
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNVEILING THE SECRET OF ADALN-ZERO IN DIFFU-
SION TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion transformer (DiT), a rapidly emerging architecture for image genera-
tion, has gained much attention. However, despite ongoing efforts to improve
its performance, the understanding of DiT remains superficial. In this work, we
delve into and investigate a critical conditioning mechanism within DiT, adaLN-
Zero, which achieves superior performance compared to adaLN. Our work studies
three potential elements driving this performance, including an SE-like structure,
zero-initialization, and a “gradual” update order, among which zero-initialization
is proved to be the most influential. Building on this insight, we heuristically
leverage Gaussian distributions to initialize each condition modulation, termed
adaLN-Gaussian, leading to more stable and effective training. Extensive exper-
iments following DiT on ImageNet1K demonstrate the effectiveness and gener-
alization of adaLN-Gaussian, e.g., a notable improvement of 2.16% in FID score
over adaLN-Zero.

1 INTRODUCTION

Diffusion transformer (DiT) (Peebles & Xie, 2023) has recently emerged as a powerful architecture
for image synthesis, and has gained vast attention for its superior performance over UNet-based
diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022). As DiTs continues to drive
breakthroughs in image generation, there is a growing interest in pushing its performance boundaries
even further. Current efforts could be roughly categorized into two categories: 1) those incorporating
advanced techniques (Chu et al., 2024; Ma et al., 2024b; Lu et al., 2024; Tian et al., 2024; Zhu et al.,
2024), like VisionLLama (Chu et al., 2024), which introduces language model-based tricks such as
RoPE2D (Su et al., 2024) and SwishGLU (Shazeer, 2020), to boost the performance; and 2) those
leveraging stronger and more informative conditions (Esser et al., 2024; Chen et al., 2023; 2024a;
Ma et al., 2024a; Li et al., 2024), such as PixArt-α (Chen et al., 2023) that extends DiTs to the
text-to-image realm to enable more exquisite image generation.

Despite these advances, our understanding of the mechanisms driving DiT’s performance remains
superficial. One critical aspect that requires further investigation is adaLN-Zero, an important con-
ditioning mechanism that significantly enhances DiT’s performance compared to the original adaLN
(20.02 vs. 24.13 in FID). Fully understanding the underlying mechanism of adaLN-Zero is essential
and may provide deeper insights for further optimizing DiT, especially given the increasing preva-
lence of DiT in the field of diffusion generation (Karras et al., 2022; Dhariwal & Nichol, 2021;
Karras et al., 2024).

In this work, we uncover the mechanism behind adaLN-Zero’s performance boost, providing key
insights into DiT’s conditioning process. By studying the differences between adaLN-Zero and
adaLN, our analysis studies three elements that collectively contribute to the performance enhance-
ment: 1) an Squeeze-and-Excitation-like (SE-like) structure (Hu et al., 2018), 2) zero-initialized
value (a well-optimized location in the optimization space), and 3) a “gradual” update order of
model weights. The SE-like structure arises from introducing scaling element α and the latter two
stem from adaLN-Zero’s zero-initialization strategy for α. By empirical experiments, we find that
a good zero-initialized location itself plays a more significant role among the three elements. We
reveal that compared to other initialization, zero-initialization enables the weights that derive α to
morphologically more closely approximate the well-trained distribution which resembles a Gaus-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sian distribution. Interestingly, we find all the weights of condition modulations in DiT’s blocks
gradually form Gaussian-like distributions as training progresses.

Based on these findings, we propose to replace adaLN-Zero by initializing the weights of each
condition modulation with Gaussian distributions, which we call adaLN-Gaussian. To validate the
effectiveness and generalization of adaLN-Gaussian, we conduct comprehensive experiments fol-
lowing DiT on ImageNet1K (Russakovsky et al., 2015), testing across different training durations,
DiT variants, and DiT-based models. Our contributions can be summarized as follows:

• We study three key factors that collectively contribute to the superior performance of adaLN-Zero:
an SE-like structure, a good zero-initialized value, and a gradual weight update order. Among them,
we find that the a good zero-initialized value plays the most pivotal role.

• Based on the distribution variation of condition modulation weights, we heuristically leverage
Gaussian distributions to initialize each condition modulation, termed adaLN-Gaussian.

• Extensive experiments following DiT on ImageNet1K across different settings demonstrate
adaLN-Gaussian’s effectiveness and generalization, showing a promising pathway for future gen-
erative models.

2 RELATED WORK

Transformer in Diffusion. With the extensively demonstrated scalability and remarkable capa-
bilities of transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020), they have recently been
introduced into diffusion generation (Chai et al., 2023; Gao et al., 2023; Mo et al., 2023; Feng
et al., 2023; 2024; Bao et al., 2023; Fei et al., 2024; Chen et al., 2024b; Levi et al., 2023; Crowson
et al., 2024). Gao et al. propose an asymmetric masking diffusion transformer to explicitly enhance
contextual relation learning among object semantic parts. DiffiT (Hatamizadeh et al., 2023) intro-
duces hybrid hierarchical vision transformers with a U-shaped encoder and decoder. More recently,
DiT (Peebles & Xie, 2023) replaces the widely-used UNet with transformers in diffusion generation,
empirically demonstrating excellent performance and promising scalability. Subsequently, more ef-
forts have been devoted to improving diffusion transformers. Following this research line, FiT (Lu
et al., 2024) and VisionLLama (Chu et al., 2024) introduce large language model (LLM) techniques,
such as RoPE2D (Su et al., 2024) and SwishGLU, to further enhance DiT. SiT (Ma et al., 2024b)
proposes a scalable interpolant framework built on the backbone of DiTs. SD-DiT (Zhu et al.,
2024) incorporates masking operations into DiT to accelerate model convergence and improve per-
formance. Pixart-α and Pixart-σ (Chen et al., 2023; 2024a) extends DiT to text-to-image synthesis
and produces high-quality and exquisite images. U-DiT(Tian et al., 2024) argues that the effective-
ness of the U-Net inductive bias is meaningful but has been neglected in DiTs, reintroducing the
U-shaped architecture to enhance performance. Different from these efforts, our work is motivated
by elevating the understanding of DiT given its great prevalence in the generation realm, and focuses
primarily on a crucial conditioning mechanism called adaLN-Zero.

Weight Initialization. In a neural network, weight initialization is a crucial operation as it directly
determines the initial position in the optimization space (Narkhede et al., 2022). Typically, good
initialization aids model training. Common methods include random initialization with (truncated)
normal or uniform distributions. Glorot & Bengio introduced a properly scaled uniform distribution
for initialization, known as “Xavier" initialization, in Jia et al. (2014). However, this strategy is
not suitable for the ReLU activation function (Nair & Hinton, 2010), as ReLU can map negative
values to zero, thereby altering the entire variance. To address this, He et al. proposed “Kaiming"
initialization, which assumes that half of the neurons are activated while the rest are zero. In the
deep learning era, the zero-initialization strategy can be traced back to Goyal et al. (2017), where
it was used to accelerate large-scale training potentially via nullifying certain output pathways to
implicitly adjust the propagation of backward signals in a supervised learning setting. More re-
cently, it has been widely adopted in diffusion generation (Ho et al., 2020; Rombach et al., 2022)
to ease optimization. In DiT (Peebles & Xie, 2023), the impact of zero-initialization is particularly
notable, leading to significant performance improvement. Motivated by this, we delve deeper into
the underlying reasons, hoping that our findings will inspire further research.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0K 100K 200K 300K 400K
Training Step

15

25

35

45

55

65

75

85

95

105

FI
D5

0K

adaLN-Zero
adaLN-Step1
adaLN
adaLN-Mix
adaLN-Gaussian

300K 350K 400K
22

24

26

28

30

Figure 1: Comparing adaLN-Zero with adaLN,
adaLN-Step1, adaLN-Mix, and adaLN-Gaussian on
FID50K. We use the largest model DiT-XL/2 in all
experiments on ImageNet1K 256× 256.

LinearLinear

Default Init Zero Init

Conditioning

DiT Block

(AdaLN) SiLU

Scale,

Shift

Linear

Scale,

Shift

Conditioning

DiT Block

(AdaLN-Step1)
SiLU

Scale,

Shift

Linear

Scale,

Shift

Scale

Scale

Linear

Conditioning

DiT Block

(AdaLN-Zero)
SiLU

Scale,

Shift

Linear

Scale,

Shift

Scale

Scale

Linear

Data Flow

Figure 2: Illustration of adaLN, adaLN-
Step1, and adaLN-Zero. The complete data
flow in a DiT block is shown in Alg. 1.

3 UNVEILING THE SECRET OF ADALN-ZERO IN DIT

To unveil the underlying mechanism, we perform a detailed comparison between adaLN-Zero and
adaLN. In Fig. 2 we find that adaLN-Zero introduces two additional steps: first, it introduces scaling
element α (as denoted in DiT) for all transformer blocks; second, it zero-initializes corresponding
linear layers to output zero vectors for all α. Given these differences, one may naturally wonder:
how do these two steps contribute to the performance gap between adaLN-Zero and adaLN in DiT?

3.1 DECOUPLING ADALN-ZERO BY EVALUATING STEP ONE IN ISOLATION

To answer this question, we decouple adaLN-Zero by introducing only the first step and initial-
izing the linear layer’s weights by default. For convenience, we denote this intermediate state as
adaLN-Step1 as shown in Fig. 2 (middle). Then we train the three variants following the same train-
ing setting in DiT (Peebles & Xie, 2023) on ImageNet1K for 400K iterations using the largest and
best-performing model, i.e., DiT-XL/2. Similarly, we measure FID (Heusel et al., 2017) by using
ADM’s TensorFlow evaluation suite (Dhariwal & Nichol, 2021) following DiT and compare the
performance of adaLN-Step1 with adaLN-Zero and adaLN in Fig. 1. One can see that adaLN-Step1
outperforms adaLN even without zero-initializing the linear layer’s weights, indicating that barely
introducing scaling element α is beneficial as well. Similar results on Inception Score (IS) (Sal-
imans et al., 2016) could be found in App. A.1. Intuitively, adding scaling element α enhances
adaLN’s capability of expression, making model optimization easier and more flexible. Upon closer
examination from overall structure, module function, and mathematical formula, we speculate that
this improvement might be due to a Squeeze-and-Excitation-like (SE-like) architecture (Hu et al.,
2018) 1. Specifically, first, adaLN-Zero and SE module both serve as a side pathway compared to
the main path. Second, scaling element α and SE module play a similar role, both of which aim to
perform a channel-wise modulation operation. Third, formally, omitting the bias term, we illustrate
the formulation of α in DiT in Eq. 1 and SE module (Hu et al., 2018) in Eq. 2, respectively, with
slight adjustments to make the two formulas more comparable:

F (c) = (c⊙ Sigmoid(c))︸ ︷︷ ︸
SiLU

∗Wα = (c⊙ (Sigmoid(I ∗ c))) ∗Wα , (1)

SE(c) = (ReLU(W1 ∗ c)) ∗W2 = (1⊙ (ReLU(W1 ∗ c))) ∗W2 , (2)
where ∗ is matrix multiplication, ⊙ is Hadamard product, and 1 is a vector full of element 1. To
some extent, it is observed that F (c) shares a similar formulation with SE(c). Given that SE(c)
has been extensively demonstrated to enable a general enhancement over various vision tasks (Hu
et al., 2018), this similarity may contribute to the improved performance of adaLN-Step1.

On the other hand, it is worth noting that while adaLN-Step1, i.e., the first step, does contribute
positively, there remains a large performance disparity between adaLN-Zero and adaLN-Step1. This
suggests that the zero-initialization strategy, i.e., the second step, is equally necessary. We explore
this further in the next subsection for clarity.

1In App. A.2, we provide the structure of SE module to better illustrate the similarity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Forward Process of DiT with One Block
Input: Noise disturbed latent x; A simplified DiT: PatchEmbed Wpat, matrix Wβ1 , Wγ1 , and Wα1 deriving

β1, γ1, and α1 for the first modulation, a linear layer Watt replacing self-attention, matrix Wβ2 , Wγ2 ,
and Wα2 deriving β2, γ2, and α2 for the second modulation, a linear layer Wffm replacing pointwise
feedforward, γf , βf , and Wf for the modulation and linear layer in FinalLayer, respectively;

Output: predicted ϵ̄;
1: xp = x * Wpat # Reshape and patchify x
2:
3: # DiT Block
4: xm1 = xp ⊙ (1 + γ1) + β1 # Modulation
5: xatt = xm1 * Watt # Replace attention
6: xout1 = xatt ⊙ α1 + xp # Skip connection
7: xm2 = xout1 ⊙ (1 + γ2) + β2 # Modulation
8: xffm = xm2 * Wffm # Replace FFM
9: xout2 = xffm ⊙ α2 + xout1 # Skip connection

10:
11: xf = xout2 ⊙ (1 + γf) + βf # Modulation
12: ϵ̄ = xf * Wf

13: return ϵ̄

3.2 HOW ZERO-INITIALIZATION IMPROVES THE PERFORMANCE

For a typical initialization strategy, e.g., kaiming initialization (He et al., 2015), its fundamental role
is to determine the initial location of the model in the optimization space. Particularly, in the case
of zero-initialization, besides this function, Goyal et al. suggest that it also has an additional role.
Specifically, it can implicitly adjust the model structure by nullifying certain output pathways at the
beginning of training, more importantly, causing the forward/backward signals to initially propa-
gate through the identity shortcut (He et al., 2016), thereby easing the optimization at the start of
training (Goyal et al., 2017). However, is this additional role really responsible for the performance
gap between adaLN-Zero and adaLN-Step1? To answer this question, we first examine how this
additional role specifically impacts optimization through the lens of gradient update. Afterward,
we decouple this impact on gradient update during training to highlight the fundamental role of
zero-initialization.

3.2.1 ZERO-INITIALIZATION’S IMPACT ON GRADIENT UPDATE

Considering the complexity of the DiT model, we make three reliable modifications to simplify
our gradient derivation. First, we use only one DiT block, easing the computations of complex
chain rules. Second, we replace the multi-head self-attention and pointwise feedforward modules
within the DiT block with simple linear transformations, respectively. Though this replacement
alters the structure of the DiT block, from the view of backpropagation it does not affect the gradient
flow of other modules but itself which is not our emphasis. Therefore this adjustment could be
acceptable. Finally, for a linear layer, we omit the bias term in both the forward and backward passes.
These alterations significantly simplify our analysis without negatively impacting the conclusions.
We formally present the mathematical forward process in Alg. 1. Note that in DiT, LayerNorm
is learning-free, so we omit it from our formulation. The process of gradient derivation for each
module weight is provided in App. A.3.

To continue our analysis, reviewing the initialization strategy of DiT is necessary. adaLN and
adaLN-Zero both initialize the FinalLayer module to zero, indicating that γf (Wγf

), βf (Wβf
),

and Wf are all zero at the beginning. As shown in Fig. 2, adaLN and adaLN-Zero also zeros out
weights of all modulations including Wγ1 , Wβ1 , Wγ2 , and Wβ2 in a block, rendering γ1, β1, γ2,
and β2 zero. A key difference from adaLN is that adaLN-Zero not only introduces Wα1 and Wα2 to
produce scale parameters α1 and α2 (i.e., adaLN-Step1) but also zero out Wα1 and Wα2 to make
α1 and α2 become zero. See Tab. 1 2nd row.

Therefore, in this first forward pass, Wf = 0 and output is zero (Eq. 4). Interestingly, in the first
backward pass, the gradient of Wf , i.e., ∂L

∂Wf
, is not zero while the gradients of the rest, i.e., ∂L

∂Wffm
,

∂L
∂Watt

, ∂L
∂Wpat

, ∂L
∂Wγf

, ∂L
∂Wβf

, ∂L
∂Wα2

, ∂L
∂Wγ2

, etc., are zero as their gradient formulas all include Wf

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Time/Gradient ∂L
∂Wf

∂L
∂Wffm

∂L
∂Watt

∂L
∂Wpat

∂L
∂Wγf

∂L
∂Wβf

∂L
∂Wα2

∂L
∂Wγ2

∂L
∂Wβ2

∂L
∂Wα1

∂L
∂Wγ1

∂L
∂Wβ1

Initial weight 0 Wffm Watt Wpat 0 0 0 0 0 0 0 0

1st iteration ! % % % % % % % % % % %

2nd iteration ! % % ! ! ! ! % % ! % %

3rd iteration ! ! ! ! ! ! ! ! ! ! ! !

Table 1: Gradient of different weights during training. The first row is the state of parameters’
initial weight. 0 means that the weight is zero. !means that the gradient is not zero and the weight
effectively updates while%means the gradient is still zero and the weight does not update.

term and Wf = 0. Hence, only Wf is updated while the rest weights are kept. So how about
the next? In the second backward pass, though Wf is not zero, the zero-initialized α1 and α2

due to adaLN-zero cause ∂L
∂Wffm

, ∂L
∂Watt

, ∂L
∂Wγ2

, ∂L
∂Wβ2

, ∂L
∂Wγ2

, and ∂L
∂Wβ2

to remain zero. How
about the third iteration? To better illustrate the gradient variation of involved weights, we show
the gradient of all weights in the first several iterations in Tab. 1. One can see that all weights do
not update together as expected but gradually update. Specifically, in the 1st iteration, only Wf

updates. In the 2nd iteration, only Wf , Wpat, Wγf
, Wβf

, Wα2
, and Wα1

update, which is what
zero-initialization brings to the optimization update. In other words, zero-initialization introduces
an additional “gradual" update in the initial stage of optimization compared to adaLN-Step1.

Remark. It is worth noting that although our derivation is based on a simplified version of DiT, we
corroborate that this update order aligns with that of original DiT variants in which for a typical DiT
model (adaLN-Zero), Wf update first, subsequently, Wpat, Wγf

, Wβf
, and all Wα

2 can update,
and finally all parameters start to update. This verification demonstrates that our simplification is
reasonable and our derivation is right.

3.2.2 DECOUPLING THE IMPACT OF ZERO-INITIALIZATION

Based on Sec. 3.2.1, we know that beyond the difference of initial position in the optimization
space, the additional distinction between adaLN-Zero and adaLN-Step1 lies in the second iteration
of gradient optimization, where adaLN-Zero preferentially optimizes Wf , Wpat, Wγf

, Wβf
, and

all Wα
3 while adaLN-Step1 optimizes all weights. Considering the performance disparity between

adaLN-Zero and adaLN-Step1, is this update discrepancy crucial for enhancing model performance?
or is it just the zero-initialized position in optimization space that contributes more?

0 100K 200K 300K 400K
Training Step

20

30

40

50

60

70

80

90

100

FI
D5

0K

adaLN-Zero
adaLN-Step1
adaLN
adaLN-Mix

1 2 4 8 20 160
Training Step

312.0

312.2

312.4

312.6

312.8

313.0

FI
D5

0K

adaLN-Zero
adaLN-Step1
adaLN

300K 350K 400K
20

22

24

26

28

30

Figure 3: Performance of different
variants in the initial stage.

Intuitively, if this update discrepancy is critical, we would see
a significant performance variation between adaLN-Zero and
adaLN-Step1 within the initial few iterations since this dis-
crepancy only occurs during the second iteration 4. Thus,
we evaluate model performance during the early iterations, as
shown in Fig. 3. The results indicate minimal performance
fluctuation between adaLN-Zero and adaLN-Step1 during the
first 160 iterations, suggesting that the discrepancy in update
order may not be as critical as initially expected. Similar re-
sults can be found for the Inception Score (IS) in App. A.1.

To formally verify our hypothesis, we design an ingenious ex-
periment to decouple the impact of zero-initialization on gradi-
ent update. Specifically, considering that the additional effect
on the gradient cannot be avoided when zeroing out Wα, we
adopt the initialization of adaLN-Step1 but enforce the update order of adaLN-Zero simultaneously.
We refer to this hybrid strategy as adaLN-Mix and compare its performance with adaLN-Zero and

2For brevity, we use Wα to denote all Wα1 and Wα2 in DiT’s blocks. Wγ and Wβ are the same.
3For adaLN-Step1 (as well as adaLN), the model begins updating all weights after the first iteration, unlike

typical initialization strategies where all weights are updated from the very beginning. We will explore the
impact of this difference in future work.

4In our view, if the discrepancy in gradient updates is crucial, it can significantly affect performance in the
short term. And as the update period extends, the impact of this discrepancy diminishes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Value distributions of all Wα during the training process. AdaLN-Zero and adaLN-Mix
are initialization strategies and 160, 10K, and 50K are timestamps.

adaLN-Step1 in Fig. 1. It is seen that while adaLN-Mix further enhances the performance of adaLN-
Step1, it still lags significantly behind adaLN-Zero. This first indicates that the update order resulting
from zero-initialization does contribute independently to performance. However, this contribution is
not the primary reason for the substantial performance improvement seen in adaLN-Zero. In other
words, it is the zero-initialized location that accounts for the remarkable performance difference
between adaLN-Zero and adaLN-Mix. Similar results on Inception Score (IS) could be found in
App. A.1. Why a zero-initialized location is such important, we put further exploration in the next
subsection for clarity.

3.3 WHY A ZERO-INITIALIZED LOCATION WINS?

A simple answer might be that zero-initialization avoids introducing noise, as zero is a relatively
neutral choice. However, this explanation is neither direct nor fully satisfying, so we aim to unveil a
more fundamental reason. Our analysis begins by examining the variation in the weight distribution
of all Wα in adaLN-Zero and adaLN-Mix 5, respectively, as training progresses.

AdaLN-Zero

AdaLN-Mix Target Distribution

∆H = 0.36

Distribution Shift

∆H
= −

0.8
0

Figure 5: An abstract illus-
tration of the entropy analysis
on distribution movement for
adaLN-Zero and adaLN-Mix.

As illustrated in Fig. 4, we record the distribution of the entire Wα

in 160, 10K, 50K, 200K, and 400K iterations, respectively, to ob-
serve the pattern of weight variation over time. At the start, as seen
at 160 iterations in Fig. 4 (a), adaLN-Zero exhibits a completely
vertical distribution with most values being zero, while adaLN-
Mix shows a completely horizontal distribution with a large span
of value compared to adaLN-Zero, forming a nearly orthogonal re-
lationship. As the training progresses, (e.g., from 160 to 400K),
the distribution of adaLN-Zero remains centered around zero, ex-
hibiting an increasing variance and a concomitant decrease in peak
amplitude. Concurrently, the distribution of adaLN-Mix, while ex-
panding peripherally, is also coalescing around zero, culminating
in an unimodal structure that is symmetrically centered on zero.
Though adaLN-Mix eventually overlaps with the distribution of
adaLN-Zero in Fig. 4 (e), the latter’s distribution is more compact,
with more values concentrated near zero.

Essentially, adaLN-Zero exhibits a more centralized initial parameter distribution, and morpholog-
ically, its initial distribution more closely approximates the distribution observed in Fig. 4 (e) than
does the adaLN-Mix. This could be the reason why adaLN-Zero converges faster and outperforms
adaLN-Mix significantly. From an entropy perspective, our calculations show that when adaLN-
Mix is transitioning to the target distribution, e.g., from 10K steps to 50K, entropy decreases by

5We use adaLN-Mix instead of adaLN-Step1 to eliminate the potential influence of the discrepancy in
update order of weights.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 6: Value distributions of WL
α in different blocks.

0.8, whereas adaLN-Zero leads to an increase in entropy. Typically, systems tend to evolve towards
higher entropy (the second law of thermodynamics). Therefore, adaLN-Zero is comparatively easier
to optimize and obtains better performance.

One might question, though we have globally analyzed all Wα in DiT, is it possible that the distri-
bution of Wα across different blocks could differ significantly from the global distribution, consid-
ering that zero-initialization is applied on a block-by-block basis? To investigate this, we examine
the value distributions of WL

α (L is block index) of DiT-XL/2 using adaLN-Zero after training for
just 10K iterations. As shown in Fig. 6, the distribution of WL

α in each block closely resembles the
pattern observed in Fig. 4 (b), indicating that the functions of WL

α across different block are likely
analogous. This finding also supports the rationale behind uniformly zero-initializing WL

α across
different blocks.

Remark. Intuitively speaking, our analysis should have concluded so far. However, we observe that
there are other zero-initialized modules in DiT. For the sake of completeness, we provide further

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Value distributions of the whole Wγ in DiT blocks during the training process.

analysis in the following for clarity. We also show value distributions of other non-zero-initialized
DiT modules in App. A.7 and zero convolution in ControlNet (Zhang et al., 2023) in App. A.8.

3.4 ANALYSIS ABOUT OTHER ZERO-INITIALIZED MODULES

Recall that in DiT blocks, Wγ and Wβ are zero-initialized in both adaLN-Zero and adaLN-Mix. In
addition to that, the FinalLayer module is also zero-initialized at the beginning, indicating that Wγf

,
Wβf

, and Wf are zero in both adaLN-Zero and adaLN-Mix. We want to investigate whether these
weights exhibit behavior similar to Wα.

Figure 8: Value distributions of Wγf
in FinalLayer during the training process.

Analysis about Wγ and Wβ . We present the distribution variations of the entire Wγ in DiT blocks
as training progresses in Fig. 7. It is observed that, regardless of whether it is adaLN-Zero or adaLN-
Mix, Wγ rapidly formulates a pattern similar to that of Wα in Fig. 4 at a very early stage. A similar
result is observed for Wβ as detailed in App. A.4. Furthermore, we also show the distribution of
WL

γ and WL
β in each DiT block in App. A.5. Basically, the distributions of WL

γ and WL
β in each

block share a similar pattern to their global ones as well as that of Wα. These results indicate that
WL

γ and WL
β may execute analogous functions in DiT blocks.

Analysis about Wγf
, Wβf

, and Wf . As training progresses, we illustrate the variations of value
distribution of Wγf

in Fig. 8, and that of Wβf
and Wf in App. A.6. We see that Wγf

, Wβf
, and Wf

exhibit different tendency. For example, Wγf
presents a bimodal distribution. These observations

suggest that they may not have a consistent update direction compared to Wγ and Wβ .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Remark. By comparing the results in Sec. 3.3 and Sec. 3.4, we empirically demonstrate that, al-
though the same zero-initialization strategy is used, weight distributions in different modules may
also be discrepant. On the other hand, though weights Wα, Wγ , and Wβ in the conditioning mech-
anism are zero-initialized, after a certain number of training steps, they transition from zero distri-
butions to Gaussian-like distributions 6. This characteristics inspires us to directly initialize these
weights with a suitable Gaussian distribution to accelerate training, which we put in the next section
to verify.

4 ADALN-GAUSSIAN

Table 2: Results of different
std settings. 0: adaLN-Zero

Std FID IS

0 78.99 14.19

5e-4 80.68 13.93
8e-4 79.49 14.54
1e-3 76.21 15.01
2e-3 78.91 14.33
5e-3 79.54 14.33
5e-2 84.37 13.67

Our insight is that, as training progresses, the weight distribution
gradually transitions from zero to a Gaussian-like distribution. Thus,
we can expedite this distribution shift by directly initializing the
weights via a Gaussian distribution to potentially accelerate training.

To leverage Gaussian distribution to initialize Wα, Wγ , and Wβ , we
need to determine the appropriate standard deviation (std), with the
mean value defaulting to 0. Intuitively, we can determine the std
value by approximating the weight distribution at a specific moment
during the training of adaLN-Zero. Moreover, this moment should
be neither too late, as initializing Wα, Wγ , and Wβ at a later stage
may impart learned priors incompatible with vanilla weights, nor too
early, as there may be minimal difference from zero-initialization (In
in App. A.9, we give a detailed result analysis about different std choices in Gaussian initialization.).
Therefore, based on Fig. 4, we heuristically select and ablate several std values to uniformly initialize
Wα, Wγ , and Wβ and train each variant for 50K iterations for simplicity. The results are presented in
Tab. 2 where std = 1e−3 yields the best performance among all variants, verifying the effectiveness
of our idea. We denote this initialization method as adaLN-Gaussian. The pytorch code below is
simple with only one line replaced.

1 for ind, block in enumerate(self.blocks):
2 nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
3 nn. init. constant_(block. adaLN_modulation[-1].weight, 0)
4 nn.init.normal_(block.adaLN_modulation[-1].weight, std=0.001)

Additionally, we conduct an ablation in Tab. 3 where we apply Gaussian initialization only for
Wα

7. This is the same as adaLN-Step1 but adaLN-Step1 uses default initialization for Wα. Hence
we denote this variant as adaLN-Step1-Gaussian. Recall that adaLN-Step1 is remarkably infe-
rior to adaLN-Zero while adaLN-Step1-Gaussian here unexpectedly matches and even outperforms
adaLN-Zero. This supports our hypothesis that a good initialized position in the optimization space
is the key. It also indicates that zero initialization may not be the best choice.

Table 3: Ablation study for Wα. 0, 0,
0: adaLN-Zero

Std (Wα, Wγ , Wβ) FID IS

0, 0, 0 78.99 14.19
1e-3, 0, 0 78.62 14.42
1e-3, 1e-3, 1e-3 76.21 15.01

Though the distributions of Wα, Wγ , and Wβ all resem-
ble Gaussian distribution, in Fig. 4 (b), Fig. 7 (b), and
Fig. 11 (b) discrepancies in their shapes persist, e.g., bot-
tom width. Thus, it is more appropriate to select std for
each of them independently. We perform a grid search
and empirically find that std(8e−4, 1.2e−3, 8e−4) pro-
duces the best FID. We denote this initialization as adaLN-
Gaussian-v2 and include the search results of adaLN-
Gaussian-v2 in App. A.10 for clarity.

Longer training time. To verify the effectiveness of our initialization strategies, as shown in Tab. 4,
we train DiT-XL/2 with longer training steps including 400K and 800K on ImageNet1K 256× 256
w/wo CFG. One can see that adaLN-Gaussian outperform adaLN-Zero by a large margin, demon-

6This similarity may be influenced by the denoising task, which gradually removes Gaussian noise. As our
focus is not on the reasons behind these patterns, we leave this exploration as future work.

7We observe that Wα plays a critical role in adaLN-Zero compared to adaLN, with its initial value signif-
icantly impacting model performance (adaLN-Zero vs. adaLN-Step1). Thus, we primarily ablate Wα rather
than Wγ and Wβ .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Initialization CFG Steps FID↓ sFID↓ IS↑ Precision↑ Recall↑

Longer training time:
DiT-XL/2 adaLN-Zero 1 400K 20.02 6.09 67.34 63.33 63.06
DiT-XL/2 adaLN-Gaussian 1 400K 17.86 6.06 73.07 64.51 62.64
DiT-XL/2 adaLN-Zero 1.5 400K 6.15 4.60 152.70 79.92 52.28
DiT-XL/2 adaLN-Gaussian 1.5 400K 5.28 4.62 164.62 80.75 52.65
DiT-XL/2 adaLN-Zero 1 800K 14.73 6.35 86.70 65.62 63.93
DiT-XL/2 adaLN-Gaussian 1 800K 13.14 6.11 92.98 66.50 63.92

Different DiT variants and larger image size:
DiT-B/2 adaLN-Zero 1 400K 42.72 8.29 33.28 49.02 62.80
DiT-B/2 adaLN-Gaussian 1 400K 42.55 8.13 33.82 49.05 63.30
DiT-L/2 adaLN-Zero 1 400K 24.40 6.47 57.47 60.14 63.21
DiT-L/2 adaLN-Gaussian 1 400K 23.05 6.39 60.49 61.44 62.27
DiT-L/4 adaLN-Zero 1 400K 45.71 9.26 32.00 46.61 60.71
DiT-L/4 adaLN-Gaussian 1 400K 44.11 9.06 33.13 47.51 61.42
DiT-XL/4512×512 adaLN-Zero 1 400K 35.21 8.00 42.42 65.87 62.70
DiT-XL/4512×512 adaLN-Gaussian 1 400K 34.68 7.86 42.75 65.95 61.90

Different DiT-based models:
LlamaVision-XL/2 adaLN-Zero 1 400K 21.66 6.61 65.66 60.78 63.78
LlamaVision-XL/2 adaLN-Gaussian 1 400K 20.26 6.20 68.82 62.06 63.90
U-DiT-L adaLN-Zero 1 200K 16.28 5.50 79.91 68.31 60.44
U-DiT-L adaLN-Gaussian 1 200K 15.56 5.53 82.70 68.72 60.40

Table 4: Comparison on longer training time, different DiT variants, larger image size, and more
DiT-based models. We additionally report sFID (Nash et al., 2021) and Precision/Recall (Kynkään-
niemi et al., 2019) as secondary metrics following DiT. CFG: Classifier-free guidance. For CFG, we
use DiT-XL/2’s best guidance value. We use ImageNet1K 256× 256 by default if not specified.

strating the superiority of our initialization strategies. We show more results in Fig. 1. We also show
the results of adaLN-Gaussian-v2 in App. A.10.

Generalization to different DiT variants and larger image size. To demonstrate the adaLN-
Gaussian is a general method, we conduct experiments on several commonly-used DiT variants
including DiT-B/2, DiT-L/2, and DiT-L/4. As shown in Tab. 4, we see that adaLN-Gaussian also
improves the performance of DiT-B/2, DiT-L/2, and DiT-L/4 though its parameter is set according
to DiT-XL/2 and may not be the best setting for these three variants. We further demonstrate the
generalization on ImageNet1K 512× 512. These results show the effectiveness of adaLN-Gaussian
and imply the great potential of our method after more precise case-by-case adjustments.

Generalization to other DiT-based models and datasets 8. Additionally, we further verify the
effectiveness of our method across different DiT-based models. As presented in Tab. 4, it is seen
that adaLN-Gaussian is also superior over adaLN-Zero for other DiT-based models including Lla-
maVision (Chu et al., 2024) and U-DiT (Tian et al., 2024), demonstrating the generalization of our
method. We also show the effectiveness of adaLN-Gaussian on more datasets including Tinyim-
agenet (Le & Yang, 2015), AFHQ (Choi et al., 2020), and CelebA-HQ (Karras et al., 2018) and
DiT-based SiT (Ma et al., 2024b) in App. A.12.

5 CONCLUSION

We study three key factors contributing to the performance discrepancy: an SE-like structure, a good
zero-initialized value, and a "gradual" update order of model weights. Moreover, our empirical ex-
periments suggest that a good zero-initialized value itself plays a more significant role among these
factors. Finally, inspired by the observed distribution variations in condition modulation weights,
we propose adaLN-Gaussian which uses Gaussian distributions to initialize condition modulations.
We conduct extensive experiments with DiT on ImageNet1K, demonstrating the effectiveness and
generalization of adaLN-Gaussian.

8To save GPU memory, we use the fast version of DiT Github code (https://github.com/
chuanyangjin/fast-DiT) featuring gradient checkpointing, mixed precision training, and pre-extracted
VAE features, all of which are employed in experiments of Tab. 4. Consequently, though we follow all the
training settings, the reported results may be slightly different from that of the original paper.

10

https://github.com/chuanyangjin/fast-DiT
https://github.com/chuanyangjin/fast-DiT

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 22669–22679, 2023.

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model
for layout generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18349–18358, 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-\sigma: Weak-to-strong training of diffusion trans-
former for 4k text-to-image generation. arXiv preprint arXiv:2403.04692, 2024a.

Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping
Luo, Tao Xiang, and Juan-Manuel Perez-Rua. Gentron: Diffusion transformers for image and
video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6441–6451, 2024b.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama backbone
for vision tasks. In European Conference on Computer Vision, volume 3, 2024.

Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew Abraham, Daniel Z
Kaplan, and Enrico Shippole. Scalable high-resolution pixel-space image synthesis with hourglass
diffusion transformers. In Forty-first International Conference on Machine Learning, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
transformers to 16 billion parameters. arXiv preprint arXiv:2407.11633, 2024.

Aosong Feng, Irene Li, Yuang Jiang, and Rex Ying. Diffuser: efficient transformers with multi-
hop attention diffusion for long sequences. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 12772–12780, 2023.

Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for proba-
bilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 11979–11987, 2024.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 23164–23173, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. arXiv preprint arXiv:2312.02139, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678,
2014.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for im-
proved quality, stability, and variation. In International Conference on Learning Representations,
2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 2019.

Sören Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order derivatives of
matrix and tensor expressions. Advances in neural information processing systems, 31, 2018.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez. Dlt: Conditioned layout generation
with joint discrete-continuous diffusion layout transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2106–2115, 2023.

Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
diffusion transformer with fine-grained chinese understanding. arXiv preprint arXiv:2405.08748,
2024.

Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, and Lei Bai. Fit:
Flexible vision transformer for diffusion model. arXiv preprint arXiv:2402.12376, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng Li, and Yu Liu. Exploring the role of large
language models in prompt encoding for diffusion models. arXiv preprint arXiv:2406.11831,
2024a.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024b.

Shentong Mo, Enze Xie, Ruihang Chu, Lanqing Hong, Matthias Niessner, and Zhenguo Li. Dit-3d:
Exploring plain diffusion transformers for 3d shape generation. Advances in neural information
processing systems, 36:67960–67971, 2023.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review on weight initialization
strategies for neural networks. Artificial intelligence review, pp. 291–322, 2022.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter Battaglia. Generating images with sparse
representations. In International Conference on Machine Learning, pp. 7958–7968. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), pp. 211–252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu, and Yunhe Wang. U-dits: Downsample
tokens in u-shaped diffusion transformers. arXiv preprint arXiv:2405.02730, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Rui Zhu, Yingwei Pan, Yehao Li, Ting Yao, Zhenglong Sun, Tao Mei, and Chang Wen Chen. Sd-dit:
Unleashing the power of self-supervised discrimination in diffusion transformer. arXiv preprint
arXiv:2403.17004, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 COMPARISON ON INCEPTION SCORE

We also show the comparison on Inception Score (IS) in Fig. 9. We see that adaLN-Step1 outper-
forms adaLN but is inferior to adaLN-Zero in Fig. 9 (a), indicating again that adding scaling element
α is effective in improving model performance. Also, we observe that adaLN-Mix has a marginal
enhancement on adaLN-Step1, implying that the discrepancy in gradient update is not the key rea-
son for the large disparity between adaLN-zero and adaLN-Step1. At the same time, in Fig. 9 (b), in
the initial iterations when the discrepancy of gradient update happens, we do not see any significant
variation on IS, which also demonstrates that the influence of update discrepancy is not critical.

0 100K 200K 300K 400K
Training Step

10

20

30

40

50

60

70

In
ce

pt
io

n
Sc

or
e

adaLN-Zero
adaLN-Step1
adaLN
adaLN-Mix

1 2 4 8 20 160
Training Step

1.2000

1.2025

1.2050

1.2075

1.2100

1.2125

1.2150

1.2175

1.2200

In
ce

pt
io

n
Sc

or
e

adaLN-Zero
adaLN-Step1
adaLN

(a) (b)

Figure 9: Comparing adaLN-Zero with adaLN as well as different initialization strategies on Incep-
tion Score (IS). We use the largest model DiT-XL/2 for all the experiments above.

A.2 THE STRUCTURE OF SQUEEZE-AND-EXCITATION MODULE

Pool

Scale

Linear

Linear

ReLU
Main
Path

Data flow

Figure 10: The
structure of SE
module.

In Fig. 10, we illustrate the structure of Squeeze-and-Excitation (SE) module.
We can see that SE module serves as a side pathway compared to the main
path.

A.3 GRADIENT DERIVATION OF A SIMPLIFIED DIT

To calculate loss, for simplicity, we only consider MSE loss given the target
noise ϵ sampled from N(0, I) and formulate L as L = 1

C

∑m
i=1

∑n
j=1(ϵ̄ij −

ϵij)
2, where C = m ∗ n and ϵij is the element in row i and column j. With

this formula, we can obtain ∂L
∂ϵ̄ij

= 2
C (ϵ̄ij − ϵij). Hence, we deliver a general

formula:

∂L
∂ϵ̄

=
2

C
(ϵ̄− ϵ) . (3)

Further, built on Eq. 3, we can also derive the gradient of Wf , Wffm, Watt,
and Wpat, i.e., ∂L

∂Wf
, ∂L
∂Wffm

, ∂L
∂Watt

, ∂L
∂Wpat

, respectively. Before we present

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

these formulas, we first introduce a substitution to ease our calculation:

ϵ̄ = xf ∗Wf (4)
= {[(xm2

∗Wffm)⊙ α2 + xout1]⊙ (1 + γf) + βf} ∗Wf (5)

=

{
[((((xm1

∗Watt)⊙ α1 + xp)⊙ (1 + γ2) + β2) ∗Wffm)⊙ α2

+ (xm1
∗Watt)⊙ α1 + xp]⊙ (1 + γf) + βf

}
∗Wf (6)

=


[((((((x ∗Wpat)⊙ (1 + γ1) + β1) ∗Watt)⊙ α1 + (x ∗Wpat))

⊙ (1 + γ2) + β2) ∗Wffm)⊙ α2 + (((x ∗Wpat)⊙ (1 + γ1)

+ β1) ∗Watt)⊙ α1 + (x ∗Wpat)]⊙ (1 + γf) + βf

 ∗Wf . (7)

With the substitution, we can easily derive ∂L
∂Wf

by using Eq. 4. To derive ∂L
∂Wffm

, we can use Eq. 5.

To derive ∂L
∂Watt

, we can use Eq. 6. Similarly, to derive ∂L
∂Wpat

, we can use Eq. 7. Thus, we calculate
the derivation with the help of Laue et al. 9 and present the formula of each below:

∂L
∂Wf

= x⊤
f ∗ ∂L

∂ϵ̄
∗ I⊤ = x⊤

f ∗ 2

C
(ϵ̄− ϵ) , (8)

∂L
∂Wffm

= x⊤
m2

∗ ((2
C
(ϵ̄− ϵ) ∗W⊤

f)⊙ (1 + γf)⊙ α2) , (9)

∂L
∂Watt

= x⊤
m1

· (((T0 ⊙ α2) ·W⊤
ffm)⊙ (1 + γ2)⊙ α1) + x⊤

m1
· (T0 ⊙ α1) , (10)

where
T0 = (

2

C
(ϵ̄− ϵ) ∗W⊤

f)⊙ (1 + γf) , (11)

and
∂L

∂Wpat
= x⊤ ·(((T2⊙α1)·W⊤

att)⊙(1+γ1))+x⊤ ·T2+x⊤ ·(((T1⊙α1)·W⊤
att)⊙(1+γ1))+x⊤ ·T1

(12)
where T1 is

T1 = (
2

C
(ϵ̄− ϵ) ∗W⊤

f)⊙ (1 + γf) , (13)

T2 is
T2 = ((T1 ⊙ α2) ∗W⊤

ffm)⊙ (1 + γ2) . (14)

Besides these parameters directly involved in input calculations above (Wf , Wpat, Watt, and
Wffm), we need to figure out how γf , βf , γ2, β2, α2, γ1, β1, and α1 update as they also influence
the parameters’ gradients above as well as the output prediction. Hence, we give their corresponding
gradients, respectively (omitting the bias term for simplicity):

∂L
∂Wγf

= (c⊙ σ(c))⊤ ∗ ((2
C
(ϵ̄− ϵ) ∗W⊤

f)⊙ xout2) , (15)

∂L
∂Wβf

= (c⊙ σ(c))⊤ ∗ 2

C
(ϵ̄− ϵ) ∗W⊤

f , (16)

∂L
∂Wα2

= (c⊙ σ(c))⊤ ∗ (T1 ⊙ xffm) , (17)

∂L
∂Wγ2

= (c⊙ σ(c))⊤ ∗ (((T1 ⊙ α2) ∗W⊤
ffm)⊙ xout1) , (18)

∂L
∂Wβ2

= (c⊙ σ(c))⊤ ∗ (T1 ⊙ α2) ∗W⊤
ffm , (19)

∂L
∂Wα1

= (c⊙ σ(c))⊤ ∗ (T2 ⊙ T3) + (c⊙ σ(c))⊤ ∗ (T1 ⊙ T3) , (20)

9https://www.matrixcalculus.org/

15

https://www.matrixcalculus.org/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Where T3

T3 = ((β1 + (x ∗Wpat)⊙ (1 + γ1)) ∗Watt) . (21)
∂L

∂Wγ1

= (c⊙σ(c))⊤ ∗(((T2⊙α1)∗W⊤
att)⊙xp)+(c⊙σ(c))⊤ ∗(((T1⊙α1)∗W⊤

att)⊙xp)) , (22)

and
∂L

∂Wβ1

= (c⊙ σ(c))⊤ ∗ (T2 ⊙ α1) ∗W⊤
att + (c⊙ σ(c))⊤ ∗ (T1 ⊙ α1) ∗W⊤

att , (23)

Where c is condition input and σ(·) is sigmoid function.

A.4 VALUE DISTRIBUTION OF THE WHOLE Wβ IN DIT BLOCKS

We present the value distributions of the whole Wβ of DiT-XL/2 using adaLN-Zero and adaLN-Mix
trained for 400K iterations in Fig. 11. Similar to Wγ , Wβ quickly formulates a pattern similar to
that of Wα in Fig. 4 at a very early stage regardless of whether it is adaLN-Zero or adaLN-Mix.

Figure 11: Value distributions of the whole Wβ in DiT blocks during the training process.

A.5 VALUE DISTRIBUTIONS OF WL
γ AND WL

β IN DIFFERENT BLOCKS

We also present the value distributions of WL
γ and WL

β in different blocks of DiT-XL/2 using adaLN-
Zero trained at a very early stage (for 10K iterations). Fig. 12 and Fig. 13 illustrate the results of WL

γ

and WL
β , respectively. One can see that, basically, the distributions of WL

γ and WL
β in each block

share a similar pattern to their global ones as well as that of Wα. Moreover, similar to WL
α , the peak

value and bottom width of WL
γ and WL

β vary across blocks and exhibit different std, reflecting the
update preference of each block. Built on this observation, this motivates us to initialize Wα, Wγ ,
and Wβ with a more sophisticated initialization strategy. More details are in App. A.11.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 12: Value distributions of WL
γ in different blocks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 13: Value distributions of WL
β in different blocks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 14: Value distributions of Wβf
in FinalLayer during the training process.

Figure 15: Value distributions of Wf in FinalLayer during the training process.

A.6 VALUE DISTRIBUTIONS OF Wβf
AND Wf

Table 5: A grid search of
std for Wβf

. 0: AdaLN-
Gaussian-v1

Std FID IS

0 76.21 15.01

2e-4 78.22 14.53
5e-4 82.05 13.78
1e-3 80.43 14.03
2e-3 77.45 14.74
3e-3 77.09 14.84
4e-3 78.47 14.39

Fig. 14 and Fig. 15 illustrate the variations of value distribution of
Wβf

and Wf under different training time. We can see that Wβf
and

Wf present completely different variation tendencies. Even though,
we also notice that Wβf

shares a similar pattern to Wα at a very early
stage regardless of whether it is adaLN-Zero or adaLN-Mix. This
inspires us to explore whether initializing Wβf

together with Wα,
Wγ , and Wβ could further accelerate training. Based on the setting
std(1e− 3, 1e− 3, 1e− 3) for Wα, Wγ , and Wβ , we perform a grid
search of std for Wβf

as shown in Tab. 5. It appears that initializing
Wβf

with a wide range of std values does not enhance the model’s
performance. In light of these results, we do not consider initializing
Wβf

with Gaussian and keep its original zero-initialization strategy
for all the experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 16: Value distributions of Attention module including qkv and proj during training process.

Figure 17: Value distributions of Mlp module including fc1 and fc2 during training process.

A.7 VALUE DISTRIBUTIONS OF MORE DIT MODULES

We visualize the value distribution of more DiT modules including Attention and Mlp in DiT Block,
and PatchEmbed as shown in Fig. 16, Fig. 17, and Fig. 18, respectively. Though they are all ini-
tialized with Xavier uniform in DiT, the weight distributions in both Attention and MLP gradually
transition to a Gaussian-like distribution while PatchEmbed does not. We also visualize the value
distribution of LabelEmbedder and TimestepEmbedder in Fig. 19. We see that after normal ini-
tialization done in DiT, their weight distributions consistently show a Gaussian-like distribution.
Naturally, we can consider Gaussian initializations for these modules as well except PatchEmbed to
accelerate training. For example, we could uniformly use Gaussian initialization for Attention and
Mlp in DiT Block. We set the mean to 0 and use several choices for std such as 0.001, 0.01, 0.02,
0.03, and 0.04. We use DiT-XL-2 and train for 50K steps for simplicity. The results are shown in
Tab. 6. We see that the performance is inferior to the default initialization. Therefore, more precise
hyperparameter tuning may be needed for these modules to further improve the performance in the
future.

Std Default 0.001 0.01 0.02 0.03 0.04

FID 76.21 92.09 85.28 80.89 91.21 98.50

Table 6: Different Gaussian std initialization choices for Attention and Mlp in DiT Block.

A.8 VALUE DISTRIBUTIONS OF ZERO-CONVOLUTION IN CONTROLNET

Besides adaLN-Zero in DiT, we also consider a similar module in ControlNet (Zhang et al., 2023)
called zero convolution. In Fig. 20, we visualize the weight distributions of four widely-used Con-
trolNet variants including Canny, Depth, Pose, and Segmentation. Their distributions are still a
Gaussian-like distribution. Hence, is it also beneficial from using Gaussian distribution to initialize
these modules in ControlNet? Since it is not our main focus, we leave it as future work.

A.9 RESULT ANALYSIS ABOUT DIFFERENT STD CHOICES IN GAUSSIAN INITIALIZATION

Intuitively, since the weights of the conditional mechanisms we counted are Gaussian-like distribu-
tions, there should exist an optimal std hyperparameter when initializing these weights with Gaus-
sian, and naturally, the values on both sides of this hyperparameter are relatively unsuitable. To

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 18: Value distributions of PatchEmbed during training process.

Figure 19: Value distributions of LabelEmbedder and TimestepEmbedder during training process.

some extent, the performance of Gaussian initialization with different std choices in Tab 2 which
exhibits a U-shaped trending also proves it. To be more rigorous, we analyze this U-shaped trending
by leveraging two representative settings, i.e., std = 0.0005 and std = 0.05, which the two ends of
this U-shaped trending.

We first illustrate their weight distributions of Wα in the conditioning mechanism and compare them
with that of adaLN-Zero and adaLN-Gaussian (std=0.001). The results are shown in Fig. 21. We
find that a large std std = 0.05 presents a relatively uncompact distribution and exhibits a significant
discrepancy in distribution shape compared to the rest settings. This result indicates that a large std
may be incompatible with other parameters, resulting in a slow speed of convergence and a poor
performance. Moreover, we consider this a step further. Theoretically, if we further increase the std
value, it would become close to the default initialization in adaLN-Step1 (xavier_uniform) while the
performance of adaLN-Step1 is also bad.

For a small std std=0.0005, it can be seen that the distribution of Wα is quite similar to that of adaLN-
Zero and adaLN-Gaussian (std = 0.001). However, there still exists a slight discrepancy. To make
this discrepancy clearer, we average the absolute values of the differences between each element in
Wα corresponding to std = 0.0005 and adaLN-Zero, and std = 0.0005 and adaLN-Gaussian. The
element-wise averaged results are 0.0121 and 0.0124, respectively. By comparing the results (0.0121

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 20: Weight distributions of zero convolution in four ControlNet variants.

< 0.0124), it is shown that small std leads to weights relatively closer to that of zero-initialization
(adaLN-Zero). And, to some extent, the corresponding performance also proves it where std=0.0005
produces 80.68 for FID, closer to adaLN-Zero (78.99) compared to adaLN-Gaussian (76.21).

Figure 21: Value distributions of Wα with different std in Gaussian initialization.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.10 ADALN-GAUSSIAN-V2

Table 7: Results of independent std settings
for Wα, Wγ , Wβ . 0, 0, 0: adaLN-Zero

Std (Wα, Wγ , Wβ) FID IS

0, 0, 0 78.99 14.19
1e-3, 2e-3, 8e-4 78.22 14.37
1e-3, 1.2e-3, 8e-4 76.57 15.01
8e-4, 1.2e-3, 8e-4 76.12 14.90
8e-4, 1.2e-3, 1e-3 77.18 14.85
8e-4, 1e-3, 8e-4 80.31 14.23
8e-4, 1.4e-3, 8e-4 77.53 14.54
8e-4, 1.6e-3, 8e-4 78.24 14.55
8e-4, 1.6e-3, 4e-4 79.03 14.31

We begin by considering std(1e−3, 2e−3, 8e−4) 10,
restrict from 8e-4 to 2e-3 inspired by Tab. 2, and
perform a grid search in Tab. 7. It is observed that
std(8e − 4, 1.2e − 3, 8e − 4) produces the best FID.
We denote this initialization as adaLN-Gaussian-v2.

Based on adaLN-Gaussian-v2, we further explore a
more sophisticated block-wise initialization. This is
motivated by our observation that the peak value and
bottom width of WL

α , WL
γ , and WL

β varies across DiT
blocks in Fig. 6, Fig. 12, and Fig. 13, indicating that
different blocks may prefer different std. At our pre-
liminary attempt in App. A.11, we show that block-
wise initialization is inferior to the base setting in FID
but outperforms the base setting in IS. This highlights
the potential of block-wise initialization and requires more effort which we leave as future work.

Furthermore, we compare the performance of adaLN-Gaussian-v2 with adaLN-Zero and adaLN-
Gaussian under longer training time as shown in Tab 8. It is seen that adaLN-Gaussian-v2 also
outperforms adaLN-Zero, further verifying the effectiveness of our strategy of Gaussian initial-
ization. On the other hand, considering that adaLN-Gaussian achieves superior results to that of
adaLN-Gaussian-v2 and is easier to implement, we primarily use adaLN-Gaussian in Tab 4.

Model Initialization CFG Steps FID↓ sFID↓ IS↑ Precision↑ Recall↑

DiT-XL/2 adaLN-Zero 1 400K 20.02 6.09 67.34 63.33 63.06
DiT-XL/2 adaLN-Gaussian 1 400K 17.86 6.06 73.07 64.51 62.64
DiT-XL/2 adaLN-Gaussian-v2 1 400K 18.77 6.08 70.07 63.92 62.72

Table 8: Comparison among adaLN-Zero, adaLN-Gaussian, and adaLN-Gaussian-v2.

A.11 A PRELIMINARY EXPLORATION OF BLOCK-WISE INITIALIZATION

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
Block Index

100

200

300

400

500

600

700

Hi
gh

es
t P

oi
nt

 D
en

sit
y

Wbeta

Wbeta Fit
Wgamma

Wgamma Fit
Walpha

Walpha Fit

Figure 22: Three polynomial functions
to fit the peak values of Wα, Wγ , and
Wβ in all blocks.

We dive into every block in DiT and find that there
also exist discrepancies in peak value among different
WL

α in Fig. 6. WL
γ and WL

β also hold in Fig. 12 and
Fig. 13. Generally, the greater the peak value is, the
smaller the std is, motivating us to design a more so-
phisticated block-wise initialization strategy. Specifi-
cally, we record the peak value in all blocks for WL

α ,
WL

γ , and WL
β , respectively, and use three heuristic

polynomial functions to fit these points as shown in
Fig. 22. For WL

α , we use 7th degree polynomial whose
coefficients are [−2.49635921e − 6, 1.24680129e −
4, 1.17149262e − 3, −1.70585560e − 1, 3.63484494,
−2.94971466e+1, 6.74700382e+1, 4.85897902e+2].
For WL

γ and WL
β , we use 5th degree polynomial. Their

coefficients are [−2.46024908e − 4, 2.39970674e − 2,
−8.67912602e−1, 1.45429227e+1, −1.08645122e+2,
4.11540316e+2] and [−1.21059796e−4, 1.09417700e−
2, −3.25623123e − 1, 4.15804173, −2.00345083e + 1,
4.20334676e+ 2], respectively. For WL

α in L−th block,
we use the following formula to calculate its std value:

10We empirically find that N(0, 1e− 3) closely matches the shape of the Wα distribution in Fig. 4 (b) (10K
iterations). Therefore, based on this observation, we begin our further refinement by estimating the std for Wγ

and Wβ with their corresponding distribution shapes in 10K iterations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

σL
α = 0.0008/(Polyα(L)/449.9321) , (24)

where Polyα is the polynomial function for α, 0.0008 is the base std inherited from Tab. 7, and
449.9321 is the averaged peak value across WL

α in all blocks.

Table 9: Results of block-wise ini-
tialization. ✔: with block-wise

Std (Wα, Wγ , Wβ) FID IS

8e-4, 1.2e-3, 8e-4 76.12 14.90

✘, ✔, ✔ 79.28 14.35
✔, ✔, ✔ 76.63 14.96

Similarly, for WL
γ and WL

β , we use the following formulas to
calculate their std value, respectively:

σL
γ = 0.0012/(Polyγ(L)/444.8248) , (25)

σL
β = 0.0008/(Polyβ(L)/175.0044) . (26)

We first consider employing block-wise initialization for WL
γ

and WL
β since they are well fitted and use 0.0008 for WL

α by default. Afterward, we initialize them
all in a block-wise manner. As shown in Tab. 9, block-wise initialization is inferior to the base
setting in FID50K but outperforms the base setting in IS. We leave more exploration as future work.

A.12 MORE EXPERIMENTS ON EFFECTIVENESS

To further show the effectiveness of adaLN-Gaussian, we add more experiments on other datasets
including Tinyimagenet (Le & Yang, 2015), AFHQ (Choi et al., 2020), and CelebA-HQ (Karras
et al., 2018) using the best-performing DiT-XL/2 with 50K training steps while keeping all train-
ing settings. Moreover, we also use another DiT-based model SiT-XL/2 (Ma et al., 2024b) training
on ImageNet1K 256x256 for 50K to further show the effectiveness and generalization of adaLN-
Gaussian. We report all the FID results in Tab. 10. These results show that adaLN-Gaussian consis-
tently outperforms adaLN-Zero, demonstrating the effectiveness of our method.

Tiny ImageNet AFHQ CelebA-HQ ImageNet1K (SiT-XL/2)

adaLN-Zero 37.11 13.52 8.01 71.90
adaLN-Gaussian 36.07 12.58 7.54 67.15

Table 10: Comparisons between adaLN-Zero and adaLN-Gaussian on another three datasets includ-
ing Tinyimagenet, AFHQ and CelebA-HQ, and another DiT-based model SiT. We set CFG=1.

24

