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A Appendix

A.1 Limitations

We propose an approach which exploits object features in addition to scene features for vision-and-
language navigation (VLN). Our approach is able to utilize object features for better visiolinguistic
alignment (see Section 5) despite the domain gap between the images used to train the object detector
and VLN data. Specifically, object features are obtained using a Faster R-CNN detector [1] trained on
photos from web (Visual Genome [2]), in which objects are typically well framed by the photographer.
On the other hand, the VLN datasets used in our experiments contain panoramic images from indoor
house scans that capture objects at viewing angles determined by the navigation path. The gap
between these two types of data could be eliminated by either fine-tuning or training detector directly
on indoor scenes. This domain gap is also present during pretraining. Our approach uses an OSCAR
model [3] that was pretrained on image and text pairs from the internet. An additional pretraining
stage on VLN data (e.g., by adapting the pretraining techniques proposed in [4]) may further improve
performance, and is an interesting direction for future work. Finally, we test our approach on English
instructions from RxR. However, future work might explore how to extend our approach for the
multi-lingual setting.

A.2 Broader Impact

We propose a new model with better vision-and-language navigation performance in indoor environ-
ments. This work is a step towards building AI agents which can follow natural language instructions
from humans and act accordingly. These AI agents could be deployed in home and commercial
environments to provide assistance. However, since these agents are trained using the path-instruction
pairs from VLN datasets, they encode all the visual and language biases that are present in the data
(e.g., types of houses, objects, language usage, etc). Hence, significant attention should be paid before
deployment of these agents in the real-world.

A.3 Performance for Multiple Random Seeds

We report results with 3 random seeds of our approach and VLNœ BERT baseline in Table 1 on R2R
dataset [5]. We report the mean and standard error for each metric. Overall, our approach improves
SPL by „ 1% which is consistent with the reported results in the main draft.

A.4 Additional Analysis of Selective Object Attention

In Table 2 we report results (on R2R) for alternatives to the selective object attention mask proposed
in this work. Specifically, we vary which inputs only serve as keys and values and which serve
as queries, keys, and values in the multimodal transformer. Results for our model with selective
object attention are presented in row 5. The alternative of performing selective scene attention
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Table 1: Results with 3 random seeds.

R2R Val Unseen

Models TL NE Ó SR Ò SPLÒ

1 VLNœ BERT [6] 11.76 ˘ 0.29 4.44 ˘ 0.04 57.37 ˘ 0.69 52.30 ˘ 0.33
2 Ours 11.25 ˘ 0.08 4.32 ˘ 0.06 58.01 ˘ 0.39 53.37 ˘ 0.33

(row 2) underperforms our approach. Similarly, as discussed in Section 5, the performance of our
model without selective object attention (row 3) is comparable to the VLNœ BERT baseline. Row 4
reports results of only using object features for the visual inputs, which leads to substantially lower
performance than our approach of using scene and object features. Since our approach (row 5) is
closely aligned with pretraining setup, it is able to utilizes both object- and scene-level visual cues to
outperform all of these alternatives.

Table 2: R2R attention ablations.
Val Seen Val Unseen

Models Input Tokens Query Tokens TL NE Ó SR Ò SPL Ò TL NE Ó SR Ò SPL Ò

1 Baseline [6] xs,X,V y xs,V y 11.02 3.11 69.93 65.65 12.16 4.40 57.90 51.43

2 Scene attention xs,X,V ,Oy xs,V y 11.08 3.35 68.95 64.48 12.68 4.42 56.83 50.99
3 All attention xs,X,V ,Oy xs,V ,Oy 11.12 3.24 70.03 66.59 12.05 4.34 57.85 51.73
4 Object attention xs,X,Oy xs,Oy 11.65 4.26 57.49 53.52 12.24 4.91 52.45 46.75
5 Ours xs,X,V ,Oy xs,Oy 11.81 3.63 62.78 58.01 12.15 4.28 58.71 53.24

A.5 Exhaustive Ablations over Proposed Modules

Our proposed method consists of three modules: (1) object features (2) view aggregation and (3)
selective attention. In Table 3, we provide results for all the possible combinations of these three
modules. Some combinations of object features, view aggregation, and selective attention are not
meaningfully defined. Specifically, view aggregation defines how object features and scene features
are combined – without object features there is nothing to combine. We find that our architectural
changes (i.e. view aggregation and selective attention) work best in the presence of object features,
and that combining all three ideas (row 8) outperforms the other variations.

Table 3: Additional ablations over proposed modules on R2R.

Object View Selective Val Unseen

Models Features Aggregation Attention SR Ò SPL Ò

1 Baseline 57.90 51.43
2 X 57.26 50.96
3 X - -
4 X 57.60 52.06
5 X X 57.85 51.73
6 X X 57.73 52.46
7 X X - -
8 Ours X X X 58.71 53.24

A.6 Evaluation Metrics

We describe metrics used in this work below:

– Trajectory Length (TL) measures the average length of agent’s trajectory in meters.

2



– Navigation Error (NE) is the average shortest geodesic distance (in meters) between agent’s final
location and goal location.

– Success Rate (SR) reports percentage of instructions for which agent’s navigation error is less than
a threshold. We use threshold of 3 meters for success which is consistent with prior work [5, 7].

– Success weighted by Path Length (SPL) captures the efficiency of agent in reaching goal location.
It is obtained by weighing success (1 or 0) by normalized inverse path length factor which is
shortest path length divided by maximum of agent’s path length or shortest path length.

– Normalized Dynamic Time Warping (NDTW) metric explicitly measures path adherence by softly
penalizing deviations from reference path. SDTW provides a “success" analogue to NDTW by
multiplying it with success factor (1 or 0) based on distance threshold of 3 meters. We refer the
reader to [8] for a detailed discussion on these metrics.

A.7 VLNœ BERT State Refinement

As discussed in Section 3.3, in VLNœ BERT [6] state history is maintained through the state token
st. Specifically, the next state token st`1 is calculated using the output representation of the state
token ψpstq, which is refined using the following procedure.

Recall that state-conditioned attention scores over the visual scene features αpVtq (see Section 3.3)
are normalized with the softmax function as ãpVtq “ softmaxpαpVtqq. These normalized scores
are used as next-action probabilities and used to calculate the weighted sum of the scene features
F v

“ α̃pVtqVt.

Similarly, state-conditioned attention scores over the word tokens ψpIq are calculated as

αpψpIqq “
ψpstqψpIq

T

?
d

(1)

and normalized as α̃pψpIqq “ softmaxpαpψpIqqq, where d is the model’s hidden dimension size.
These linguistic scores are used to calculate the weighted sum of word tokens F l

“ α̃pψpIqqψpVtq.

Finally, the next state token is calculated as

st`1 “

”

rst;F
v
d F l

sW 1;at

ı

W 2 (2)

where W 1 and W 2 are learned weight matrices, d represents an element-wise product, r ¨ ; ¨ s
represents concatenation, and at are directional features for the selected action. Intuitively, this state
update procedure aggregates scene, language, and action information into the state history.

A.8 Qualitative results

In the attached supplemental videos, we visualize a few trajectories from RxR val-unseen split of
success and failure cases of our approach along with VLNœ BERT baseline [6]. In each trajectory,
we plot panoramic view which is passed as input to the agent and the action which agent takes with
an arrow at the bottom. We highlight success with a green box when the agent reaches goal and
failure case with a red box.
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