Under review as a conference paper at ICLR 2025

UNVEILING THE SECRET OF ADALN-ZERO IN DIFFU-
SION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion transformer (DiT), a rapidly emerging architecture for image genera-
tion, has gained much attention. However, despite ongoing efforts to improve
its performance, the understanding of DiT remains superficial. In this work, we
delve into and investigate a critical conditioning mechanism within DiT, adaLN-
Zero, which achieves superior performance compared to adaLN. Our work studies
three potential elements driving this performance, including an SE-like structure,
zero-initialization, and a “gradual” update order, among which zero-initialization
is proved to be the most influential. Building on this insight, we heuristically
leverage Gaussian distributions to initialize each condition modulation, termed
adaLLN-Gaussian, leading to more stable and effective training. Extensive exper-
iments following DiT on ImageNet1K demonstrate the effectiveness and gener-
alization of adalLN-Gaussian, e.g., a notable improvement of 2.16% in FID score
over adalLN-Zero.

1 INTRODUCTION

Diffusion transformer (DiT) (Peebles & Xie, 2023) has recently emerged as a powerful architecture
for image synthesis, and has gained vast attention for its superior performance over UNet-based
diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022). As DiTs continues to drive
breakthroughs in image generation, there is a growing interest in pushing its performance boundaries
even further. Current efforts could be roughly categorized into two categories: 1) those incorporating
advanced techniques (Chu et al., 2024; Ma et al., 2024b; Lu et al., 2024; Tian et al., 2024; Zhu et al.,
2024), like VisionLLama (Chu et al., 2024), which introduces language model-based tricks such as
RoPE2D (Su et al., 2024) and SwishGLU (Shazeer, 2020), to boost the performance; and 2) those
leveraging stronger and more informative conditions (Esser et al., 2024; Chen et al., 2023; 2024a;
Ma et al., 2024a; Li et al., 2024), such as PixArt-a (Chen et al., 2023) that extends DiTs to the
text-to-image realm to enable more exquisite image generation.

Despite these advances, our understanding of the mechanisms driving DiT’s performance remains
superficial. One critical aspect that requires further investigation is adaLN-Zero, an important con-
ditioning mechanism that significantly enhances DiT’s performance compared to the original adaLN
(20.02 vs. 24.13 in FID). Fully understanding the underlying mechanism of adalLN-Zero is essential
and may provide deeper insights for further optimizing DiT, especially given the increasing preva-
lence of DiT in the field of diffusion generation (Karras et al., 2022; Dhariwal & Nichol, 2021;
Karras et al., 2024).

In this work, we uncover the mechanism behind adalLN-Zero’s performance boost, providing key
insights into DiT’s conditioning process. By studying the differences between adalLN-Zero and
adaLLN, our analysis studies three elements that collectively contribute to the performance enhance-
ment: 1) an Squeeze-and-Excitation-like (SE-like) structure (Hu et al., 2018), 2) zero-initialized
value (a well-optimized location in the optimization space), and 3) a “gradual” update order of
model weights. The SE-like structure arises from introducing scaling element « and the latter two
stem from adalLN-Zero’s zero-initialization strategy for . By empirical experiments, we find that
a good zero-initialized location itself plays a more significant role among the three elements. We
reveal that compared to other initialization, zero-initialization enables the weights that derive « to
morphologically more closely approximate the well-trained distribution which resembles a Gaus-



Under review as a conference paper at ICLR 2025

sian distribution. Interestingly, we find all the weights of condition modulations in DiT’s blocks
gradually form Gaussian-like distributions as training progresses.

Based on these findings, we propose to replace adalLN-Zero by initializing the weights of each
condition modulation with Gaussian distributions, which we call adaLN-Gaussian. To validate the
effectiveness and generalization of adaLN-Gaussian, we conduct comprehensive experiments fol-
lowing DiT on ImageNet1K (Russakovsky et al., 2015), testing across different training durations,
DiT variants, and DiT-based models. Our contributions can be summarized as follows:

o We study three key factors that collectively contribute to the superior performance of adalLN-Zero:
an SE-like structure, a good zero-initialized value, and a gradual weight update order. Among them,
we find that the a good zero-initialized value plays the most pivotal role.

e Based on the distribution variation of condition modulation weights, we heuristically leverage
Gaussian distributions to initialize each condition modulation, termed adaLLN-Gaussian.

e Extensive experiments following DiT on ImageNetlK across different settings demonstrate
adalLN-Gaussian’s effectiveness and generalization, showing a promising pathway for future gen-
erative models.

2 RELATED WORK

Transformer in Diffusion. With the extensively demonstrated scalability and remarkable capa-
bilities of transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020), they have recently been
introduced into diffusion generation (Chai et al., 2023; Gao et al., 2023; Mo et al., 2023; Feng
et al., 2023; 2024; Bao et al., 2023; Fei et al., 2024; Chen et al., 2024b; Levi et al., 2023; Crowson
et al., 2024). Gao et al. propose an asymmetric masking diffusion transformer to explicitly enhance
contextual relation learning among object semantic parts. DiffiT (Hatamizadeh et al., 2023) intro-
duces hybrid hierarchical vision transformers with a U-shaped encoder and decoder. More recently,
DiT (Peebles & Xie, 2023) replaces the widely-used UNet with transformers in diffusion generation,
empirically demonstrating excellent performance and promising scalability. Subsequently, more ef-
forts have been devoted to improving diffusion transformers. Following this research line, FiT (Lu
etal., 2024) and VisionLLama (Chu et al., 2024) introduce large language model (LLM) techniques,
such as RoPE2D (Su et al., 2024) and SwishGLU, to further enhance DiT. SiT (Ma et al., 2024b)
proposes a scalable interpolant framework built on the backbone of DiTs. SD-DiT (Zhu et al.,
2024) incorporates masking operations into DiT to accelerate model convergence and improve per-
formance. Pixart-o and Pixart-o (Chen et al., 2023; 2024a) extends DiT to text-to-image synthesis
and produces high-quality and exquisite images. U-DiT(Tian et al., 2024) argues that the effective-
ness of the U-Net inductive bias is meaningful but has been neglected in DiTs, reintroducing the
U-shaped architecture to enhance performance. Different from these efforts, our work is motivated
by elevating the understanding of DiT given its great prevalence in the generation realm, and focuses
primarily on a crucial conditioning mechanism called adaLLN-Zero.

Weight Initialization. In a neural network, weight initialization is a crucial operation as it directly
determines the initial position in the optimization space (Narkhede et al., 2022). Typically, good
initialization aids model training. Common methods include random initialization with (truncated)
normal or uniform distributions. Glorot & Bengio introduced a properly scaled uniform distribution
for initialization, known as “Xavier" initialization, in Jia et al. (2014). However, this strategy is
not suitable for the ReLU activation function (Nair & Hinton, 2010), as ReLU can map negative
values to zero, thereby altering the entire variance. To address this, He et al. proposed “Kaiming"
initialization, which assumes that half of the neurons are activated while the rest are zero. In the
deep learning era, the zero-initialization strategy can be traced back to Goyal et al. (2017), where
it was used to accelerate large-scale training potentially via nullifying certain output pathways to
implicitly adjust the propagation of backward signals in a supervised learning setting. More re-
cently, it has been widely adopted in diffusion generation (Ho et al., 2020; Rombach et al., 2022)
to ease optimization. In DiT (Peebles & Xie, 2023), the impact of zero-initialization is particularly
notable, leading to significant performance improvement. Motivated by this, we delve deeper into
the underlying reasons, hoping that our findings will inspire further research.



Under review as a conference paper at ICLR 2025

105

A —e— adalN-Zero H a
05 _\ -m- adalN-Stepl i Scale «+——— Scale
< 4
\ —&- adalN Seale, V2B ! t
85 !\ E ¢+ adalN-Mix Shift Scale, Y252 Scale, Y2 P2
\ —#— adalLN-Gaussian Shift Shift

4
75 30 ! : s
' ay ' ta

281 Scale Scale

651 Scale, Y1 B

Shift

26 + 4

!
scale, Y F1 Scale,

24 ? Shift Shift
221 i H H
B8 300K 350K 400K ' e -

FID50K

55 Y181

451

351

25

DiT Block . DiT Block n DiT Block "
15 (AdaLN)  SILU (adaln-siepr) OV (AdaLN-zero) oMY
0K 100K 200K 300K 400K t
Training Step Conditioning Conditioning Conditioning
Data Flow Default Init Zero Init
. . . e orr N E
Figure 1: Comparing adalLN-Zero with adal.N, " e

adaLLN-Step1, adaLLN-Mix, and adaLN-Gaussian on Figure 2: Illustration of adaLN, adalLN-
FID50K. We use the largest model DiT-XL/2 in all Stepl, and adal.N-Zero. The complete data
experiments on ImageNet1K 256 x 256. flow in a DiT block is shown in Alg. 1.

3 UNVEILING THE SECRET OF ADALN-ZERO IN DIT

To unveil the underlying mechanism, we perform a detailed comparison between adaLN-Zero and
adaLLN. In Fig. 2 we find that adalLN-Zero introduces two additional steps: first, it introduces scaling
element « (as denoted in DiT) for all transformer blocks; second, it zero-initializes corresponding
linear layers to output zero vectors for all «. Given these differences, one may naturally wonder:
how do these two steps contribute to the performance gap between adalLN-Zero and adalLN in DiT?

3.1 DECOUPLING ADALN-ZERO BY EVALUATING STEP ONE IN ISOLATION

To answer this question, we decouple adalLN-Zero by introducing only the first step and initial-
izing the linear layer’s weights by default. For convenience, we denote this intermediate state as
adaLLN-Step1 as shown in Fig. 2 (middle). Then we train the three variants following the same train-
ing setting in DiT (Peebles & Xie, 2023) on ImageNet1K for 400K iterations using the largest and
best-performing model, i.e., DiT-XL/2. Similarly, we measure FID (Heusel et al., 2017) by using
ADM’s TensorFlow evaluation suite (Dhariwal & Nichol, 2021) following DiT and compare the
performance of adaLN-Step1 with adaLN-Zero and adaLLN in Fig. 1. One can see that adalLN-Step1
outperforms adalLN even without zero-initializing the linear layer’s weights, indicating that barely
introducing scaling element « is beneficial as well. Similar results on Inception Score (IS) (Sal-
imans et al., 2016) could be found in App. A.l. Intuitively, adding scaling element @ enhances
adalLN’s capability of expression, making model optimization easier and more flexible. Upon closer
examination from overall structure, module function, and mathematical formula, we speculate that
this improvement might be due to a Squeeze-and-Excitation-like (SE-like) architecture (Hu et al.,
2018) !. Specifically, first, adaLN-Zero and SE module both serve as a side pathway compared to
the main path. Second, scaling element o and SE module play a similar role, both of which aim to
perform a channel-wise modulation operation. Third, formally, omitting the bias term, we illustrate
the formulation of « in DiT in Eq. 1 and SE module (Hu et al., 2018) in Eq. 2, respectively, with
slight adjustments to make the two formulas more comparable:

F(c) = (¢ ® Sigmoid(c)) *W, = (¢ ® (Sigmoid({ * ¢))) * W, (D
SILU
SE(c) = (ReLU(Wy # ¢)) * Wa = (1 ® (ReLU(Wy x ¢))) * Wy, )

where * is matrix multiplication, ® is Hadamard product, and 1 is a vector full of element 1. To
some extent, it is observed that F'(c) shares a similar formulation with SE(c). Given that SE(c)
has been extensively demonstrated to enable a general enhancement over various vision tasks (Hu
et al., 2018), this similarity may contribute to the improved performance of adaLLN-Stepl.

On the other hand, it is worth noting that while adaLN-Stepl1, i.e., the first step, does contribute
positively, there remains a large performance disparity between adalLN-Zero and adaLLN-Step1. This
suggests that the zero-initialization strategy, i.e., the second step, is equally necessary. We explore
this further in the next subsection for clarity.

'In App. A.2, we provide the structure of SE module to better illustrate the similarity.



Under review as a conference paper at ICLR 2025

Algorithm 1 Forward Process of DiT with One Block

Input: Noise disturbed latent z; A simplified DiT: PatchEmbed Wpq¢, matrix Wg,, WS, , and W, deriving
B1, 1, and oy for the first modulation, a linear layer W, replacing self-attention, matrix Wpg,, Ws,,
and W, deriving 2, v2, and a for the second modulation, a linear layer Wy s, replacing pointwise
feedforward, ¢, B, and Wy for the modulation and linear layer in FinalLayer, respectively;

Output: predicted €;

1: zp =x * Wpat # Reshape and patchify «

2:

3: #DiT Block

4 Ty =2p © (L+71)+ 81 # Modulation

5! Tatt = Tm, ¥ Wase  # Replace attention

6: Tout; =Tatt © a1 +Tp  # Skip connection
T: Tmy =Tout; © (L +y2) + B2 # Modulation
8 Tfrfm =Tmy, ¥ Wypm  # Replace FEM

9: Touts =Lffm © Q2 + Tout,  # Skip connection
10:

11: Tf =ZTout, © (L+5)+ B¢ # Modulation
12: e=xp * Wy

13: return €

3.2 HOW ZERO-INITIALIZATION IMPROVES THE PERFORMANCE

For a typical initialization strategy, e.g., kaiming initialization (He et al., 2015), its fundamental role
is to determine the initial location of the model in the optimization space. Particularly, in the case
of zero-initialization, besides this function, Goyal et al. suggest that it also has an additional role.
Specifically, it can implicitly adjust the model structure by nullifying certain output pathways at the
beginning of training, more importantly, causing the forward/backward signals to initially propa-
gate through the identity shortcut (He et al., 2016), thereby easing the optimization at the start of
training (Goyal et al., 2017). However, is this additional role really responsible for the performance
gap between adalLN-Zero and adalLN-Stepl? To answer this question, we first examine how this
additional role specifically impacts optimization through the lens of gradient update. Afterward,
we decouple this impact on gradient update during training to highlight the fundamental role of
zero-initialization.

3.2.1 ZERO-INITIALIZATION’S IMPACT ON GRADIENT UPDATE

Considering the complexity of the DiT model, we make three reliable modifications to simplify
our gradient derivation. First, we use only one DiT block, easing the computations of complex
chain rules. Second, we replace the multi-head self-attention and pointwise feedforward modules
within the DiT block with simple linear transformations, respectively. Though this replacement
alters the structure of the DiT block, from the view of backpropagation it does not affect the gradient
flow of other modules but itself which is not our emphasis. Therefore this adjustment could be
acceptable. Finally, for a linear layer, we omit the bias term in both the forward and backward passes.
These alterations significantly simplify our analysis without negatively impacting the conclusions.
We formally present the mathematical forward process in Alg. 1. Note that in DiT, LayerNorm
is learning-free, so we omit it from our formulation. The process of gradient derivation for each
module weight is provided in App. A.3.

To continue our analysis, reviewing the initialization strategy of DiT is necessary. adalLN and
adal.N-Zero both initialize the FinalLayer module to zero, indicating that v, (W), By Ws )
and W are all zero at the beginning. As shown in Fig. 2, adaLN and adaLLN-Zero also zeros out
weights of all modulations including W, Wg3,, W,,, and W3, in a block, rendering ~y1, 51, 72,
and (3 zero. A key difference from adaLLN is that adalLN-Zero not only introduces W, and W, to
produce scale parameters «; and oz (i.e., adaLN-Stepl) but also zero out W,,, and W, to make
a1 and s become zero. See Tab. 1 2nd row.

Therefore, in this first forward pass, Wy = 0 and output is zero (Eq. 4). Interestingly, in the first

backward pass, the gradient of Wy, i.e., (f—mff, is not zero while the gradients of the rest, i.e. oL

> OWegm?’
oL oL oL oL oL oL : : .
TWari> DWyar DW,, 2 OWs, DWay® W5y etc., are zero as their gradient formulas all include W




Under review as a conference paper at ICLR 2025

. : oL oL oL oL oL oL oL oL oL oL oL oL
Time/Gradient OW; OWipm OWart OWpar OW,, OWs, 0Way OW,, OWs, OWay W, 0Wg,

Initial weight 0 Wypm Wae  Woat 0 0 0 0 0 0 0 0
Istiteration v/ X X X X X X X X X X K
onditeration v/ X X v v v vV X X v X X
3rd iteration v/ v v v v v v v v v v v

Table 1: Gradient of different weights during training. The first row is the state of parameters’
initial weight. 0 means that the weight is zero. v/ means that the gradient is not zero and the weight
effectively updates while Xmeans the gradient is still zero and the weight does not update.

term and Wy = 0. Hence, only W} is updated while the rest weights are kept. So how about
the next? In the second backward pass, though W is not zero, the zero-initialized o; and oy

oL oL oL oL oL oL .
due to adalLN-zero cause TW, o ? OWers? OWo,? DWsy? DWog? and W, to remain zero. How

about the third iteration? To better illustrate the gradient variation of involved weights, we show
the gradient of all weights in the first several iterations in Tab. 1. One can see that all weights do
not update together as expected but gradually update. Specifically, in the 1st iteration, only Wy
updates. In the 2nd iteration, only Wy, Wyai, W, Ws,, Wa,, and W, update, which is what
zero-initialization brings to the optimization update. In other words, zero-initialization introduces
an additional “gradual” update in the initial stage of optimization compared to adalLN-Step1.

Remark. 1t is worth noting that although our derivation is based on a simplified version of DiT, we
corroborate that this update order aligns with that of original DiT variants in which for a typical DiT
model (adalLN-Zero), W update first, subsequently, W, W, . Wps I and all W, ? can update,
and finally all parameters start to update. This verification demonstrates that our simplification is
reasonable and our derivation is right.

3.2.2 DECOUPLING THE IMPACT OF ZERO-INITIALIZATION

Based on Sec. 3.2.1, we know that beyond the difference of initial position in the optimization
space, the additional distinction between adalLN-Zero and adaLLN-Step1 lies in the second iteration
of gradient optimization, where adaLN-Zero preferentially optimizes Wy, Wye:, W, . Wy I and
all W,, * while adaLN-Step1 optimizes all weights. Considering the performance disparity between
adalLN-Zero and adaLLN-Stepl, is this update discrepancy crucial for enhancing model performance?
or is it just the zero-initialized position in optimization space that contributes more?

Intuitively, if this update discrepancy is critical, we would see 313.0

—e— adalLN-Zero

a significant performance variation between adalLN-Zero and -=- adalN-Stepl
. . o e . . . . . —-- adalN

adaLLN-Stepl within the initial few iterations since this dis- 3128

crepancy only occurs during the second iteration #. Thus, A

3126 o

we evaluate model performance during the early iterations, as
shown in Fig. 3. The results indicate minimal performance
fluctuation between adalLLN-Zero and adaLLN-Step1 during the
first 160 iterations, suggesting that the discrepancy in update
order may not be as critical as initially expected. Similar re-
sults can be found for the Inception Score (IS) in App. A.1.

FID50K

312.4

312.2

312.0
1 2 4 8 20 160

To formally verify our hypothesis, we design an ingenious ex- Training Step

periment to decouple the impact of zero-initialization on gradi- Figure 3: Performance of different
ent update. Specifically, considering that the additional effect Vvariants in the initial stage.

on the gradient cannot be avoided when zeroing out W, we

adopt the initialization of adaLLN-Step1 but enforce the update order of adalLN-Zero simultaneously.

We refer to this hybrid strategy as adaLN-Mix and compare its performance with adalLN-Zero and

2For brevity, we use W, to denote all W,,, and Wy, in DiT’s blocks. W, and Wj are the same.

3For adaLN-Step1 (as well as adaLN), the model begins updating all weights after the first iteration, unlike
typical initialization strategies where all weights are updated from the very beginning. We will explore the
impact of this difference in future work.

*In our view, if the discrepancy in gradient updates is crucial, it can significantly affect performance in the
short term. And as the update period extends, the impact of this discrepancy diminishes.



Under review as a conference paper at ICLR 2025

Value Distributions of W_{alpha}

60007 = adalN-Zero-160 = adalN-Zero-10K = adaLN-Zero-50K

adaLN-Mix-160 400 W adalN-Mix-10K ® adaLN-Mix-50K

4000 -

|
300 ‘
5000 - ‘

3000 - (b) (c)

Density

= adalN-Zero-200K 14
™ adaLN-Mix-200K

= adalN-Zero-400K
adaLN-Mix-400K

2000

10.0 Il
i °
1000 4 75 Il

-0.03  -0.02  -0.01 0.00 0.01 0.02 0.03 06 04 02 00 02 0.4 0.6 -1.0 -05 0.0 0.5 10

(a) (d) (e)

Figure 4: Value distributions of all W,, during the training process. AdalLLN-Zero and adaLN-Mix
are initialization strategies and 160, 10K, and 50K are timestamps.

adaLLN-Step1 in Fig. 1. It is seen that while adalLN-Mix further enhances the performance of adalLN-
Stepl, it still lags significantly behind adaLLN-Zero. This first indicates that the update order resulting
from zero-initialization does contribute independently to performance. However, this contribution is
not the primary reason for the substantial performance improvement seen in adaLN-Zero. In other
words, it is the zero-initialized location that accounts for the remarkable performance difference
between adaLN-Zero and adaLN-Mix. Similar results on Inception Score (IS) could be found in
App. A.1. Why a zero-initialized location is such important, we put further exploration in the next
subsection for clarity.

3.3 WHY A ZERO-INITIALIZED LOCATION WINS?

A simple answer might be that zero-initialization avoids introducing noise, as zero is a relatively
neutral choice. However, this explanation is neither direct nor fully satisfying, so we aim to unveil a
more fundamental reason. Our analysis begins by examining the variation in the weight distribution
of all W, in adaLLN-Zero and adalLN-Mix °, respectively, as training progresses.

As illustrated in Fig. 4, we record the distribution of the entire W, AdaLN-Zero Distribution Shift
in 160, 10K, 50K, 200K, and 400K iterations, respectively, to ob- | - >
serve the pattern of weight variation over time. At the start, as seen

at 160 iterations in Fig. 4 (a), adaLN-Zero exhibits a completely |77 dty_
vertical distribution with most values being zero, while adal.N- |
Mix shows a completely horizontal distribution with a large span
of value compared to adalLN-Zero, forming a nearly orthogonal re- RN
lationship. As the training progresses, (e.g., from 160 to 400K), ~ == g
the distribution of adalLN-Zero remains centered around zero, ex-
hibiting an increasing variance and a concomitant decrease in peak
amplitude. Concurrently, the distribution of adaLN-Mix, while ex-
panding peripherally, is also coalescing around zero, culminating . o0 o the entropy analysis
in an unimodal structure that is symmetrically centered on zero. . distribution movement for
Though adalLN-Mix eventually overlaps with the distribution of 3.1 N_-Zero and adal.N-Mix.
adaLLN-Zero in Fig. 4 (e), the latter’s distribution is more compact,

with more values concentrated near zero.

AdaLN-Mix Target Distribution

Figure 5: An abstract illus-

Essentially, adalLN-Zero exhibits a more centralized initial parameter distribution, and morpholog-
ically, its initial distribution more closely approximates the distribution observed in Fig. 4 (e) than
does the adaLN-Mix. This could be the reason why adalLN-Zero converges faster and outperforms
adaLN-Mix significantly. From an entropy perspective, our calculations show that when adalLN-
Mix is transitioning to the target distribution, e.g., from 10K steps to 50K, entropy decreases by

SWe use adaLN-Mix instead of adaLN-Stepl to eliminate the potential influence of the discrepancy in
update order of weights.



Under review as a conference paper at ICLR 2025

Value Distribution of WY in Different Blocks

] i 500 ]
500 ]\ “ 500 “ 500
] 400 -
400 400 400
ol
& 300+ 300 4 300 300
g |
& 2001 II 200 4 .I 200 II 200
100 100 1 100 100
—0.010 -0.005 0.000 0.005 0.010 -0.010 —0.005 0.000 0005 0010 —0.010-0.0050.000 0.005 0.010 0.015 -0.02 -0.01 000 001
Block 0 Block 1 Block 2 Block 3
300 400
300 - 300 4
300
2z 200
& 200 4 200 4
c
S 200
[a} 100
100 100 100
o o 0 0
—0.03-0.02-0.01 0.00 0.01 002 003 004 -0.02 000 0.02 004  -004  -0.02 0.00 002 004 -0.02 000 002 004
Block 4 Block 5 Block 6 Block 7
400
300 4 300 300
300 4
ol
a 200 4 200 200
C 2004
[
[a}
100 1 100 100 100
0 o 0 0
-0.02 0.00 002 0.04 -0.02 0.00 002 -0.02 0.00 0.02 004 —0.02 —0.01 000 001 002 003
Block 8 Block 9 Block 10 Block 11
300 300 400
300
- 300
£ 200 200
@ 200 4
@ 200 200
8
100 100
100 100
o o 0 0
—0.03 —0.02 -0.01 000 00l 002 0.03 —0.02 -0.01 000 00l 002 —0.02 -0.01 000 001 002 003 -0.01 0.00 001
Block 12 Block 13 Block 14 Block 15
300
300 4 300 300
ol
D 200 4 200 1 200 200
[
[a}
100 100 4 100 100
0 o 0 0
—0.01 0.00 001 -0.02-0.01 0.00 0.01 002 0.03 -002 -001 000 001 002 —-0.02 -0.01 000 001 002
Block 16 Block 17 Block 18 Block 19
400 00
300 4 400
> 0 e 300
G 200 200 ]
5 200 200
© 1001
100 100 100
0 o 0 0
—-001 000 001 002 —-0.02 -0.01 000 001 002 -0.01 0.00 0.01 —-0.02 -0.01 000 00l 002
Block 20 Block 21 Block 22 Block 23
600
500 600 (" ‘
600
400 4
2z 400 4 200 ﬂ
& 300 - 400
& 200 Il
200 200 200
100 II
o 0 0
-0.02 -0.01 000 001 002 -002 -001 000 001 002 -0.02 —-0.01 000 001 002 —-0.02 -0.01 000 001
Block 24 Block 25 Block 26 Block 27

Figure 6: Value distributions of W in different blocks.

0.8, whereas adalLN-Zero leads to an increase in entropy. Typically, systems tend to evolve towards
higher entropy (the second law of thermodynamics). Therefore, adal.LN-Zero is comparatively easier
to optimize and obtains better performance.

One might question, though we have globally analyzed all W, in DiT, is it possible that the distri-
bution of W, across different blocks could differ significantly from the global distribution, consid-
ering that zero-initialization is applied on a block-by-block basis? To investigate this, we examine
the value distributions of WX (L is block index) of DiT-XL/2 using adalLN-Zero after training for
just 10K iterations. As shown in Fig. 6, the distribution of WX in each block closely resembles the
pattern observed in Fig. 4 (b), indicating that the functions of W across different block are likely
analogous. This finding also supports the rationale behind uniformly zero-initializing WX across
different blocks.

Remark. Intuitively speaking, our analysis should have concluded so far. However, we observe that
there are other zero-initialized modules in DiT. For the sake of completeness, we provide further



Under review as a conference paper at ICLR 2025

Value Distributions of W_{gamma}

175 »
II = adalN-Zero-10K | . adalN-Zero-50K
1

W adalN-Mix-10K 304 W adalN-Mix-50K

mmm adalN-Zero-160

50000 e adalN-Mix-160 150

40000

30000 ol ‘l ol ‘l

Density

14 | s adalN-Zero-200K
e adalN-Mix-200K

= adalN-Zero-400K

“ = adalN-Mix-400K
20000

12 II s l\

10 II Il
6

6 H | ﬂ

.

i 8

2

ol . JL JL

-0.00010 —0.00005 0.00000 0.00005 0.00010 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.0 -0.5 0.0 0.5 10 15
@ ) ©

Density
3

10000

Figure 7: Value distributions of the whole W, in DiT blocks during the training process.

analysis in the following for clarity. We also show value distributions of other non-zero-initialized
DiT modules in App. A.7 and zero convolution in ControlNet (Zhang et al., 2023) in App. A.8.

3.4 ANALYSIS ABOUT OTHER ZERO-INITIALIZED MODULES

Recall that in DiT blocks, W, and W are zero-initialized in both adalLN-Zero and adaLN-Mix. In
addition to that, the FinalLayer module is also zero-initialized at the beginning, indicating that W, .,
Wps s and W} are zero in both adaLLN-Zero and adaLN-Mix. We want to investigate whether these
weights exhibit behavior similar to W,,.

Value Distributions of W_{gamma} in Final Layer

100
=== adalN-Zero-160 === adalN-Zero-10K yy ™= adalN-Zero50K
70000 mm adalN-Mix-160 ‘ ‘- adaLN-Mix-10K 17.5 i ‘ e adalN-Mix-50K
80 !
150
125
60000 z
a 100
@
e 75
50000 50
20
25
2 40000 0- 00~
£ -0.020-0.015-0.010-0,005 0.000 0.005 0.010 0.015 0.020 -0.10 0.10
g
e 8
‘ m adalN-Zero-200K s j W adalN-Zero-400K
30000 7 b = adalN-Mix-200K e adalN-Mix-400K
. | T ;
20000 5.5 4
‘@
g 3
o]
3
[ z
2 N
1 1
~0.000160.000075.000050.00002500000®.000028.000051.000075 -03 -02 -01 00 01 02 03 04 -03 -02 -01 00 01 02 03
(a) (d) (e)

Figure 8: Value distributions of W., . in FinalLayer during the training process.

Analysis about W., and W . We present the distribution variations of the entire W, in DiT blocks
as training progresses in Fig. 7. It is observed that, regardless of whether it is adalLN-Zero or adalLN-
Mix, W, rapidly formulates a pattern similar to that of WW,, in Fig. 4 at a very early stage. A similar
result is observed for Wy as detailed in App. A.4. Furthermore, we also show the distribution of
W and W} in each DiT block in App. A.5. Basically, the distributions of W." and W in each
block share a similar pattern to their global ones as well as that of . These results indicate that
WA/L and Wé may execute analogous functions in DiT blocks.

Analysis about W, Ws,, and Wy. As training progresses, we illustrate the variations of value
distribution of W, , in Fig. 8, and that of W, and Wy in App. A.6. We see that W, ., W, and Wy
exhibit different tendency. For example, W, + presents a bimodal distribution. These observations
suggest that they may not have a consistent update direction compared to ¥, and Wjg.



Under review as a conference paper at ICLR 2025

Remark. By comparing the results in Sec. 3.3 and Sec. 3.4, we empirically demonstrate that, al-
though the same zero-initialization strategy is used, weight distributions in different modules may
also be discrepant. On the other hand, though weights W, W.,, and W3 in the conditioning mech-
anism are zero-initialized, after a certain number of training steps, they transition from zero distri-
butions to Gaussian-like distributions ©. This characteristics inspires us to directly initialize these
weights with a suitable Gaussian distribution to accelerate training, which we put in the next section
to verify.

4 ADALN-GAUSSIAN

Our insight is that, as training progresses, the weight distribution Table 2: Results of different
gradually transitions from zero to a Gaussian-like distribution. Thus, std settings. 0: adalLN-Zero
we can expedite this distribution shift by directly initializing the

weights via a Gaussian distribution to potentially accelerate training. Std FID IS

To leverage Gaussian distribution to initialize W, W, and W3, we 0 7899  14.19
need to determine the appropriate standard deviation (std), with the 5e-4  80.68  13.93
mean value defaulting to 0. Intuitively, we can determine the std 8e-4  79.49 14.54
value by approximating the weight distribution at a specific moment le-3 7621  15.01

during the training of adaLLN-Zero. Moreover, this moment should 2e-3 7891 1433

be neither too late, as initializing W, W.,, and Wj at a later stage 5e-3 79.54 14.33
may impart learned priors incompatible with vanilla weights, nor too Se2 8437 13.67
early, as there may be minimal difference from zero-initialization (In

in App. A.9, we give a detailed result analysis about different std choices in Gaussian initialization.).
Therefore, based on Fig. 4, we heuristically select and ablate several std values to uniformly initialize
Wa, W, and Wy and train each variant for 50K iterations for simplicity. The results are presented in
Tab. 2 where std = 1e—3 yields the best performance among all variants, verifying the effectiveness
of our idea. We denote this initialization method as adalLN-Gaussian. The pytorch code below is
simple with only one line replaced.

for ind, block in enumerate (self.blocks):
nn.init.constant_ (block.adalLN_modulation[-1].bias, 0)

= = — = s — = 5
nn.init.normal_ (block.adalLN_modulation[-1].weight, std=0.001)

Additionally, we conduct an ablation in Tab. 3 where we apply Gaussian initialization only for
W, ”. This is the same as adaLLN-Step1 but adaLLN-Step1 uses default initialization for W,,. Hence
we denote this variant as adaLN-Stepl-Gaussian. Recall that adaL.N-Stepl is remarkably infe-
rior to adalLLN-Zero while adalLN-Step1-Gaussian here unexpectedly matches and even outperforms
adaLLN-Zero. This supports our hypothesis that a good initialized position in the optimization space
is the key. It also indicates that zero initialization may not be the best choice.

Though the distributions of W, W, and Wj all resem- Table 3: Ablation study for W,. 0, 0,
ble Gaussian distribution, in Fig. 4 (b), Fig. 7 (b), and 0: adaLN-Zero
Fig. 11 (b) discrepancies in their shapes persist, e.g., bot-

tom width. Thus, it is more appropriate to select std for ~ Std (Wa, W, Wg) FID IS

each of them independently. We perform a grid search 0,0,0 7899  14.19
and empirically find that std(8¢ —4, 1.2e — 3, 8¢ — 4) pro- le-3,0,0 78.62  14.42
duces the best FID. We denote this initialization as adal.N- le-3, le-3, le-3 76.21 15.01

Gaussian-v2 and include the search results of adalLN-
Gaussian-v2 in App. A.10 for clarity.

Longer training time. To verify the effectiveness of our initialization strategies, as shown in Tab. 4,
we train DiT-XL/2 with longer training steps including 400K and 800K on ImageNet1K 256 x 256
w/wo CFG. One can see that adalLN-Gaussian outperform adalLN-Zero by a large margin, demon-

SThis similarity may be influenced by the denoising task, which gradually removes Gaussian noise. As our
focus is not on the reasons behind these patterns, we leave this exploration as future work.

"We observe that T, plays a critical role in adaLN-Zero compared to adaLN, with its initial value signif-
icantly impacting model performance (adaLN-Zero vs. adaLN-Stepl). Thus, we primarily ablate W, rather
than W, and Wp.



Under review as a conference paper at ICLR 2025

Model Initialization CFG Steps FID| sFID] ISt  PrecisionT Recallt
Longer training time:

DiT-XL/2 adalLLN-Zero 1 400K 20.02 6.09 67.34 63.33 63.06
DiT-XL/2 adaLLN-Gaussian 1 400K 17.86 6.06 73.07 64.51 62.64
DiT-XL/2 adalLN-Zero 1.5 400K 6.15 4.60 152.70 79.92 52.28
DiT-XL/2 adaLN-Gaussian 1.5 400K 5.28 4.62 164.62 80.75 52.65
DiT-XL/2 adalLLN-Zero 1 800K 14.73 6.35 86.70 65.62 63.93
DiT-XL/2 adaLN-Gaussian 1 800K 13.14 6.11 9298 66.50 63.92

Different DiT variants and larger image size:

DiT-B/2 adalLN-Zero 1 400K 42.72 829 3328 49.02 62.80
DiT-B/2 adaLN-Gaussian 1 400K 42.55 8.13 33.82 49.05 63.30
DiT-L/2 adalLN-Zero 1 400K 2440 647 5747 60.14 63.21
DiT-L/2 adaLN-Gaussian 1 400K 23.05 6.39 60.49 61.44 62.27
DiT-L/4 adalLN-Zero 1 400K 4571 9.26 32.00 46.61 60.71
DiT-L/4 adaLN-Gaussian 1 400K 44.11 9.06 33.13 47.51 61.42
DiT-XL/4512x512  adaLN-Zero 1 400K 35.21 8.00 4242 65.87 62.70
DiT-XL/4512x512  adaLN-Gaussian 1 400K 34.68 7.86 42.75 65.95 61.90

Different DiT-based models:

LlamaVision-XL/2 adalLN-Zero 1 400K 21.66 6.61 65.66 60.78 63.78
LlamaVision-XL/2 adalLN-Gaussian 1 400K 20.26 6.20 68.82 62.06 63.90
U-DiT-L adalLN-Zero 1 200K 16.28 5.50 79091 68.31 60.44
U-DiT-L adaLLN-Gaussian 1 200K 15.56 5.53 82.70 68.72 60.40

Table 4: Comparison on longer training time, different DiT variants, larger image size, and more
DiT-based models. We additionally report sSFID (Nash et al., 2021) and Precision/Recall (Kynkiin-
niemi et al., 2019) as secondary metrics following DiT. CFG: Classifier-free guidance. For CFG, we
use DiT-XL/2’s best guidance value. We use ImageNet1K 256 x 256 by default if not specified.

strating the superiority of our initialization strategies. We show more results in Fig. 1. We also show
the results of adalLN-Gaussian-v2 in App. A.10.

Generalization to different DiT variants and larger image size. To demonstrate the adalLN-
Gaussian is a general method, we conduct experiments on several commonly-used DiT variants
including DiT-B/2, DiT-L/2, and DiT-L/4. As shown in Tab. 4, we see that adaLLN-Gaussian also
improves the performance of DiT-B/2, DiT-L/2, and DiT-L/4 though its parameter is set according
to DiT-XL/2 and may not be the best setting for these three variants. We further demonstrate the
generalization on ImageNet1K 512 x 512. These results show the effectiveness of adaLN-Gaussian
and imply the great potential of our method after more precise case-by-case adjustments.

Generalization to other DiT-based models and datasets ®. Additionally, we further verify the
effectiveness of our method across different DiT-based models. As presented in Tab. 4, it is seen
that adalLN-Gaussian is also superior over adalLN-Zero for other DiT-based models including Lla-
maVision (Chu et al., 2024) and U-DiT (Tian et al., 2024), demonstrating the generalization of our
method. We also show the effectiveness of adalLN-Gaussian on more datasets including Tinyim-
agenet (Le & Yang, 2015), AFHQ (Choi et al., 2020), and CelebA-HQ (Karras et al., 2018) and
DiT-based SiT (Ma et al., 2024b) in App. A.12.

5 CONCLUSION

We study three key factors contributing to the performance discrepancy: an SE-like structure, a good
zero-initialized value, and a "gradual" update order of model weights. Moreover, our empirical ex-
periments suggest that a good zero-initialized value itself plays a more significant role among these
factors. Finally, inspired by the observed distribution variations in condition modulation weights,
we propose adaL.N-Gaussian which uses Gaussian distributions to initialize condition modulations.
We conduct extensive experiments with DiT on ImageNet1K, demonstrating the effectiveness and
generalization of adaLLN-Gaussian.

8To save GPU memory, we use the fast version of DiT Github code (https://github.com/
chuanyangjin/fast-DiT) featuring gradient checkpointing, mixed precision training, and pre-extracted
VAE features, all of which are employed in experiments of Tab. 4. Consequently, though we follow all the
training settings, the reported results may be slightly different from that of the original paper.

10


https://github.com/chuanyangjin/fast-DiT
https://github.com/chuanyangjin/fast-DiT

Under review as a conference paper at ICLR 2025

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669-22679, 2023.

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model
for layout generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18349-18358, 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-\sigma: Weak-to-strong training of diffusion trans-
former for 4k text-to-image generation. arXiv preprint arXiv:2403.04692, 2024a.

Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping
Luo, Tao Xiang, and Juan-Manuel Perez-Rua. Gentron: Diffusion transformers for image and
video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6441-6451, 2024b.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188-8197, 2020.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama backbone
for vision tasks. In European Conference on Computer Vision, volume 3, 2024.

Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z
Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
diffusion transformers. In Forty-first International Conference on Machine Learning, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
transformers to 16 billion parameters. arXiv preprint arXiv:2407.11633, 2024.

Aosong Feng, Irene Li, Yuang Jiang, and Rex Ying. Diffuser: efficient transformers with multi-
hop attention diffusion for long sequences. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 12772-12780, 2023.

Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
bilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11979-11987, 2024.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 23164-23173, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256. IMLR Workshop and Conference Proceedings, 2010.

11



Under review as a conference paper at ICLR 2025

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. arXiv preprint arXiv:2312.02139, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 675-678,
2014.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174-24184, 2024.

Tuomas Kynkddnniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 2019.

Soren Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order derivatives of
matrix and tensor expressions. Advances in neural information processing systems, 31, 2018.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez. DIt: Conditioned layout generation
with joint discrete-continuous diffusion layout transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2106-2115, 2023.

Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
diffusion transformer with fine-grained chinese understanding. arXiv preprint arXiv:2405.08748,
2024.

Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit:
Flexible vision transformer for diffusion model. arXiv preprint arXiv:2402.12376, 2024.

12



Under review as a conference paper at ICLR 2025

Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng Li, and Yu Liu. Exploring the role of large
language models in prompt encoding for diffusion models. arXiv preprint arXiv:2406.11831,
2024a.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024b.

Shentong Mo, Enze Xie, Ruihang Chu, Lanqing Hong, Matthias Niessner, and Zhenguo Li. Dit-3d:
Exploring plain diffusion transformers for 3d shape generation. Advances in neural information
processing systems, 36:67960-67971, 2023.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review on weight initialization
strategies for neural networks. Artificial intelligence review, pp. 291-322, 2022.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter Battaglia. Generating images with sparse
representations. In International Conference on Machine Learning, pp. 7958-7968. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), pp. 211-252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu, and Yunhe Wang. U-dits: Downsample
tokens in u-shaped diffusion transformers. arXiv preprint arXiv:2405.02730, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836-3847, 2023.

Rui Zhu, Yingwei Pan, Yehao Li, Ting Yao, Zhenglong Sun, Tao Mei, and Chang Wen Chen. Sd-dit:
Unleashing the power of self-supervised discrimination in diffusion transformer. arXiv preprint
arXiv:2403.17004, 2024.

13



Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 COMPARISON ON INCEPTION SCORE

We also show the comparison on Inception Score (IS) in Fig. 9. We see that adaLLN-Step1 outper-
forms adaLLN but is inferior to adaLN-Zero in Fig. 9 (a), indicating again that adding scaling element
« is effective in improving model performance. Also, we observe that adaLN-Mix has a marginal
enhancement on adaLN-Step1, implying that the discrepancy in gradient update is not the key rea-
son for the large disparity between adalLN-zero and adaLLN-Step1. At the same time, in Fig. 9 (b), in
the initial iterations when the discrepancy of gradient update happens, we do not see any significant
variation on IS, which also demonstrates that the influence of update discrepancy is not critical.

70 1.2200
—e— adalLN-Zero —e— adalLN-Zero
—®- adalN-Stepl 1.2175 4 —®- adalN-Stepl
601 —a:-- adalN gy.t —a- adalN
-4+ adalLN-Mix "/_ 121504 o . . . . —e
g 507 g
o O 1.2125-4
(9] (9]
0} 0}
§ 401 § 1.2100
- +-
o o
E 304 E 1.20754
1.2050 4
204
1.2025 1
10 1
y y y y 1.2000 +— T T T y T
0 100K 200K 300K 400K 1 2 4 8 20 160
Training Step Training Step
(a) (b)

Figure 9: Comparing adalLN-Zero with adaLLN as well as different initialization strategies on Incep-
tion Score (IS). We use the largest model DiT-XL/2 for all the experiments above.

A.2 THE STRUCTURE OF SQUEEZE-AND-EXCITATION MODULE

Data flow

In Fig. 10, we illustrate the structure of Squeeze-and-Excitation (SE) module. - N
We can see that SE module serves as a side pathway compared to the main | gt
path, =

Main v

Pah | ReLU
A.3 GRADIENT DERIVATION OF A SIMPLIFIED DIT —
To calculate loss, for simplicity, we only consider MSE loss given the target Scale

. 1 m n _
noise € sampled from N (0, 1) and formulate Las £ = & >2,7; > 7 (€5 —
eij)z, where C' = m * n and ¢;; is the element in row ¢ and column j. With
this formula, we can obtain a%j = %(Eij — eij). Hence, we deliver a general

formula:

Figure 10: The
structure of SE
module.

oL 2,

Further, built on Eq. 3, we can also derive the gradient of W, Wy ., Wy,

. oL oL oL oL :
and Wy, ie., AW BW, m® OWers® OWyar respectively. Before we present

14



Under review as a conference paper at ICLR 2025

these formulas, we first introduce a substitution to ease our calculation:
e=a;x W, @)
= {[(@my * Wipm) © g + Tout, | © (L+7¢) + B} * Wy (3)
:{W“%m*W%0®a1+%J®ﬂ+ﬁﬂ+5ﬂ*wﬁmﬂ3%}*W» ©)
+ (g * Warr) © 01 + 2] © (1+75) + By !
[((((((z * Wpat) © (1 +71) + B1) * Wanr) © a1 + (2% Wpar))
O +72)+B2) « Witm) © ag + (2% Wpae) © (1 4+ m1) * Wy . (7)
+ B1) * Warr) © a1 + (2 % Wyat)] © (L +7y) + By

With the substitution, we can easily derive 57 L by using Eq. 4. To derive 537 3‘: , we can use Eq. 5.

To derive 4737 ‘% , we can use Eq. 6. Similarly, to derive 577 9L we can use Eq. 7. Thus, we calculate

the derlvatlon w1th the help of Laue et al. * and present the formula of each below:

OL _ ¢ 0L .+ _ o 2.
an_xf e *I = C’(6 ) ®)
oL 2
Wy = Ty * (GE= )+ W) © (1L +77) ©as), )
oL
W Ty (Mo © a2) - Wi, ) © (L4 7) ©on) + 2, - (To © aq), (10)
where 5
Ty = (6(5_6)*Wf) (1 47¢), (11)
and
oL
oW, t:xT'(((TQQO‘l)'Watt) (1+71)) ~T2+£CT~(((T1®CM1)~WG“) (1+71)) 'Tl
pa
(12)
where T} is 5
T =(5E-9«Wi)o(l+), (13)
T2 is
Ty = ((Th © a2) * Wip,) © (14 72). (14)

Besides these parameters directly involved in input calculations above (Wy, Wpae, Waye, and
W rm), we need to figure out how 7y, B¢, v2, B2, a2, v1, 1, and a; update as they also influence
the parameters’ gradients above as well as the output prediction. Hence, we give their corresponding
gradients, respectively (omitting the bias term for simplicity):

i = OO * (ZE )+ W) © 7). =
83% (o) s 2e- W] (16)

aafiz =(coa(e) * (T ©xsm), 17

a?/vi = (c@a(e)T * (T © az) * W5) © Zour,) (18)
S = (O o) (T 0 2) « W, 4

i = (€@ 0() T+ (T2 0 T0) + (c 0 0(e) T+ (T 0 ). 20

*https://www.matrixcalculus.org/

15


https://www.matrixcalculus.org/

Under review as a conference paper at ICLR 2025

Where T3
T3 = ((B1+ (% Wpat) © (1 4+71)) * Wage) . 21
6?45 = (coo(0) "+ (T2 0 ) * W) ©zp) + (cOo(c) " *(Th @) xW,h,) Oay)) , (22)
71
and or
m =(cOae)"*(Thom)*W,), +(coac) *(T10a) x W), (23)

Where c is condition input and o (+) is sigmoid function.

A.4  VALUE DISTRIBUTION OF THE WHOLE W IN DIT BLOCKS

We present the value distributions of the whole W3 of DiT-XL/2 using adaLLN-Zero and adaLN-Mix
trained for 400K iterations in Fig. 11. Similar to W, Wj quickly formulates a pattern similar to
that of W, in Fig. 4 at a very early stage regardless of whether it is adalLN-Zero or adalLN-Mix.

Value Distributions of W_{beta}

= adalN-Zero-160 200 4 = adalN-Zero-10K i = adalN-Zero-50K
120000 = adalN-Mix-160 n = adalN-Mix-10K 801 | = adalN-MixSOK
350 II
300
II 60+
2250
100000 & II
2
200
3 ]
8 II 40
150 .I
80000 100 .I 209
50
- 0 0
2 -0.015-0.010-0.005 0.000 0.005 0010 0.015 0.020 ~0.100-0.075-0.050-0.025 0.000 0.025 0.050 0075 0.100
@
2 (b) ()
I3}
& 60000
| = adalN-Zero-200K 25 = adalN-Zero-400K
3 | e adalN-Mix-200K - adalN-Mix-400K
30 204 ‘\
40000 I‘
25
Z || 15 4
@ 20
3
S5 10
20000 II 1
10
| ]
5
0 0 JL 0 JL

-4 -2 2 4 6 -0.4 -0.2 0.0 0.2 0.4 -1.0 -0.5 0.0 05 10

0
(a) le-5 (d) (e)

Figure 11: Value distributions of the whole W in DiT blocks during the training process.

A.5 VALUE DISTRIBUTIONS OF Wf AND WBL IN DIFFERENT BLOCKS

We also present the value distributions of WWL and WBL in different blocks of DiT-XL/2 using adalLN-
Zero trained at a very early stage (for 10K iterations). Fig. 12 and Fig. 13 illustrate the results of WVL
and Wé‘, respectively. One can see that, basically, the distributions of Wf and WﬂL in each block

share a similar pattern to their global ones as well as that of W,,. Moreover, similar to WX, the peak
value and bottom width of W,YL and WﬁL vary across blocks and exhibit different std, reflecting the
update preference of each block. Built on this observation, this motivates us to initialize W, W,
and Wy with a more sophisticated initialization strategy. More details are in App. A.11.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Density

Density

Value Distribution of W; in Different Blocks

200

300 250 150
200 150
200 100
150
100
100 100 50
50
50
0 0 0 0
001 000 001  0.02 -0.02 -0.01 000 001 002 -0.02 -0.01 000 001  0.02 -0.02 —-0.01 000 001 002
Block 0 Block 1 Block 2 Block 3
T 125 I
125 100 125
100
100 20 100
75 60 » 75
50 a0 50 50
25 20 25 25
0 0 0
-004 002 000 0.02 0.04 -0.02 0.00 002 0.04 -002 000 002 004 -0.02 000 002 0.04
Block 4 Block 5 Block 6 Block 7
125 I 125 125
125
100 100 100
100
7 75 75
75
50 50 50 50
25 25 25 25
o 0 0 0
-0.04 -0.02 000 002 004 —0.04 -002 000 002 004 004 -0.02 000 002 004 —0.02 0.00 0.02 0.04
Block 8 Block 9 Block 10 Block 11
125
125 125 150
100 100 100
s 75 75 100
50 50 50
50
25 25 25
4 0 0 0
-0.04 -0.02 000 002 004 -0.04 -0.02 000 002 004 —0.04 002 000 002 004 -0.02 —0.01 0.00 001 002 003
Block 12 Block 13 Block 14 Block 15
150
150 150 150
100
100 100 100
50 50 s0 50
o 0 o 0
-0.02 0.00 0.02 004 -0.02 0.00 002 0.04 -0.02 0.00 0.02 0.04 —0.04 -0.02 000 002 004 006
Block 16 Block 17 Block 18 Block 19
150
150 150
150
100 100 100
100
50 50 50 50
0 0 0 0
-0.02 0.00 002 004 -0.02 000 0.02 004 -0.04 —0.02 0.00 002 004 006 -0.02 000 002 0.04
Block 20 Block 21 Block 22 Block 23
200 200 200 i
200
150 150
150 150
100
100 100 100
50 50 50 50
0 0
-0.02 000 002 004 —0.02 0.00 002 0.04 -0.01 000 001 002 003 —0.02-0.01 0.00 0.01 002 003 004
Block 24 Block 25 Block 26 Block 27

Figure 12: Value distributions of Wf in different blocks.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Density

Density

Density

Density

Density

Density

Density

Value Distribution of W’ﬁ in Different Blocks

400 400
300 300
300 300
200 200 200 200
100 100 100 100
0 o 0
—0.006-0.004-0.0020.000 0.002 0.004 0.006 —0.006—0.004-0.002 0.000 0.002 0.004 —0.006-0.004-0.0020.000 0.002 0.004 0.006 —0.0079.005®.0026.00000.0025.00500.0075
Block 0 Block 1 Block 2 Block 3
400 I 400 T
400 ‘ 400
300 300 300 300
200 200 200 200
100 100 100 100
0 o
—0.015-0.010-0.005 0.000 0.005 0.010 0.015 -0.010 -0.005 0.000 0.005 0.010 —0.010 —0.005 0.000 0.005 0.010 —0.010 —-0.005 0.000 0.005 0.010
Block 4 Block 5 Block 6 Block 7
400 “ 400 400 400
300 300 300 300
200 200 200 200
100 100 100 100
o 0 0
—0.015-0.010-0.005 0.000 0.005 0.010 0.015 -0.010 -0.005 0.000 0.005 0.010 -0.010 —-0.005 0.000 0.005 0.010 -0.010 -0.005 0.000 0.005 0.010
Block 8 Block 9 Block 10 Block 11
400 200 400
400
300
300
300 300
200
200 200 200
100 100 100 100
o o
-0.010 -0.005 0.000 0.005 0.010 -0.010 -0.005 0.000 0.005 0.010 —0.005 0.000 0.005 0.010 —0.005 0.000 0.005 0.010
Block 12 Block 13 Block 14 Block 15
400 400 400 400
300 300 300 300
200 200 200 200
100 100 100 100
o o 0
-0.010 —0.005 0.000 0.005 —-0.005 0.000 0.005 0.010 —0.005 0.000 0.005 0.010 —0.010 -0.005 0.000 0.005 0.010
Block 16 Block 17 Block 18 Block 19
400 400 400 400
300 300 300 300
200 200 200 200
100 100 100 100
] o 0
-0.005 0.000 0.005 —0.010 -0.005 0.000 0.005 0.010 —0.010 -0.005 0.000 0.005 0.010 —0.010 —0.005 0.000 0.005 0.010
Block 20 Block 21 Block 22 Block 23
1 ‘ 600
500 500 500
400 400
400 200
300 300 300
200 200 200 200
100 100 100
] o
—0.010 —0.005 0.000 0.005 0.010 —0.010 -0.005 0.000 0.005 0.010 -0.010 —0.005 0.000 0.005 0.010 —0.010 —0.005 0.000 0.005 0.010
Block 24 Block 25 Block 26 Block 27

Figure 13: Value distributions of WﬁL in different blocks.

18



Under review as a conference paper at ICLR 2025

Value Distributions of W_{beta} in Final Layer

W adalN-Zero-160

“ W adalN-Zero-10K
= adalN-Mix-160

1000 - == adalN-Mix-10K

120000

100000

80000

-0.004 ~0.002 0.000

(b)

0.002

Density

150

100

50

W adalN-Zero-50K
= adalN-Mix-50K

0 T T
—-0.06 -0.04 —0.02

60000 W adalN-Zero-200K

/W adalN-Mix-200K

40000

|
20000 II
40 1 II

W adalN-Zero-400K
W adalN-Mix-400K

Figure 14: Value distributions of W, in FinalLayer during the training process.

Value Distributions of W_{f}

40000

W adalN-Zero-160
= adalN-Mix-160

= adalN-Zero-10K
= adalN-Mix-10K

30000

o0
-0.010

~0.005

0.010

Density

(9]

04
~0.100 —0.075 ~0.050 —0.025 0.000 0.025 0.050 0.075

adaLN-Zero-50K
adaLN-Mix-50K

20000 W adalN-Zero-200K

W adalN-Mix-200K

10000

20 ‘

W adalN-Zero-400K
W adalN-Mix-400K

-4 -2 -04 -03 -02 -01 00

(d)

01 02 03 04

o
(@)

Figure 15: Value distributions of W} in FinalLayer during the training process.

A.6  VALUE DISTRIBUTIONS OF W3, AND Wy

Fig. 14 and Fig. 15 illustrate the variations of value distribution of ¢4 for W

W3, and Wy under different training time. We can see that W3, and
W present completely different variation tendencies. Even though,
we also notice that W, shares a similar pattern to W, at a very early
stage regardless of whether it is adalLN-Zero or adaLN-Mix. This
inspires us to explore whether initializing W, together with W,
W, and Wy could further accelerate training. Based on the setting
std(le — 3,1e — 3, 1e — 3) for Wy, W,,, and Wy, we perform a grid
search of std for Wp, as shown in Tab. 5. It appears that initializing
Wy, with a wide range of std values does not enhance the model’s
performance. In light of these results, we do not consider initializing
Wy, with Gaussian and keep its original zero-initialization strategy
for all the experiments.

19

Table 5: A grid search of

T Wy
Gaussian-v1

0: AdaLN-

Std  FID

IS

0 76.21

15.01

2e-4
Se-4
le-3
2e-3
3e-3
4e-3

78.22
82.05
80.43
77.45
77.09
78.47

14.53
13.78
14.03
14.74
14.84
14.39




Under review as a conference paper at ICLR 2025

Value Distribution of Attention QKV Weights Value Distribution of Attention Proj Weights
] -

Density

Density

o o

000 G o7 002 000 002 OO ey ar T e
) @ @ @ ©

Figure 16: Value distributions of Attention module including gkv and proj during training process.

Value Distribution of MLP Fcl Weights Value Distribution of MLP
wf

Density

Density
Density

o

(d) E : : le)

000 = R e 000
@ @ @ @

Figure 17: Value distributions of Mlp module including fc1 and fc2 during training process.

A.7 VALUE DISTRIBUTIONS OF MORE DIT MODULES

We visualize the value distribution of more DiT modules including Attention and Mlp in DiT Block,
and PatchEmbed as shown in Fig. 16, Fig. 17, and Fig. 18, respectively. Though they are all ini-
tialized with Xavier uniform in DiT, the weight distributions in both Attention and MLP gradually
transition to a Gaussian-like distribution while PatchEmbed does not. We also visualize the value
distribution of LabelEmbedder and TimestepEmbedder in Fig. 19. We see that after normal ini-
tialization done in DiT, their weight distributions consistently show a Gaussian-like distribution.
Naturally, we can consider Gaussian initializations for these modules as well except PatchEmbed to
accelerate training. For example, we could uniformly use Gaussian initialization for Attention and
Mlp in DiT Block. We set the mean to 0 and use several choices for std such as 0.001, 0.01, 0.02,
0.03, and 0.04. We use DiT-XL-2 and train for 50K steps for simplicity. The results are shown in
Tab. 6. We see that the performance is inferior to the default initialization. Therefore, more precise
hyperparameter tuning may be needed for these modules to further improve the performance in the
future.

Std  Default 0.001 0.01 002 0.03 0.04
FID 7621 92.09 8528 80.89 9121 98.50

Table 6: Different Gaussian std initialization choices for Attention and Mlp in DiT Block.

A.8 VALUE DISTRIBUTIONS OF ZERO-CONVOLUTION IN CONTROLNET

Besides adalLN-Zero in DiT, we also consider a similar module in ControlNet (Zhang et al., 2023)
called zero convolution. In Fig. 20, we visualize the weight distributions of four widely-used Con-
trolNet variants including Canny, Depth, Pose, and Segmentation. Their distributions are still a
Gaussian-like distribution. Hence, is it also beneficial from using Gaussian distribution to initialize
these modules in ControlNet? Since it is not our main focus, we leave it as future work.

A.9 RESULT ANALYSIS ABOUT DIFFERENT STD CHOICES IN GAUSSIAN INITIALIZATION
Intuitively, since the weights of the conditional mechanisms we counted are Gaussian-like distribu-

tions, there should exist an optimal std hyperparameter when initializing these weights with Gaus-
sian, and naturally, the values on both sides of this hyperparameter are relatively unsuitable. To

20



Under review as a conference paper at ICLR 2025

Value Distribution of PatchEmbed Weights

mmm AdaLN-Zero-160 mmm AdaLN-Zero-10K mmm AdaLN-Zero-50K
10 | === AdaLN-Mix-160 84 == AdaLN-Mix-10K == AdaLN-Mix-50K

@

Density
b

w

Pl
k= ° —0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 ° -0.15 -0.10 -0.05 0.00
(0]
Z ) ©
a
mmm AdalN-Zero-200K mmm AdalN-Zero-400K
s AdaLN-Mix-200K mmm AdalN-Mix-400K
4
3
2
1
0- 0- o0
—0.075-0.050-0.025 0.000 0.025 0.050 0.075 -03 -02 -01 00 01 02 03 -0.6  -04 0.0 02 0.4 06
(a) (d) (e)
Figure 18: Value distributions of PatchEmbed during training process.
Value Distribution of LabelEmbedder Weights Value Distribution of TimestepEmbedder Weights
00] 3 0] = : v
. o
& &
Fuo

000 005 010 T ETaEEpE
(@) Cl e

Figure 19: Value distributions of LabelEmbedder and TimestepEmbedder during training process.

some extent, the performance of Gaussian initialization with different std choices in Tab 2 which
exhibits a U-shaped trending also proves it. To be more rigorous, we analyze this U-shaped trending
by leveraging two representative settings, i.e., std = 0.0005 and std = 0.05, which the two ends of
this U-shaped trending.

We first illustrate their weight distributions of W, in the conditioning mechanism and compare them
with that of adalLN-Zero and adalLN-Gaussian (std=0.001). The results are shown in Fig. 21. We
find that a large std std = 0.05 presents a relatively uncompact distribution and exhibits a significant
discrepancy in distribution shape compared to the rest settings. This result indicates that a large std
may be incompatible with other parameters, resulting in a slow speed of convergence and a poor
performance. Moreover, we consider this a step further. Theoretically, if we further increase the std
value, it would become close to the default initialization in adaLLN-Step1 (xavier_uniform) while the
performance of adaLN-Step] is also bad.

For a small std std=0.0005, it can be seen that the distribution of W, is quite similar to that of adaLLN-
Zero and adalLN-Gaussian (std = 0.001). However, there still exists a slight discrepancy. To make
this discrepancy clearer, we average the absolute values of the differences between each element in
W, corresponding to std = 0.0005 and adaLLN-Zero, and std = 0.0005 and adaLN-Gaussian. The
element-wise averaged results are 0.0121 and 0.0124, respectively. By comparing the results (0.0121

21



Under review as a conference paper at ICLR 2025

Canny ControlNet Depth ControlNet Pose ControlNet Seg ControlNet

ol 0l ol ol
~006 —004 002 000 002 004 006 008 ~003 -002 -001 000 001 002 003 ~0010 -0005 0000 0005 0010 0015 0020 002 -001 000 001 002 003
(b) (c) (d)

Figure 20: Weight distributions of zero convolution in four ControlNet variants.

< 0.0124), it is shown that small std leads to weights relatively closer to that of zero-initialization
(adaLN-Zero). And, to some extent, the corresponding performance also proves it where std=0.0005
produces 80.68 for FID, closer to adalLN-Zero (78.99) compared to adaLN-Gaussian (76.21).

Value Distribution of W_{alpha}

501 B std = 0.05 - 50K
mm std = 0.0005 - 50K
std = 0.001 - 50K
40 [ adalN-Zero - 50K
30
>
=
)]
c
(0]
fal
20
10
0l : : :
—-0.3 0.2 } 0.0 . 0.2 0.3

Weight Value

Figure 21: Value distributions of W, with different std in Gaussian initialization.

22



Under review as a conference paper at ICLR 2025

A.10 ADALN-GAUSSIAN-V2

We begin by considering std(le—3,2e—3,8¢—4) ', Table 7: Results of independent std settings
restrict from 8e-4 to 2e-3 inspired by Tab. 2, and for W, W,, Wg. 0, 0, 0: adaLN-Zero
perform a grid search in Tab. 7. It is observed that
std(8e — 4,1.2e — 3,8e — 4) produces the best FID. Std (Wo, Wy, Wg)  FID IS
We denote this initialization as adaLN-Gaussian-v2. 0,0, 0 78.99  14.19
le-3, 2¢-3, 8e-4 7822 1437
le-3, 1.2e-3, 8e-4 76.57 15.01
8e-4, 1.2e-3, 8e-4 76.12 14.90

Based on adal.N-Gaussian-v2, we further explore a
more sophisticated block-wise initialization. This is

motivated by our observation that the peak value and Re-d. 12623, 163 7718 14.85
bottom .with of WO{’ , Wf ,and Wé’ Var.ies.acrf)ss DiT 8e—4: | ;3_3, Se-d 8031 1423
blocks in Fig. 6, Fig. 12, and Fig. 13, indicating that Se-4, 1.4e-3, Se-4 7753  14.54
different blocks may prefer different std. At our pre- 8e-4, 1.6e-3, 8e-4 78.24  14.55
liminary attempt in App. A.11, we show that block- 8e-4, 1.6e-3, 4e-4 79.03 1431

wise initialization is inferior to the base setting in FID
but outperforms the base setting in IS. This highlights
the potential of block-wise initialization and requires more effort which we leave as future work.

Furthermore, we compare the performance of adalLN-Gaussian-v2 with adalLN-Zero and adal.N-
Gaussian under longer training time as shown in Tab 8. It is seen that adalLN-Gaussian-v2 also
outperforms adalLN-Zero, further verifying the effectiveness of our strategy of Gaussian initial-
ization. On the other hand, considering that adalLN-Gaussian achieves superior results to that of
adaLN-Gaussian-v2 and is easier to implement, we primarily use adalLN-Gaussian in Tab 4.

Model Initialization CFG Steps FID| SsFID] IST Precisiont Recallt
DiT-XL/2 adalLN-Zero 1 400K 20.02 6.09 67.34 63.33 63.06
DiT-XL/2 adalLN-Gaussian 1 400K 17.86 6.06 73.07 64.51 62.64

DiT-XL/2 adaLN-Gaussian-v2 1 400K 18.77 6.08 70.07 63.92 62.72

Table 8: Comparison among adaLLN-Zero, adaLN-Gaussian, and adalLN-Gaussian-v2.

A.11 A PRELIMINARY EXPLORATION OF BLOCK-WISE INITIALIZATION

We dive into every block in DiT and find that there
also exist discrepancies in peak value among different o Ve

WE in Fig. 6. WL and WF also hold in Fig. 12 and ™= e
Fig. 13. Generally, the greater the peak value is, the I [

smaller the std is, motivating us to design a more so-
phisticated block-wise initialization strategy. Specifi-
cally, we record the peak value in all blocks for WZ,
Wf , and Wé‘ , respectively, and use three heuristic
polynomial functions to fit these points as shown in
Fig. 22. For WX, we use 7th degree polynomial whose
coefficients are [—2.49635921e — 6, 1.24680129¢ — 200
4, 1.17149262e — 3, —1.70585560e — 1, 3.63484494,
—2.94971466¢ +- 1’ 6.74700382¢ + 1’ 4.85897902¢ + 2] o 12345678 910111213141516171819202122232425262 728
For W and W, we use 5th degree polynomial. Their Block ndex

coefficients are [—2.46024908e¢ — 4, 2.39970674¢ — 2,

—8.67912602¢ — 1, 1.45429227¢ 41, —1.08645122¢ 4-2, Figure 22: Three polynomial functions
4.11540316e+2] and [—1.21059796e—4, 1.09417700e—  to fit the peak values of W, W, and
2, —3.25623123¢ — 1, 4.15804173, —2.00345083¢ + 1, W; in all blocks.

4.20334676e + 2], respectively. For WL in L—th block,

we use the following formula to calculate its std value:

Highest Point Density

1We empirically find that N (0, 1e — 3) closely matches the shape of the W, distribution in Fig. 4 (b) (10K
iterations). Therefore, based on this observation, we begin our further refinement by estimating the std for W,
and W with their corresponding distribution shapes in 10K iterations.

23



Under review as a conference paper at ICLR 2025

ol =0.0008/(Poly.(L)/449.9321) , (24)

where Poly,, is the polynomial function for a, 0.0008 is the base std inherited from Tab. 7, and
449.9321 is the averaged peak value across W in all blocks.

Similarly, for W. and W, we use the following formulas to ~ Table 9: Results of block-wise ini-

calculate their std value, respectively: tialization. ¢: with block-wise
ol =0.0012/(Poly,(L)/444.8248) , 25) SdWa, W5, Ws) FID 1S

I Polu-(L)/1 M 26 8e-4,1.2e-3,8e-4  76.12 14.90

o5 = 0.0008/(Polys(L)/175.0044) . (26) X v v 2028 1433

v, v, VvV 76.63 14.96

We first consider employing block-wise initialization for WWL
and Wk since they are well fitted and use 0.0008 for W, by default. Afterward, we initialize them
all in a block-wise manner. As shown in Tab. 9, block-wise initialization is inferior to the base
setting in FID50K but outperforms the base setting in IS. We leave more exploration as future work.

A.12 MORE EXPERIMENTS ON EFFECTIVENESS

To further show the effectiveness of adaLN-Gaussian, we add more experiments on other datasets
including Tinyimagenet (Le & Yang, 2015), AFHQ (Choi et al., 2020), and CelebA-HQ (Karras
et al., 2018) using the best-performing DiT-XL/2 with 50K training steps while keeping all train-
ing settings. Moreover, we also use another DiT-based model SiT-XL/2 (Ma et al., 2024b) training
on ImageNet1K 2562256 for 50K to further show the effectiveness and generalization of adalLN-
Gaussian. We report all the FID results in Tab. 10. These results show that adaLN-Gaussian consis-
tently outperforms adalLN-Zero, demonstrating the effectiveness of our method.

Tiny ImageNet AFHQ CelebA-HQ ImageNetlK (SiT-XL/2)

adalLN-Zero 37.11 13.52 8.01 71.90
adaLLN-Gaussian 36.07 12.58 7.54 67.15

Table 10: Comparisons between adalLN-Zero and adaLN-Gaussian on another three datasets includ-
ing Tinyimagenet, AFHQ and CelebA-HQ, and another DiT-based model SiT. We set CFG=1.

24



