
A Algorithms

We present our algorithm sketches for STG Transformer offline pretraining and online reinforcement
learning with intrinsic rewards respectively.

Algorithm 1 STG Transformer Offline Pretraining

Input: STG Transformer Tσ, feature encoder Eξ, discriminator Dω, expert dataset De =
{τ1, τ2, . . . , τm}, τ i = {si1, si2, . . . }, buffer B, loss weights α, β, κ .

1: Initialize parametric network Eξ, Tσ, Dω randomly.
2: for e← 0, 1, 2 . . . do ▷ epoch
3: Empty buffer B.
4: for b← 0, 1, 2 . . . |B| do ▷ batchsize
5: Stochastically sample state sequence τ i from De.
6: Stochastically sample timestep t and n adjacent states {sit, . . . , sit+n−1} from τ i.
7: Store {sit, . . . , sit+n−1} in B.
8: end for
9: Update Dω: ω ← clip(ω − ϵ∇ωLdis,−0.01, 0.01).

10: Update Eξ and Tσ concurrently by minimizing total loss αLmse + βLadv + κLtdr.
11: end for

Algorithm 2 Online Reinforcement Learning with Intrinsic Rewards

Input: pretrained Eξ, Tσ, Dω , policy πθ, MDPM, intrinsic coefficient η.
1: Initialize parametric policy πθ with random θ randomly and resetM.
2: while updating πθ do ▷ policy improvement
3: Execute πθ and store the resulting n state transitions {(s, s′)}t+n

t .
4: Use Eξ to obtain n real latent transitions {(e, e′)}t+n

t .
5: Use Tσ to obtain n predicted latent transitions {(e, ê′)}t+n

t .
6: Use Dω to calculate intrinsic rewards: ∆t+n

t = {Dω(e, ê
′)}t+n

t − {Dω(e, e
′)}t+n

t .
7: Perform PPO update to improve πθ with respect to ri = −η∆.
8: end while

B Environment Details

B.1 Atari

We directly adopt the official default setting for Atari games. Please refer to https://www.
gymlibrary.dev/environments/atari for more details.

B.2 Minecraft

Environment Settings

Table 1 outlines how we set up and initialize the environment for each harvest task.

Table 1: Environment Setup for Harvest Tasks
Harvest Item Initialized Tool Biome

milk empty bucket plains

wool shears plains

tallgrass shears plains

sunflower diamond shovel sunflower plains

14

https://www.gymlibrary.dev/environments/atari
https://www.gymlibrary.dev/environments/atari

(a) Plains (b) Sunflower Plains

Figure 1: Biomes in Minecraft

Biomes. Our method is tested in two different biomes: plains and sunflower plains. Both the plains
and sunflower plains offer a wider field of view. However, resources and targets are situated further
away from the agent, which presents unique challenges. Figure 1a and 1b show the biomes of plains
and sunflower plains respectively.

Observation Space. Despite MineDojo offering an extensive observation space, encompassing RGB
frames, equipment, inventory, life statistics, damage sources, and more, we exclusively rely on the
RGB information as our observation input.

Action Space. In Minecraft, the action space is an 8-dimensional multi-discrete space. Table 2 lists
the descriptions of action space in the MineDojo simulation platform. At each step, the agent chooses
one movement action (index 0 to 4) and one optional functional action (index 5) with corresponding
parameters (index 6 and index 7).

Table 2: Action Space of MineDojo Environment
Index Descriptions Num of Actions

0 Forward and backward 3
1 Move left and right 3
2 Jump, sneak, and sprint 4
3 Camera delta pitch 25
4 Camera delta yaw 25
5 Functional actions 8
6 Argument for “craft” 244
7 Argument for “equip”, “place”, and “destroy” 36

C Offline Pretraining Details

Hyperparameters. Table 3 outlines the hyperparameters for offline pretraining in the first stage.

Network Structure. Different architectures for feature encoding are designed for different environ-
ments. In Atari, we stack four gray-scale images of shape (84,84) to form a 4-channel state and use
the feature encoder architecture as shown in Figure 2a. In Minecraft, a 3-channel image of shape
(160,256,3) is directly regarded as a single state, which is processed by a feature encoder with more
convolutional layers and residual blocks to capture more complex features in the ever-changing
Minecraft world. The detailed structure of the feature encoder for Minecraft is illustrated in Figure
2b. All discriminators, taking in two 512-dimension embeddings from the feature encoder, follow the
MLP structure of FC(1024,512)→FC(512,256)→FC(256,128)→FC(128,64)→FC(64,32)→FC(32,1)
with spectral normalization.

Representation Visualization. We draw inspiration from Grad-CAM [47] to visualize the saliency
map of offline-pretrained feature encoder to assess the effectiveness and advantages of the repre-
sentation of STG. Specifically, we compare the visualization results of STG and ELE in the Atari
environment as illustrated in Figure 3. Each figure presents three rows corresponding to the features
captured by the three layers of the convolutional layers, respectively. The saliency maps demonstrate
that STG exhibits a particular focus more on local entities and dynamic scenarios and effectively
ignores extraneous distractions. As a result, compared with ELE, STG shows greater proficiency in

15

Table 3: Hyperparameters for Offline Pretraining

Hyperparameter Value
STG optimizer AdamW

Discriminator optimizer RMSprop
LR 1e-4

GPT block size 128
CSA layer 3
CSA head 4

Embedding dimension 512
Batch size 16

MSE coefficient 0.5
Adversarial coefficient 0.3

TDR coefficient 0.1
WGAN clip range [-0.01,0.01]

Type of GPUs A100, or Nvidia RTX 4090 Ti

Stride:4
Conv:8×8

Relu

(1,4,84,84)

Stride:2
Conv:4×4

Relu

(1,32,20,20)

Stride:1
Conv:3×3

Relu

(1,64,9,9)

(1,64,7,7)

(1,512)

Flatten
&

Linear

(a) Atari

(1,3,256,160)

Stride:4
Conv:8×8

LeakyRelu

BatchNormResBlock

(1,32,128,80)

Stride:2
Conv:3×3

LeakyRelu

BatchNormResBlock

(1,64, 64, 40)

Stride:2
Conv:3×3

LeakyRelu

BatchNormResBlock

(1,64,32,20)

Conv:3×3
Stride:2

LeakyRelu

BatchNorm

(1,64,16,10)

Conv:3×3
Stride:2

LeakyRelu

BatchNorm

ResBlock

ResBlock

Conv:3×3
Stride:2

LeakyRelu

BatchNorm

(1,64,8,5)

(1,128,4,3)

Stride:2
Conv:3×3

LeakyRelu

BatchNormResBlock

(1,512)

Conv(in,out,3,1)

Conv(out,out,3,1)

BatchNorm

Relu

BatchNorm

Conv(in,out,3,1)
BatchNorm

Flatten
&

Linear

(b) Minecraft

Figure 2: Feature encoder structure for Atari and Minecraft

identifying information strongly correlated with state transitions, thereby generating higher-quality
rewards for downstream reinforcement learning tasks.

16

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(a) Saliency maps of different CNN layers in Breakout

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(b) Saliency maps of different CNN layers in Freeway

17

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(c) Saliency maps of different CNN layers in Qbert

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210
0 40 80 120 160

0

30

60

90

120

150

180

210 0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

0

30

60

90

120

150

180

210

(d) Saliency maps of different CNN layers in Space Invaders

Figure 3: Saliency maps (SM) of different CNN layers in Atari tasks. The first two columns
display the normalized saliency maps and corresponding observations of STG and the last two
columns represent SM and corresponding observations of ELE. Through comparison, STG is better
at capturing fine-grained features which are strongly correlated with transitions.

18

D RL Training Details

The general training hyperparameters of PPO for downstream RL tasks in the second stage are listed
in Table 4.

Table 4: General Hyperparameters for PPO

Hyperparameter Value
Optimizer Adam

Learning rate 2.5e-4
RL discount factor 0.99

Number of workers (CPU) 1
Parallel GPUs 1
Type of GPUs A100, or Nvidia RTX 4090 Ti

Minecraft image shape (160,256,3)
Atari stacked state shape (84,84,4)

Clip ratio 0.1
PPO update frequency 0.1

Entropy coefficient 0.01

Neither the discriminative reward from STG nor the progression reward from ELE is bounded.
Therefore, it is reasonable to adjust certain hyperparameters to bring out the best performance of each
algorithm in each task. In Table 5, the coefficient of intrinsic reward η(η > 0) for different baselines
is tuned to balance the value scale and GAE λ(0 < λ < 1) is tuned to adjust the impact of intrinsic
rewards in different tasks.

Table 5: Specific Hyperparameters for Different Tasks

Task ηSTG ηELE ηGAIfO λGAE

Breakout 0.6 1.0 2.0 0.1
Freeway 2.0 0.1 1.0 0.15

Qbert 5.0 0.05 2.0 0.95
Space Invaders 6.0 0.1 2.0 0.95

Milk a Cow 1.0 0.5 - 0.8
Gather Wool 10.0 0.1 - 0.8

Harvest Tallgrass 1.0 0.1 - 0.95
Pick a Flower 1.0 0.1 - 0.95

The coefficients of STG* (noted as ηri + νr∗) in four Atari tasks are reported in Table 6.

Table 6: Coefficients for STG* in Atari Tasks

Task η ν

Breakout 0.6 0.01
Freeway 2.0 0.1

Qbert 5.0 0.03
Space Invaders 6.0 0.01

Training Details. For Minecraft tasks, we adopt a hybrid approach utilizing both PPO [40] and Self-
Imitation Learning (SIL) [48]. Specifically, we store trajectories with high intrinsic rewards in a buffer
and alternate between PPO and SIL gradient steps during the training process. This approach allows
us to leverage the unique strengths of both methods and achieve superior performance compared to
utilizing either method alone [46].

19

E Further Experiments

Intrinsic Reward Design. In Equation (9), we define our intrinsic reward ri as the difference
between rguide and rbase:

rit = Dω

(
Eξ (st) , Eξ (st+1)

)
−Dω

(
Eξ (st) , Tσ (Eξ (st))

)
= rguidet − rbaset . (10)

On the one hand, pretrained Dω clearly provides informative judgment rguide of transition quality
during online interaction. On the other hand, the baseline reward rbase, solely relying on the current
state st, serves as a baseline to normalize ri to a relatively lower level. In this section, we aim to
investigate the necessity of incorporating rbase.

To assess the significance of rbase, we conducted experiments on the four Atari tasks utilizing only
rguide as the intrinsic reward, which is similar to previous adversarial methods like GAIfO [3]. In
order to bring the scale of rguide in line with ri, we employ running normalization and bound the
values within the range of [−1, 1] to mitigate the negative influence of outliers. All other settings
remain unchanged. We denote this ablation baseline as STG’.

As illustrated in Figure 4, rguide yields comparable final performance in Breakout and Space Invaders
while failing to achieve satisfactory performance in Freeway and Qbert. In contrast, by leveraging
rbase, which provides a unique reference from expert datasets for each individual st, we observe
reduced variance and improved numerical stability compared to the running normalization trick that
calculates batch means for normalization.

(a) Breakout (b) Freeway (c) Qbert (d) Space Invaders

Figure 4: Atari experiments comparing using rguide (STG’) and ri (STG) as intrinsic reward.

F Additional Ablations

Multi-Task STG. Given the four times larger datasets, we enlarge the size of the STG Transformer
by increasing the number of heads (24) and layers (16) within the multi-head causal self-attention
modules, augmenting the model capacity by about four times. Here we further assess the efficacy of
multi-task adaptation of the STG Transformer in Minecraft. We tune the intrinsic coefficient η to be
5 for Breakout, Qbert, SpaceInvaders, “milk a cow”, “harvest tallgras”, “pick a flower”, and 10 for
Freeway and “gather wool”. STG-Multi results in Minecraft are illustrated in Figure 5. As all four
tasks share a similar biome in MineDojo, STG-Multi may provide less clear guidance for the agent
than STG in downstream tasks, which may cause their discrepancy in performance.

0 200 400 600 800 1000

Epoch

0.00

0.05

0.10

0.15

0.20

STG

STG-Multi

(a) Pick a flower

0 200 400 600 800 1000

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30
STG

STG-Multi

(b) Milk a cow

0 200 400 600 800 1000

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

STG

STG-Multi

(c) Harvest tallgrass

0 200 400 600 800 1000

Epoch

0.00

0.02

0.04

0.06

STG

STG-Multi

(d) Gather wool

Figure 5: Multi-task STG (STG-Multi) is pretrained on the whole Minecraft datasets to guide RL
training in downstream tasks..

20

G Additional Visualizations

Intrinsic Return. As no environmental rewards participate in updating policy, the ultimate objective
of LfVO is to maximize the expectation of cumulative dense intrinsic rewards, namely intrinsic return.
Figure 6 shows the learning curves of smoothed intrinsic return in Atari and Minecraft. The rising
trend proves that online collected observation distribution is getting closer to expert observation
distribution during training, indicating the effectiveness of the offline-pretrained Modules.

0.00 0.25 0.50 0.75 1.00
Transition ×107

50

100

150

(a) Breakout

0 2 4
Transition ×106

220

240

260

(b) Freeway

0.00 0.25 0.50 0.75 1.00
Transition ×107

0

5000

10000

15000

(c) Qbert

0.00 0.25 0.50 0.75 1.00
Transition ×107

50

100

150

(d) Space Invaders

Figure 6: The ultimate objective of LfVO is to maximize the expectation of cumulative dense
intrinsic rewards, namely intrinsic return. The rising trend proves that online collected observation
distribution is getting closer to expert observation distribution.

Multi-Trajectories Visualization. As an extension to increase diversity, we additionally visualize
more trajectories in SpaceInvaders in Figure 7. We randomly sample five trajectories in the expert
dataset and use t-SNE to visualize the embedding sequences encoded by STG and STG- respectively.
Expert trajectories of STG exhibit more continuity in adjacent states compared with STG-. This
is consistent with the visualization results in Figure 6. Furthermore, it can be observed that after
10M-step of training, the observation distribution is getting closer to expert, and the patterns of STG
are closer to exert in comparison with STG-. This reflects that our WGAN-style training indeed
generates meaningful reward signal to imitate the behavior of experts and TDR module accelerate the
process.

Figure 7: T-SNE visualization of embeddings of a random trajectory, a rollout trajectory and expert
trajectories in SpaceInvaders.

21

	Introduction
	Related Work
	Methodology
	Preliminaries
	Offline Pretraining Framework
	Online Reinforcement Learning

	Experiments
	Atari
	Minecraft
	Ablations

	Conclusion and Future Work
	Algorithms
	Environment Details
	Atari
	Minecraft

	Offline Pretraining Details
	RL Training Details
	Further Experiments
	Additional Ablations
	Additional Visualizations

