialized location that accounts for the remarkable performance difference
between adaLN-Zero and adaLN-Mix. Similar results on Inception Score (IS) could be found in
App. A.1. Why a zero-initialized location is such important, we put further exploration in the next
subsection for clarity.

3.3 WHY A ZERO-INITIALIZED LOCATION WINS?

A simple answer might be that zero-initialization avoids introducing noise, as zero is a relatively
neutral choice. However, this explanation is neither direct nor fully satisfying, so we aim to unveil a
more fundamental reason. Our analysis begins by examining the variation in the weight distribution
of all Wα in adaLN-Zero and adaLN-Mix 5, respectively, as training progresses.

AdaLN-Zero

AdaLN-Mix Target Distribution

∆H = 0.36

Distribution Shift

∆H
= −

0.8
0

Figure 5: An abstract illus-
tration of the entropy analysis
on distribution movement for
adaLN-Zero and adaLN-Mix.

As illustrated in Fig. 4, we record the distribution of the entire Wα

in 160, 10K, 50K, 200K, and 400K iterations, respectively, to ob-
serve the pattern of weight variation over time. At the start, as seen
at 160 iterations in Fig. 4 (a), adaLN-Zero exhibits a completely
vertical distribution with most values being zero, while adaLN-
Mix shows a completely horizontal distribution with a large span
of value compared to adaLN-Zero, forming a nearly orthogonal re-
lationship. As the training progresses, (e.g., from 160 to 400K),
the distribution of adaLN-Zero remains centered around zero, ex-
hibiting an increasing variance and a concomitant decrease in peak
amplitude. Concurrently, the distribution of adaLN-Mix, while ex-
panding peripherally, is also coalescing around zero, culminating
in an unimodal structure that is symmetrically centered on zero.
Though adaLN-Mix eventually overlaps with the distribution of
adaLN-Zero in Fig. 4 (e), the latter’s distribution is more compact,
with more values concentrated near zero.

Essentially, adaLN-Zero exhibits a more centralized initial parameter distribution, and morpholog-
ically, its initial distribution more closely approximates the distribution observed in Fig. 4 (e) than
does the adaLN-Mix. This could be the reason why adaLN-Zero converges faster and outperforms
adaLN-Mix significantly. From an entropy perspective, our calculations show that when adaLN-
Mix is transitioning to the target distribution, e.g., from 10K steps to 50K, entropy decreases by

5We use adaLN-Mix instead of adaLN-Step1 to eliminate the potential influence of the discrepancy in
update order of weights.
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Figure 6: Value distributions of WL
α in different blocks.

0.8, whereas adaLN-Zero leads to an increase in entropy. Typically, systems tend to evolve towards
higher entropy (the second law of thermodynamics). Therefore, adaLN-Zero is comparatively easier
to optimize and obtains better performance.

One might question, though we have globally analyzed all Wα in DiT, is it possible that the distri-
bution of Wα across different blocks could differ significantly from the global distribution, consid-
ering that zero-initialization is applied on a block-by-block basis? To investigate this, we examine
the value distributions of WL

α (L is block index) of DiT-XL/2 using adaLN-Zero after training for
just 10K iterations. As shown in Fig. 6, the distribution of WL

α in each block closely resembles the
pattern observed in Fig. 4 (b), indicating that the functions of WL

α across different block are likely
analogous. This finding also supports the rationale behind uniformly zero-initializing WL

α across
different blocks.

Remark. Intuitively speaking, our analysis should have concluded so far. However, we observe that
there are other zero-initialized modules in DiT. For the sake of completeness, we provide further

7
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Figure 7: Value distributions of the whole Wγ in DiT blocks during the training process.

analysis in the following for clarity. We also show value distributions of other non-zero-initialized
DiT modules in App. A.7 and zero convolution in ControlNet (Zhang et al., 2023) in App. A.8.

3.4 ANALYSIS ABOUT OTHER ZERO-INITIALIZED MODULES

Recall that in DiT blocks, Wγ and Wβ are zero-initialized in both adaLN-Zero and adaLN-Mix. In
addition to that, the FinalLayer module is also zero-initialized at the beginning, indicating that Wγf

,
Wβf

, and Wf are zero in both adaLN-Zero and adaLN-Mix. We want to investigate whether these
weights exhibit behavior similar to Wα.

Figure 8: Value distributions of Wγf
in FinalLayer during the training process.

Analysis about Wγ and Wβ . We present the distribution variations of the entire Wγ in DiT blocks
as training progresses in Fig. 7. It is observed that, regardless of whether it is adaLN-Zero or adaLN-
Mix, Wγ rapidly formulates a pattern similar to that of Wα in Fig. 4 at a very early stage. A similar
result is observed for Wβ as detailed in App. A.4. Furthermore, we also show the distribution of
WL

γ and WL
β in each DiT block in App. A.5. Basically, the distributions of WL

γ and WL
β in each

block share a similar pattern to their global ones as well as that of Wα. These results indicate that
WL

γ and WL
β may execute analogous functions in DiT blocks.

Analysis about Wγf
, Wβf

, and Wf . As training progresses, we illustrate the variations of value
distribution of Wγf

in Fig. 8, and that of Wβf
and Wf in App. A.6. We see that Wγf

, Wβf
, and Wf

exhibit different tendency. For example, Wγf
presents a bimodal distribution. These observations

suggest that they may not have a consistent update direction compared to Wγ and Wβ .
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Remark. By comparing the results in Sec. 3.3 and Sec. 3.4, we empirically demonstrate that, al-
though the same zero-initialization strategy is used, weight distributions in different modules may
also be discrepant. On the other hand, though weights Wα, Wγ , and Wβ in the conditioning mech-
anism are zero-initialized, after a certain number of training steps, they transition from zero distri-
butions to Gaussian-like distributions 6. This characteristics inspires us to directly initialize these
weights with a suitable Gaussian distribution to accelerate training, which we put in the next section
to verify.

4 ADALN-GAUSSIAN

Table 2: Results of different
std settings. 0: adaLN-Zero

Std FID IS

0 78.99 14.19

5e-4 80.68 13.93
8e-4 79.49 14.54
1e-3 76.21 15.01
2e-3 78.91 14.33
5e-3 79.54 14.33
5e-2 84.37 13.67

Our insight is that, as training progresses, the weight distribution
gradually transitions from zero to a Gaussian-like distribution. Thus,
we can expedite this distribution shift by directly initializing the
weights via a Gaussian distribution to potentially accelerate training.

To leverage Gaussian distribution to initialize Wα, Wγ , and Wβ , we
need to determine the appropriate standard deviation (std), with the
mean value defaulting to 0. Intuitively, we can determine the std
value by approximating the weight distribution at a specific moment
during the training of adaLN-Zero. Moreover, this moment should
be neither too late, as initializing Wα, Wγ , and Wβ at a later stage
may impart learned priors incompatible with vanilla weights, nor too
early, as there may be minimal difference from zero-initialization (In
in App. A.9, we give a detailed result analysis about different std choices in Gaussian initialization.).
Therefore, based on Fig. 4, we heuristically select and ablate several std values to uniformly initialize
Wα, Wγ , and Wβ and train each variant for 50K iterations for simplicity. The results are presented in
Tab. 2 where std = 1e−3 yields the best performance among all variants, verifying the effectiveness
of our idea. We denote this initialization method as adaLN-Gaussian. The pytorch code below is
simple with only one line replaced.

1 for ind, block in enumerate(self.blocks):
2 nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
3 nn. init. constant_(block. adaLN_modulation[-1].weight, 0)
4 nn.init.normal_(block.adaLN_modulation[-1].weight, std=0.001)

Additionally, we conduct an ablation in Tab. 3 where we apply Gaussian initialization only for
Wα

7. This is the same as adaLN-Step1 but adaLN-Step1 uses default initialization for Wα. Hence
we denote this variant as adaLN-Step1-Gaussian. Recall that adaLN-Step1 is remarkably infe-
rior to adaLN-Zero while adaLN-Step1-Gaussian here unexpectedly matches and even outperforms
adaLN-Zero. This supports our hypothesis that a good initialized position in the optimization space
is the key. It also indicates that zero initialization may not be the best choice.

Table 3: Ablation study for Wα. 0, 0,
0: adaLN-Zero

Std (Wα, Wγ , Wβ) FID IS

0, 0, 0 78.99 14.19
1e-3, 0, 0 78.62 14.42
1e-3, 1e-3, 1e-3 76.21 15.01

Though the distributions of Wα, Wγ , and Wβ all resem-
ble Gaussian distribution, in Fig. 4 (b), Fig. 7 (b), and
Fig. 11 (b) discrepancies in their shapes persist, e.g., bot-
tom width. Thus, it is more appropriate to select std for
each of them independently. We perform a grid search
and empirically find that std(8e−4, 1.2e−3, 8e−4) pro-
duces the best FID. We denote this initialization as adaLN-
Gaussian-v2 and include the search results of adaLN-
Gaussian-v2 in App. A.10 for clarity.

Longer training time. To verify the effectiveness of our initialization strategies, as shown in Tab. 4,
we train DiT-XL/2 with longer training steps including 400K and 800K on ImageNet1K 256× 256
w/wo CFG. One can see that adaLN-Gaussian outperform adaLN-Zero by a large margin, demon-

6This similarity may be influenced by the denoising task, which gradually removes Gaussian noise. As our
focus is not on the reasons behind these patterns, we leave this exploration as future work.

7We observe that Wα plays a critical role in adaLN-Zero compared to adaLN, with its initial value signif-
icantly impacting model performance (adaLN-Zero vs. adaLN-Step1). Thus, we primarily ablate Wα rather
than Wγ and Wβ .
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Model Initialization CFG Steps FID↓ sFID↓ IS↑ Precision↑ Recall↑

Longer training time:
DiT-XL/2 adaLN-Zero 1 400K 20.02 6.09 67.34 63.33 63.06
DiT-XL/2 adaLN-Gaussian 1 400K 17.86 6.06 73.07 64.51 62.64
DiT-XL/2 adaLN-Zero 1.5 400K 6.15 4.60 152.70 79.92 52.28
DiT-XL/2 adaLN-Gaussian 1.5 400K 5.28 4.62 164.62 80.75 52.65
DiT-XL/2 adaLN-Zero 1 800K 14.73 6.35 86.70 65.62 63.93
DiT-XL/2 adaLN-Gaussian 1 800K 13.14 6.11 92.98 66.50 63.92

Different DiT variants and larger image size:
DiT-B/2 adaLN-Zero 1 400K 42.72 8.29 33.28 49.02 62.80
DiT-B/2 adaLN-Gaussian 1 400K 42.55 8.13 33.82 49.05 63.30
DiT-L/2 adaLN-Zero 1 400K 24.40 6.47 57.47 60.14 63.21
DiT-L/2 adaLN-Gaussian 1 400K 23.05 6.39 60.49 61.44 62.27
DiT-L/4 adaLN-Zero 1 400K 45.71 9.26 32.00 46.61 60.71
DiT-L/4 adaLN-Gaussian 1 400K 44.11 9.06 33.13 47.51 61.42
DiT-XL/4512×512 adaLN-Zero 1 400K 35.21 8.00 42.42 65.87 62.70
DiT-XL/4512×512 adaLN-Gaussian 1 400K 34.68 7.86 42.75 65.95 61.90

Different DiT-based models:
LlamaVision-XL/2 adaLN-Zero 1 400K 21.66 6.61 65.66 60.78 63.78
LlamaVision-XL/2 adaLN-Gaussian 1 400K 20.26 6.20 68.82 62.06 63.90
U-DiT-L adaLN-Zero 1 200K 16.28 5.50 79.91 68.31 60.44
U-DiT-L adaLN-Gaussian 1 200K 15.56 5.53 82.70 68.72 60.40

Table 4: Comparison on longer training time, different DiT variants, larger image size, and more
DiT-based models. We additionally report sFID (Nash et al., 2021) and Precision/Recall (Kynkään-
niemi et al., 2019) as secondary metrics following DiT. CFG: Classifier-free guidance. For CFG, we
use DiT-XL/2’s best guidance value. We use ImageNet1K 256× 256 by default if not specified.

strating the superiority of our initialization strategies. We show more results in Fig. 1. We also show
the results of adaLN-Gaussian-v2 in App. A.10.

Generalization to different DiT variants and larger image size. To demonstrate the adaLN-
Gaussian is a general method, we conduct experiments on several commonly-used DiT variants
including DiT-B/2, DiT-L/2, and DiT-L/4. As shown in Tab. 4, we see that adaLN-Gaussian also
improves the performance of DiT-B/2, DiT-L/2, and DiT-L/4 though its parameter is set according
to DiT-XL/2 and may not be the best setting for these three variants. We further demonstrate the
generalization on ImageNet1K 512× 512. These results show the effectiveness of adaLN-Gaussian
and imply the great potential of our method after more precise case-by-case adjustments.

Generalization to other DiT-based models and datasets 8. Additionally, we further verify the
effectiveness of our method across different DiT-based models. As presented in Tab. 4, it is seen
that adaLN-Gaussian is also superior over adaLN-Zero for other DiT-based models including Lla-
maVision (Chu et al., 2024) and U-DiT (Tian et al., 2024), demonstrating the generalization of our
method. We also show the effectiveness of adaLN-Gaussian on more datasets including Tinyim-
agenet (Le & Yang, 2015), AFHQ (Choi et al., 2020), and CelebA-HQ (Karras et al., 2018) and
DiT-based SiT (Ma et al., 2024b) in App. A.12.

5 CONCLUSION

We study three key factors contributing to the performance discrepancy: an SE-like structure, a good
zero-initialized value, and a "gradual" update order of model weights. Moreover, our empirical ex-
periments suggest that a good zero-initialized value itself plays a more significant role among these
factors. Finally, inspired by the observed distribution variations in condition modulation weights,
we propose adaLN-Gaussian which uses Gaussian distributions to initialize condition modulations.
We conduct extensive experiments with DiT on ImageNet1K, demonstrating the effectiveness and
generalization of adaLN-Gaussian.

8To save GPU memory, we use the fast version of DiT Github code (https://github.com/
chuanyangjin/fast-DiT) featuring gradient checkpointing, mixed precision training, and pre-extracted
VAE features, all of which are employed in experiments of Tab. 4. Consequently, though we follow all the
training settings, the reported results may be slightly different from that of the original paper.
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A APPENDIX

A.1 COMPARISON ON INCEPTION SCORE

We also show the comparison on Inception Score (IS) in Fig. 9. We see that adaLN-Step1 outper-
forms adaLN but is inferior to adaLN-Zero in Fig. 9 (a), indicating again that adding scaling element
α is effective in improving model performance. Also, we observe that adaLN-Mix has a marginal
enhancement on adaLN-Step1, implying that the discrepancy in gradient update is not the key rea-
son for the large disparity between adaLN-zero and adaLN-Step1. At the same time, in Fig. 9 (b), in
the initial iterations when the discrepancy of gradient update happens, we do not see any significant
variation on IS, which also demonstrates that the influence of update discrepancy is not critical.
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Figure 9: Comparing adaLN-Zero with adaLN as well as different initialization strategies on Incep-
tion Score (IS). We use the largest model DiT-XL/2 for all the experiments above.

A.2 THE STRUCTURE OF SQUEEZE-AND-EXCITATION MODULE

Pool

Scale

Linear

Linear

ReLU
Main 
Path

Data flow

Figure 10: The
structure of SE
module.

In Fig. 10, we illustrate the structure of Squeeze-and-Excitation (SE) module.
We can see that SE module serves as a side pathway compared to the main
path.

A.3 GRADIENT DERIVATION OF A SIMPLIFIED DIT

To calculate loss, for simplicity, we only consider MSE loss given the target
noise ϵ sampled from N(0, I) and formulate L as L = 1

C

∑m
i=1

∑n
j=1(ϵ̄ij −

ϵij)
2, where C = m ∗ n and ϵij is the element in row i and column j. With

this formula, we can obtain ∂L
∂ϵ̄ij

= 2
C (ϵ̄ij − ϵij). Hence, we deliver a general

formula:

∂L
∂ϵ̄

=
2

C
(ϵ̄− ϵ) . (3)

Further, built on Eq. 3, we can also derive the gradient of Wf , Wffm, Watt,
and Wpat, i.e., ∂L

∂Wf
, ∂L
∂Wffm

, ∂L
∂Watt

, ∂L
∂Wpat

, respectively. Before we present
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these formulas, we first introduce a substitution to ease our calculation:

ϵ̄ = xf ∗Wf (4)
= {[(xm2

∗Wffm)⊙ α2 + xout1 ]⊙ (1 + γf ) + βf} ∗Wf (5)

=

{
[((((xm1

∗Watt)⊙ α1 + xp)⊙ (1 + γ2) + β2) ∗Wffm)⊙ α2

+ (xm1
∗Watt)⊙ α1 + xp]⊙ (1 + γf ) + βf

}
∗Wf (6)

=


[((((((x ∗Wpat)⊙ (1 + γ1) + β1) ∗Watt)⊙ α1 + (x ∗Wpat))

⊙ (1 + γ2) + β2) ∗Wffm)⊙ α2 + (((x ∗Wpat)⊙ (1 + γ1)

+ β1) ∗Watt)⊙ α1 + (x ∗Wpat)]⊙ (1 + γf ) + βf

 ∗Wf . (7)

With the substitution, we can easily derive ∂L
∂Wf

by using Eq. 4. To derive ∂L
∂Wffm

, we can use Eq. 5.

To derive ∂L
∂Watt

, we can use Eq. 6. Similarly, to derive ∂L
∂Wpat

, we can use Eq. 7. Thus, we calculate
the derivation with the help of Laue et al. 9 and present the formula of each below:

∂L
∂Wf

= x⊤
f ∗ ∂L

∂ϵ̄
∗ I⊤ = x⊤

f ∗ 2

C
(ϵ̄− ϵ) , (8)

∂L
∂Wffm

= x⊤
m2

∗ (( 2
C
(ϵ̄− ϵ) ∗W⊤

f )⊙ (1 + γf )⊙ α2) , (9)

∂L
∂Watt

= x⊤
m1

· (((T0 ⊙ α2) ·W⊤
ffm)⊙ (1 + γ2)⊙ α1) + x⊤

m1
· (T0 ⊙ α1) , (10)

where
T0 = (

2

C
(ϵ̄− ϵ) ∗W⊤

f )⊙ (1 + γf ) , (11)

and
∂L

∂Wpat
= x⊤ ·(((T2⊙α1)·W⊤

att)⊙(1+γ1))+x⊤ ·T2+x⊤ ·(((T1⊙α1)·W⊤
att)⊙(1+γ1))+x⊤ ·T1

(12)
where T1 is

T1 = (
2

C
(ϵ̄− ϵ) ∗W⊤

f )⊙ (1 + γf ) , (13)

T2 is
T2 = ((T1 ⊙ α2) ∗W⊤

ffm)⊙ (1 + γ2) . (14)

Besides these parameters directly involved in input calculations above (Wf , Wpat, Watt, and
Wffm), we need to figure out how γf , βf , γ2, β2, α2, γ1, β1, and α1 update as they also influence
the parameters’ gradients above as well as the output prediction. Hence, we give their corresponding
gradients, respectively (omitting the bias term for simplicity):

∂L
∂Wγf

= (c⊙ σ(c))⊤ ∗ (( 2
C
(ϵ̄− ϵ) ∗W⊤

f )⊙ xout2) , (15)

∂L
∂Wβf

= (c⊙ σ(c))⊤ ∗ 2

C
(ϵ̄− ϵ) ∗W⊤

f , (16)

∂L
∂Wα2

= (c⊙ σ(c))⊤ ∗ (T1 ⊙ xffm) , (17)

∂L
∂Wγ2

= (c⊙ σ(c))⊤ ∗ (((T1 ⊙ α2) ∗W⊤
ffm)⊙ xout1) , (18)

∂L
∂Wβ2

= (c⊙ σ(c))⊤ ∗ (T1 ⊙ α2) ∗W⊤
ffm , (19)

∂L
∂Wα1

= (c⊙ σ(c))⊤ ∗ (T2 ⊙ T3) + (c⊙ σ(c))⊤ ∗ (T1 ⊙ T3) , (20)

9https://www.matrixcalculus.org/
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Where T3

T3 = ((β1 + (x ∗Wpat)⊙ (1 + γ1)) ∗Watt) . (21)
∂L

∂Wγ1

= (c⊙σ(c))⊤ ∗(((T2⊙α1)∗W⊤
att)⊙xp)+(c⊙σ(c))⊤ ∗(((T1⊙α1)∗W⊤

att)⊙xp)) , (22)

and
∂L

∂Wβ1

= (c⊙ σ(c))⊤ ∗ (T2 ⊙ α1) ∗W⊤
att + (c⊙ σ(c))⊤ ∗ (T1 ⊙ α1) ∗W⊤

att , (23)

Where c is condition input and σ(·) is sigmoid function.

A.4 VALUE DISTRIBUTION OF THE WHOLE Wβ IN DIT BLOCKS

We present the value distributions of the whole Wβ of DiT-XL/2 using adaLN-Zero and adaLN-Mix
trained for 400K iterations in Fig. 11. Similar to Wγ , Wβ quickly formulates a pattern similar to
that of Wα in Fig. 4 at a very early stage regardless of whether it is adaLN-Zero or adaLN-Mix.

Figure 11: Value distributions of the whole Wβ in DiT blocks during the training process.

A.5 VALUE DISTRIBUTIONS OF WL
γ AND WL

β IN DIFFERENT BLOCKS

We also present the value distributions of WL
γ and WL

β in different blocks of DiT-XL/2 using adaLN-
Zero trained at a very early stage (for 10K iterations). Fig. 12 and Fig. 13 illustrate the results of WL

γ

and WL
β , respectively. One can see that, basically, the distributions of WL

γ and WL
β in each block

share a similar pattern to their global ones as well as that of Wα. Moreover, similar to WL
α , the peak

value and bottom width of WL
γ and WL

β vary across blocks and exhibit different std, reflecting the
update preference of each block. Built on this observation, this motivates us to initialize Wα, Wγ ,
and Wβ with a more sophisticated initialization strategy. More details are in App. A.11.
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Figure 12: Value distributions of WL
γ in different blocks.
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Figure 13: Value distributions of WL
β in different blocks.
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Figure 14: Value distributions of Wβf
in FinalLayer during the training process.

Figure 15: Value distributions of Wf in FinalLayer during the training process.

A.6 VALUE DISTRIBUTIONS OF Wβf
AND Wf

Table 5: A grid search of
std for Wβf

. 0: AdaLN-
Gaussian-v1

Std FID IS

0 76.21 15.01

2e-4 78.22 14.53
5e-4 82.05 13.78
1e-3 80.43 14.03
2e-3 77.45 14.74
3e-3 77.09 14.84
4e-3 78.47 14.39

Fig. 14 and Fig. 15 illustrate the variations of value distribution of
Wβf

and Wf under different training time. We can see that Wβf
and

Wf present completely different variation tendencies. Even though,
we also notice that Wβf

shares a similar pattern to Wα at a very early
stage regardless of whether it is adaLN-Zero or adaLN-Mix. This
inspires us to explore whether initializing Wβf

together with Wα,
Wγ , and Wβ could further accelerate training. Based on the setting
std(1e− 3, 1e− 3, 1e− 3) for Wα, Wγ , and Wβ , we perform a grid
search of std for Wβf

as shown in Tab. 5. It appears that initializing
Wβf

with a wide range of std values does not enhance the model’s
performance. In light of these results, we do not consider initializing
Wβf

with Gaussian and keep its original zero-initialization strategy
for all the experiments.
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Figure 16: Value distributions of Attention module including qkv and proj during training process.

Figure 17: Value distributions of Mlp module including fc1 and fc2 during training process.

A.7 VALUE DISTRIBUTIONS OF MORE DIT MODULES

We visualize the value distribution of more DiT modules including Attention and Mlp in DiT Block,
and PatchEmbed as shown in Fig. 16, Fig. 17, and Fig. 18, respectively. Though they are all ini-
tialized with Xavier uniform in DiT, the weight distributions in both Attention and MLP gradually
transition to a Gaussian-like distribution while PatchEmbed does not. We also visualize the value
distribution of LabelEmbedder and TimestepEmbedder in Fig. 19. We see that after normal ini-
tialization done in DiT, their weight distributions consistently show a Gaussian-like distribution.
Naturally, we can consider Gaussian initializations for these modules as well except PatchEmbed to
accelerate training. For example, we could uniformly use Gaussian initialization for Attention and
Mlp in DiT Block. We set the mean to 0 and use several choices for std such as 0.001, 0.01, 0.02,
0.03, and 0.04. We use DiT-XL-2 and train for 50K steps for simplicity. The results are shown in
Tab. 6. We see that the performance is inferior to the default initialization. Therefore, more precise
hyperparameter tuning may be needed for these modules to further improve the performance in the
future.

Std Default 0.001 0.01 0.02 0.03 0.04

FID 76.21 92.09 85.28 80.89 91.21 98.50

Table 6: Different Gaussian std initialization choices for Attention and Mlp in DiT Block.

A.8 VALUE DISTRIBUTIONS OF ZERO-CONVOLUTION IN CONTROLNET

Besides adaLN-Zero in DiT, we also consider a similar module in ControlNet (Zhang et al., 2023)
called zero convolution. In Fig. 20, we visualize the weight distributions of four widely-used Con-
trolNet variants including Canny, Depth, Pose, and Segmentation. Their distributions are still a
Gaussian-like distribution. Hence, is it also beneficial from using Gaussian distribution to initialize
these modules in ControlNet? Since it is not our main focus, we leave it as future work.

A.9 RESULT ANALYSIS ABOUT DIFFERENT STD CHOICES IN GAUSSIAN INITIALIZATION

Intuitively, since the weights of the conditional mechanisms we counted are Gaussian-like distribu-
tions, there should exist an optimal std hyperparameter when initializing these weights with Gaus-
sian, and naturally, the values on both sides of this hyperparameter are relatively unsuitable. To
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Figure 18: Value distributions of PatchEmbed during training process.

Figure 19: Value distributions of LabelEmbedder and TimestepEmbedder during training process.

some extent, the performance of Gaussian initialization with different std choices in Tab 2 which
exhibits a U-shaped trending also proves it. To be more rigorous, we analyze this U-shaped trending
by leveraging two representative settings, i.e., std = 0.0005 and std = 0.05, which the two ends of
this U-shaped trending.

We first illustrate their weight distributions of Wα in the conditioning mechanism and compare them
with that of adaLN-Zero and adaLN-Gaussian (std=0.001). The results are shown in Fig. 21. We
find that a large std std = 0.05 presents a relatively uncompact distribution and exhibits a significant
discrepancy in distribution shape compared to the rest settings. This result indicates that a large std
may be incompatible with other parameters, resulting in a slow speed of convergence and a poor
performance. Moreover, we consider this a step further. Theoretically, if we further increase the std
value, it would become close to the default initialization in adaLN-Step1 (xavier_uniform) while the
performance of adaLN-Step1 is also bad.

For a small std std=0.0005, it can be seen that the distribution of Wα is quite similar to that of adaLN-
Zero and adaLN-Gaussian (std = 0.001). However, there still exists a slight discrepancy. To make
this discrepancy clearer, we average the absolute values of the differences between each element in
Wα corresponding to std = 0.0005 and adaLN-Zero, and std = 0.0005 and adaLN-Gaussian. The
element-wise averaged results are 0.0121 and 0.0124, respectively. By comparing the results (0.0121
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Figure 20: Weight distributions of zero convolution in four ControlNet variants.

< 0.0124), it is shown that small std leads to weights relatively closer to that of zero-initialization
(adaLN-Zero). And, to some extent, the corresponding performance also proves it where std=0.0005
produces 80.68 for FID, closer to adaLN-Zero (78.99) compared to adaLN-Gaussian (76.21).

Figure 21: Value distributions of Wα with different std in Gaussian initialization.
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A.10 ADALN-GAUSSIAN-V2

Table 7: Results of independent std settings
for Wα, Wγ , Wβ . 0, 0, 0: adaLN-Zero

Std (Wα, Wγ , Wβ) FID IS

0, 0, 0 78.99 14.19
1e-3, 2e-3, 8e-4 78.22 14.37
1e-3, 1.2e-3, 8e-4 76.57 15.01
8e-4, 1.2e-3, 8e-4 76.12 14.90
8e-4, 1.2e-3, 1e-3 77.18 14.85
8e-4, 1e-3, 8e-4 80.31 14.23
8e-4, 1.4e-3, 8e-4 77.53 14.54
8e-4, 1.6e-3, 8e-4 78.24 14.55
8e-4, 1.6e-3, 4e-4 79.03 14.31

We begin by considering std(1e−3, 2e−3, 8e−4) 10,
restrict from 8e-4 to 2e-3 inspired by Tab. 2, and
perform a grid search in Tab. 7. It is observed that
std(8e − 4, 1.2e − 3, 8e − 4) produces the best FID.
We denote this initialization as adaLN-Gaussian-v2.

Based on adaLN-Gaussian-v2, we further explore a
more sophisticated block-wise initialization. This is
motivated by our observation that the peak value and
bottom width of WL

α , WL
γ , and WL

β varies across DiT
blocks in Fig. 6, Fig. 12, and Fig. 13, indicating that
different blocks may prefer different std. At our pre-
liminary attempt in App. A.11, we show that block-
wise initialization is inferior to the base setting in FID
but outperforms the base setting in IS. This highlights
the potential of block-wise initialization and requires more effort which we leave as future work.

Furthermore, we compare the performance of adaLN-Gaussian-v2 with adaLN-Zero and adaLN-
Gaussian under longer training time as shown in Tab 8. It is seen that adaLN-Gaussian-v2 also
outperforms adaLN-Zero, further verifying the effectiveness of our strategy of Gaussian initial-
ization. On the other hand, considering that adaLN-Gaussian achieves superior results to that of
adaLN-Gaussian-v2 and is easier to implement, we primarily use adaLN-Gaussian in Tab 4.

Model Initialization CFG Steps FID↓ sFID↓ IS↑ Precision↑ Recall↑

DiT-XL/2 adaLN-Zero 1 400K 20.02 6.09 67.34 63.33 63.06
DiT-XL/2 adaLN-Gaussian 1 400K 17.86 6.06 73.07 64.51 62.64
DiT-XL/2 adaLN-Gaussian-v2 1 400K 18.77 6.08 70.07 63.92 62.72

Table 8: Comparison among adaLN-Zero, adaLN-Gaussian, and adaLN-Gaussian-v2.

A.11 A PRELIMINARY EXPLORATION OF BLOCK-WISE INITIALIZATION
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Figure 22: Three polynomial functions
to fit the peak values of Wα, Wγ , and
Wβ in all blocks.

We dive into every block in DiT and find that there
also exist discrepancies in peak value among different
WL

α in Fig. 6. WL
γ and WL

β also hold in Fig. 12 and
Fig. 13. Generally, the greater the peak value is, the
smaller the std is, motivating us to design a more so-
phisticated block-wise initialization strategy. Specifi-
cally, we record the peak value in all blocks for WL

α ,
WL

γ , and WL
β , respectively, and use three heuristic

polynomial functions to fit these points as shown in
Fig. 22. For WL

α , we use 7th degree polynomial whose
coefficients are [−2.49635921e − 6, 1.24680129e −
4, 1.17149262e − 3, −1.70585560e − 1, 3.63484494,
−2.94971466e+1, 6.74700382e+1, 4.85897902e+2].
For WL

γ and WL
β , we use 5th degree polynomial. Their

coefficients are [−2.46024908e − 4, 2.39970674e − 2,
−8.67912602e−1, 1.45429227e+1, −1.08645122e+2,
4.11540316e+2] and [−1.21059796e−4, 1.09417700e−
2, −3.25623123e − 1, 4.15804173, −2.00345083e + 1,
4.20334676e+ 2], respectively. For WL

α in L−th block,
we use the following formula to calculate its std value:

10We empirically find that N(0, 1e− 3) closely matches the shape of the Wα distribution in Fig. 4 (b) (10K
iterations). Therefore, based on this observation, we begin our further refinement by estimating the std for Wγ

and Wβ with their corresponding distribution shapes in 10K iterations.
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σL
α = 0.0008/(Polyα(L)/449.9321) , (24)

where Polyα is the polynomial function for α, 0.0008 is the base std inherited from Tab. 7, and
449.9321 is the averaged peak value across WL

α in all blocks.

Table 9: Results of block-wise ini-
tialization. ✔: with block-wise

Std (Wα, Wγ , Wβ) FID IS

8e-4, 1.2e-3, 8e-4 76.12 14.90

✘, ✔, ✔ 79.28 14.35
✔, ✔, ✔ 76.63 14.96

Similarly, for WL
γ and WL

β , we use the following formulas to
calculate their std value, respectively:

σL
γ = 0.0012/(Polyγ(L)/444.8248) , (25)

σL
β = 0.0008/(Polyβ(L)/175.0044) . (26)

We first consider employing block-wise initialization for WL
γ

and WL
β since they are well fitted and use 0.0008 for WL

α by default. Afterward, we initialize them
all in a block-wise manner. As shown in Tab. 9, block-wise initialization is inferior to the base
setting in FID50K but outperforms the base setting in IS. We leave more exploration as future work.

A.12 MORE EXPERIMENTS ON EFFECTIVENESS

To further show the effectiveness of adaLN-Gaussian, we add more experiments on other datasets
including Tinyimagenet (Le & Yang, 2015), AFHQ (Choi et al., 2020), and CelebA-HQ (Karras
et al., 2018) using the best-performing DiT-XL/2 with 50K training steps while keeping all train-
ing settings. Moreover, we also use another DiT-based model SiT-XL/2 (Ma et al., 2024b) training
on ImageNet1K 256x256 for 50K to further show the effectiveness and generalization of adaLN-
Gaussian. We report all the FID results in Tab. 10. These results show that adaLN-Gaussian consis-
tently outperforms adaLN-Zero, demonstrating the effectiveness of our method.

Tiny ImageNet AFHQ CelebA-HQ ImageNet1K (SiT-XL/2)

adaLN-Zero 37.11 13.52 8.01 71.90
adaLN-Gaussian 36.07 12.58 7.54 67.15

Table 10: Comparisons between adaLN-Zero and adaLN-Gaussian on another three datasets includ-
ing Tinyimagenet, AFHQ and CelebA-HQ, and another DiT-based model SiT. We set CFG=1.

24


