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A PROOF OF THEOREMS AND TECHNICAL LEMMAS

A.1 PROOF OF LEMMA 2.1

Recall the shorthand ȳa = (
P

i2Ba
yi)/k, for a 2 [m]. We have,
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ȳa �

1

k

X

j2Ba

f✓(xj) +
1

k

X

j2Ba

f✓(xj)� f✓(xi)
⌘2

=
1

mk

mX

a=1

X

i2Ba

⇣
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ȳa �

1

k

X

j2Ba

f✓(xj)
⌘⇣1

k

X

j2Ba

f✓(xj)� f✓(xi)
⌘

Note that the first term can be written as
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= Lbag(✓) .

For the second term, we have
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where we used the following identity for a1, . . . , ak and ā = (
Pk

i=1 ai)/k:
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Finally, the third term works out at zero because
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Combining the three terms together we arrive at Lins(✓) = Lbag(✓) +R(✓).

A.2 PROOF OF LEMMA 2.2

We use the shorthand f̄a = (
P

i2Ba
f✓(xi))/k, for a 2 [m]. By Taylor’s expansion of the loss ` on

its second argument we have

`(ȳa, f✓(xi)) = `(ȳa, f̄a) +
@

@b
`(ȳa, f̄a)(f✓(xi)� f̄a) +

1

2

@
2

@b2
`(ȳa, f)(f✓(xi)� f̄a)

2
,

for some f between f̄a and f✓(xi) and @/@b, @2/@2b indicate the first and second derivative of `(a, b)
with respect to the second input b.
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Summing both sides of the above equation over i 2 Ba, the second term works out at zero sinceP
i2Ba

(f✓(xi)� f̄a) = 0. Using the bound on the second derivative we arrive at
X

i2Ba

`(ȳa, f✓(xi))  k`(ȳa, f̄a) +
X

i2Ba

C(f✓(xi)� f̄a)
2
.

Next, summing both sides of the above equation over bags a 2 [m], and dividing by mk, we get

Lins(✓)  Lbag(✓) +
1

k

mX

a=1

X

i2Ba

C(f✓(xi)� f̄a)
2
.

By invoking identity (11) in the above we arrive at (5).

We are now ready to prove the second part of the statement. If the loss `(·, ·) is convex in the second
input, by the Jensen’s inequality we have

1

k

X

i2Ba

`(ȳa, f✓(xi)) � `

⇣
ȳa,

1

k

X

i2Ba

f✓(xi)
⌘

Taking the average of both side over the bags a 2 [m], we obtain that Lins(✓) � Lbag(✓), which
completes the proof of lemma.

B PROOF OF THEOREM 2.5

Recall m as the number of bags, and n as the number of samples. Since the bags are non-overlapping
and each of size k, we have m = n/k. Define S 2 Rm⇥n, as a matrix the encodes the bagging
structure, with Sia = 1/

p
k1{j2Ba} where Ba indicates a-th bag, for a 2 [m].

We next write the bag-level loss function and the instance-level loss function in terms of S as
follows:

Lbag(✓) =
1

km
kS(y �X✓)k22 ,

Lins(✓) =
1

km
kS>Sy �X✓k22 .

The interpolating loss function (7) then reads as

Lint(✓) =
1

mk

⇣
(1� ⇢)kSX✓ � Syk22 + ⇢

��X✓ � S>Sy
��2
2

⌘
.

This can equivalently be written as

Lint(✓) =
1

mk

����

✓ p
⇢I

p
1� ⇢S

◆
X✓ �

✓p
⇢S>Sy

p
1� ⇢Sy

◆����
2

2

.

The minimizer of the above loss admits a closed-from solution given by b✓int = By, with

B =
�
X> �

⇢I + (1� ⇢)S>S
�
X

��1
X>S>S .

We define the shorthand E := ⇢I + (1 � ⇢)S>S 2 Rn⇥n, which is non-singular for ⇢ > 0, and
M = (X>EX)�1X>

2 Rd⇥n. We then have B = MS>S.

We next recall the bias-variance decomposition (6), where the bias and variance are given by

Bias(b✓int) = k(BX � I)✓0k
2
2

= k(MS>SX �MEX)✓0k
2
2

= kM(S>S �E)X✓0k
2
2 , (12)

Var(b✓int) = �
2
kMS>Sk2F , (13)

with k · kF indicating the matrix Frobenius norm.

We continue by treating the bias and the variance separately.
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B.1 CALCULATING THE BIAS

Since the distribution of the features matrix X is invariant under rotation, we can assume that ✓0 =
k✓0kei, where ei 2 Rd is the vector with one at i-th entry and zero everywhere else. By taking
average on i 2 [d] we obtain

Bias(b✓int)
(d)
=

k✓0k22
d

X

i2[d]

kM(S>S �E)Xeik
2
2

=
k✓0k22
d

tr
⇣
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⇣ X

i2[p]

eie
>
i

⌘
X>(S>S �E)M>

⌘

=
k✓0k22
d

��M(S>S �E)X
��2
F
.

Let us define ⇤ 2 Rn⇥n as follows:

⇤ := �(S>S �E)

= �(S>S � (⇢I + (1� ⇢)S>S))

= ⇢(I � S>S) . (14)

The bias can then be written in terms of ⇤ as Bias(✓) = 1
dkM⇤Xk

2
F . In our next lemma, we

characterize the asymptotic behavior of the bias.
Lemma B.1. Under the asymptotic regime of Assumption 2.3, we have

1

d
kM⇤Xk

2
F

(p)
! ↵

2
⇤ +

↵
2
⇤

(k�1) 
k2(1�↵⇤)2

� ( ↵⇤
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,

where ↵⇤ is the nonnegative fixed point of the following equation:

⇢+
 

k(1� ↵⇤)
� 1 =

 

k↵⇤
⇢(k � 1) .

Since k✓0k ! 1, the result (8) follows from Lemma B.1.

We refer to the supplementary D.1 for the proof of Lemma B.1.

B.2 CALCULATING THE VARIANCE

Since the bags are non-overlapping we have SS> = Im. Therefore S>S is a projection matrix and
can be written as S>S = UU>, with U 2 Rn⇥m an orthogonal matrix. Recall that the variance
is given by Var(b✓int) = �

2
kMS>Sk2F . We use the next lemma to characterize the asymptotic

behavior of the variance.
Lemma B.2. Under the asymptotic regime of Assumption 2.3, for any vector a 2 Rm we have

n

kak2
kMUak22

(p)
!

k

v⇤
,

where v⇤ is given as the fixed point of the following system of equations in (v, u):
(

 
1+u + ⇢ (k�1)

⇢+u = k,

 (1+v)
(1+u)2 + ⇢2 (k�1)

(⇢+u)2 = k .

Proof of Lemma B.2 is given in the supplementary D.2.

We next use the above lemma for each row of U separately (as the vector a) and add them together.

Using the fact that kUk
2
F = m and m/n = k, we get that kMUU>

k
2
F

(p)
! 1/v⇤, which completes

the variance calculation.
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B.3 PROOF OF LEMMA 4.2

We use the idea of (Dwork et al., 2014, Theorem 3.6) to prove this lemma. Given a database D =
(y1, y2, . . . , yn), Algorithm 1 (we denote this mapping by A : Rn

! Rm) outputs m real numbers
(ỹ1, ỹ2, . . . , ỹm). Given the database D, we define the map f : Rn

! Rm by D 7! (ȳ1, ȳ2, . . . , ȳm),
which computes the mean of labels in each bag. Fix any pair of neighboring databases D,D

0 that
differ in the label of a single example. We have kf(D)� f(D0)k1 :=

P
a2[m] |f(D)a � f(D0)a| 

�f := C
p
logn
k . In this argument, we used Assumption 2.4 that assumes non-overlapping bags,

and therefore, changing a certain yi in D leads to a change in only one of ȳa by at most �f . Let
pA(D)(z) and pA(D0)(z) denote the probability density function of A(D) and A(D0). We have

pA(D)(z)

pA(D0)(z)
=

Y

a2[m]

exp
⇣
�
"|f(D)a�za|

�f

⌘
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⇣
�
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�f

⌘

=
Y
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✓
" (|f(D0)a � za|� |f(D)a � za|)

�f

◆



Y

a2[m]

exp

✓
"|f(D0)a � f(D)a|

�f

◆

= exp

✓
"kf(D)� f(D0)k1

�f

◆

 e
"
,

which completes the proof.

C PROOF OF THEOREM 4.3

Recall that in Algorithm 1, the individual responses are first truncated by C
p
log n and then after the

aggregate responses are computed, a Laplace noise is added to them to ensure label DP. We define
E is the event that no truncation happens, namely:

E := 1{|yi|C
p
logn, 8i2[n]} . (15)

Since yi ⇠ N(0, k✓0k2 + �
2), k✓0k = 1, by using Gaussian tail bound along with union bounding

we arrive at

P(E) � 1� n exp
⇣
�

C
2

2(1 + �2)
log n

⌘
= 1� n

�c
, (16)

with c = C2

2(1+�2) � 1 > 0.

We next bound the risk of estimator b✓int as follows:

Risk(b✓int) = E[kb✓int � ✓0k
21{E}|X] + E[kb✓int � ✓0k

21{Ec}|X] . (17)

For the first term, note that on the instance E (no truncation), the privatized aggregate responses are
just the aggregate responses with an additive zero mean noise with variance 2C2 log n/(k")2. So
we can use the analysis in the proof of Theorem 2.5 with the inflated noise variance. Let b✓nt

int be the
estimator using untruncated responses in Algorithm 1. We then have This gives us

1

log n
E[kb✓int � ✓0k

21{E}|X] =
1

log n
E[kb✓nt

int � ✓0k
21{E}|X]

=
1

log n
E[kb✓nt

int � ✓0k
2
|X]�

1

log n
E[kb✓nt

int � ✓0k
21{Ec}|X]

=
1

log n
Bias(b✓nt

int) +
1

log n
Var(b✓nt

int)�
1

log n
E[kb✓nt

int � ✓0k
21{Ec}|X] ,

(18)
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where the bias is given by (8) and variance is given by (9), where �2
/k is replaced with the inflated

variance �2
/k + 2C2 log n/(k")2. Since Bias(b✓nt

int) has a finite limit, the first term above vanishes
as n ! 1. For the second term we have

1

log n
Var(b✓nt

int)
(p)
!

2C2

k"2

1

v⇤
.

since �2
/ log n ! 0. For the third term, by Cauchy–Schwarz inequality we have

E[kb✓nt
int � ✓0k

21{Ec}|X]  E[kb✓nt
int � ✓0k

4
|X]1/2 P(Ec) . (19)

Using the high probability bound on the minimum singular value of the Gaussian matrix X (Ver-
shynin, 2018, Theorem 4.6.1), we can show that E[kb✓nt

int � ✓0k4|X] is bounded in probability and
since P(Ec)  n

�c, we conclude that the third term in (18) also vanishes as n ! 1, in probability.
Combining these together we arrive at

1

log n
E[kb✓int � ✓0k

21{E}|X]
(p)
!

2C2

k"2

1

v⇤
. (20)

Similar to (19) we can also show that

1

log n
E[kb✓int � ✓0k

21{Ec}|X]
(p)
! 0 ,

which along with (20) and (17) implies that

1

log n
Risk(b✓int)

(p)
!

2C2

k"2

1

v⇤
,

completing the proof.

D PROOF OF INTERMEDIATE LEMMAS

D.1 PROOF OF LEMMA B.1

Write X = [x1, . . . ,xd] with xi representing the i-th column. We then have kM⇤Xk
2 =Pd

i=1 kM⇤xik
2. We compute the asymptotic behavior of each of the summand separately. In-

deed, by symmetry of the distributions of xi, we will see that all summands converge to the same
limit.

Recall that M = (X>EX)�1X>. Consider the following optimization problem:

↵i = argmin↵2Rd

1

d
kE1/2X↵�E�1/2⇤xik

2
2 . (21)

It is easy to see that by the KKT condition, ↵i = (X>EX)�1X>⇤xi = M⇤xi. Therefore, we
are interested in characterizing k↵ik in the asymptotic regime, described in Assumption 2.3.

We write ↵ as (↵i,↵⇠i) to separate its i-th entry form the rest. Likewise we write X = [xiX⇠i] to
separate the i-th columns from the rest. We then have

min
↵2Rd

1

d
kE1/2X↵�E�1/2⇤xik

2
2

= min
↵2Rp

1

d
kE1/2xi↵i +E1/2X⇠i↵⇠i �E�1/2⇤xik

2
2

= min
↵2Rd

1

d
kE1/2X⇠i↵⇠i + (↵iE

1/2
�E�1/2⇤)xik

2
2

= min
↵2Rd

max
v2Rn

2

d

✓
v>(↵iE

1/2
�E�1/2⇤)xi + v>E1/2X⇠i↵⇠i �

1

2
kvk22

◆
, (22)

where in the last step we used the identity maxv(v>x� kvk2/2) = kxk2/2 for any vector x.
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We next note that SS> = I since the bags are non-overlapping. Therefore we can write S>S =
UU> for an orthogonal matrix U 2 Rn⇥m. We then have

E := ⇢I + (1� ⇢)S>S = UU> + ⇢U?U
>
? , ⇤ = ⇢(I � S>S) = ⇢U?U

>
? .

where U? is an orthogonal matrix representing the orthogonal space to the column space of U .
We next decompose the vector v in the above optimization as v = Uv1 + U?v2 and therefore
kvk2 = kv1k

2 + kv2k
2.

We introduce the change of variable ṽ = E1/2v in optimization (22). Note that ṽ = Uv1 +
p
⇢U?v2. Continuing with (22) in terms of ṽ we have

min
↵2Rd

max
ṽ2Rn

2

d

✓
ṽ>(↵iI �E�1⇤)xi + ṽ>X⇠i↵⇠i �

1

2
kE�1/2ṽk22

◆
. (23)

To analyze the asymptotic behavior of the solution to the above minimax optimization, we use
the Convex-Gaussian-Minimax-Theorem (CGMT) (Thrampoulidis et al., 2015, Theorem 3), which
is a power extension of the classical Gordon’s Gaussian min-max theorem Gordon (1988), under
additional convexity assumptions. According to CGMT, the above optimization is equivalent to the
following auxiliary optimization problem:

min
↵2Rd

max
ṽ2Rn

2

d

✓
ṽ>(↵iI �E�1⇤)xi + k↵⇠ikṽ

>g + kṽkh>↵⇠i �
1

2
kE�1/2ṽk22

◆
, (24)

with g ⇠ N(0, In) and h ⇠ N(0, Id�1) independent Gaussian vectors. We next write the above
optimization in terms of the components v1 and v2, noting that E�1⇤ = U?U>

? , as follows:

min
↵2Rd

max
v1,v22Rn

2

d

⇣
↵iv

>
1 U

>xi +
p
⇢v>

2 U
>
? (↵iI �U?U

>
? )xi + k↵⇠ik(v

>
1 U

>g +
p
⇢v>

2 U
>
? g)

+
p
kv1k

2 + ⇢kv2k
2h>↵⇠i �

1

2
kv1k

2
�

1

2
kv2k

2
⌘
. (25)

Define the shorthand

x1 := U>xi ⇠ N(0, Im),

x2 := U>
?xi ⇠ N(0, In�m),

g1 := U>g ⇠ N(0, Im),

g2 := U>
? g ⇠ N(0, In�m).

Then optimization (25) can be rewritten as

min
↵2Rd

max
v1,v22Rn

2

d

⇣
↵iv

>
1 x1 +

p
⇢(↵i � 1)v>

2 x2 + k↵⇠ik(v
>
1 g1 +

p
⇢v>

2 g2)

+
p
kv1k

2 + ⇢kv2k
2h>↵⇠i �

1

2
kv1k

2
�

1

2
kv2k

2
⌘
. (26)

We fix kv1k = �1 and kv2k = �2 and first optimize over the directions of v1, v2 and then over the
norms �1 and �2. This brings us to

min
↵2Rd

max
�1,�2�0

2

d

⇣
�1k↵ix1 + k↵⇠ikg1k+ �2k

p
⇢(↵i � 1)x2 + k↵⇠ik

p
⇢g2k

+
q
�2
1 + ⇢�2

2h
>↵⇠i �

1

2
�
2
1 �

1

2
�
2
2

⌘
. (27)

In order to optimize over ↵⇠i, we first fix its norm to ⌘ := k↵⇠ik and optimize over its direction,
and then optimize over ⌘, which results in:

min
⌘�0,↵i

max
�1,�2�0

2

d

⇣
�1k↵ix1 + ⌘g1k+ �2k

p
⇢(↵i � 1)x2 + ⌘

p
⇢g2k

+ ⌘

q
�2
1 + ⇢�2

2khk �
1

2
�
2
1 �

1

2
�
2
2

⌘
. (28)
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The next step in the CGMT framework is to compute the pointwise limit of the objective functions.
Using the concentration of Lipschitz functions of Gaussian vectors we have

1
p
d
k↵ix1 + ⌘g1k

(p)
!

r
(↵2

i + ⌘2)
 

k
,

1
p
d
k
p
⇢(↵i � 1)x2 + ⌘

p
⇢g2k

(p)
!

r
(⇢(↵i � 1)2 + ⇢⌘2) 

⇣
1�

1

k

⌘
,

where we used Assumption 2.3, by which n/d !  and m = n/k.

We also have 1p
d
khk

(p)
! 1.

We therefore arrive at the following deterministic optimization problem

min
⌘�0,↵i

max
�1,�2�0

⇣
�1

r
(↵2

i + ⌘2)
 

k
+ �2

r
(⇢(↵i � 1)2 + ⇢⌘2) 

⇣
1�

1

k

⌘

+
q
�2
1 + ⇢�2

2 �
1

2
�
2
1 �

1

2
�
2
2

⌘
, (29)

where we made the change of variables 2�1/
p
d ! �1 and 2�2/

p
d ! �2.

By writing the stationary conditions for the above optimization, and simplifying the resulting system
of equations by solving for �1, �2, and substituting for them in the other two equations, we arrive at
the following two equations for ↵i and ⌘:

(
⇢+  

k(1�↵⇤)
� 1 =  

k↵⇤
⇢(k � 1)

⌘
2
⇤ +

k↵2
⇤

k�1 + ⌘2⇤↵
2
⇤

(1�↵⇤)2(k�1) =
 
k

⌘2⇤
(1�↵⇤)2

.

As the final step, recall that by definition ⌘ := k↵⇠ik and therefore, k↵ik
2 (p)
! ↵

2
⇤ + ⌘

2
⇤. As we see

it is independent of the index i and therefore,

1

d
kM⇤Xk

2 =
1

d

dX

i=1

kM⇤xik
2 =

1

d

dX

i=1

↵
2
i

(p)
! ↵

2
⇤ + ⌘

2
⇤ .

This completes the proof.

D.2 PROOF OF LEMMA B.2

Recall that M = (X>EX)�1X>. Consider the following optimization problem:

↵ = argmin↵2Rd

1

d
kE1/2X↵�E�1/2Uak22 . (30)

The solution to the above optimization problem has a closed-form solution given by ↵ =
(X>EX)�1X>Ua = MUa. So we are interested in characterizing the norm of the optimal
solution to the above optimization problem.

Similar to the proof of Lemma B.1, we use the framework of CGMT to characterize k↵k in the
asymptotic regime described in Assumption 2.3.

Using the identity kxk/2 = maxv(v>x� kvk2/2), we rewrite the above optimization as:

min
↵2Rd

1

d
kE1/2X↵�E�1/2Uak22

= min
↵2Rd

max
v2Rn

2

d

✓
v>E1/2X↵� v>E�1/2Ua�

1

2
kvk22

◆
, (31)

By using Convex-Gaussian-Minimax-Theorem (Thrampoulidis et al., 2015, Theorem 3), the above
optimization is equivalent to the following auxiliary optimization problem:

min
↵2Rd

max
v2Rn

2

d

✓
k↵kv>E1/2g + kE1/2vkh>↵� v>E�1/2Ua�

1

2
kvk22

◆
, (32)
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with g ⇠ N(0, In) and h ⇠ N(0, Id) independent Gaussian vectors.

We also recall that S>S = UU> and so
E := ⇢I + (1� ⇢)S>S = UU> + ⇢U?U

>
? ,

with U? 2 Rn⇥(n�m) denotes the orthogonal matrix, whose column space is orthogonal to the
column space of U . We decompose v to its component in the column space of U and U? as

v = Uv1 +U?v2, kvk2 = kv1k
2 + kv2k

2
.

Therefore, E1/2v = Uv1 +
p
⇢U?v2 and so the above optimization (32) can be written as

min
↵2Rd

max
v1,v22Rn

2

d

⇣
k↵kv>

1 U
>g +

p
⇢k↵kv>

2 U
>
? g +

p
kv1k

2 + ⇢kv2k
2h>↵

� v>
1 a�

1

2
kv1k

2
�

1

2
kv2k

2
⌘
. (33)

We next introduce the following change of variables:

g1 := U>g ⇠ N(0, Im),

g2 := U>
? g ⇠ N(0, In�m).

Rewriting the optimization in terms of g1 and g2 we get

min
↵2Rd

max
v1,v22Rn

2

d

⇣
k↵kv>

1 g1 +
p
⇢k↵kv>

2 g2 +
p

kv1k
2 + ⇢kv2k

2h>↵

� v>
1 a�

1

2
kv1k

2
�

1

2
kv2k

2
⌘
. (34)

We next do the maximization on v1 and v2 by first fixing the norms to �1 := kv1k and �2 := kv2k

and maximize over the directions and then maximize over �1, �2. This gives us

min
↵2Rd

max
�1,�2�0

2

d

⇣
�1kk↵kg1 � ak+ �2

p
⇢k↵kkg2k+

q
�2
1 + ⇢�2

2h
>↵�

�
2
1 + �

2
2

2

⌘
. (35)

For minimization over ↵, we first fix its norm to ⌘ := k↵k and optimize over its direction, and then
over ⌘:

min
⌘�0

max
�1,�2�0

2

d

⇣
�1k⌘g1 � ak+ �2

p
⇢⌘kg2k � ⌘

q
�2
1 + ⇢�2

2 khk �
�
2
1 + �

2
2

2

⌘
. (36)

The next step in the CGMT framework is to compute the pointwise limit of the objective function.
By concentration of Lipschitz functions of Gaussian vectors we have

1
p
d
k⌘g1 � ak

(p)
!

r
kak2

d
+ ⌘2

 

k
,

1
p
d
kg2k

(p)
!

r
 

⇣
1�

1

k

⌘
,

1
p
d
khk

(p)
! 1 ,

where we used Assumption 2.3 by which n/d !  , and Assumption 2.4 by which m = n/k. Using
these limits in (36), we arrive at the following deterministic optimization problem:

min
⌘�0

max
�1,�2�0

�1

r
kak2

d
+ ⌘2

 

k
+ �2

p
⇢⌘

r
 

⇣
1�

1

k

⌘
� ⌘

q
�2
1 + ⇢�2

2 �
�
2
1 + �

2
2

2
, (37)

where we applied the change of variables 2�1/
p
d ! �1 and 2�2/

p
d ! �2.

In order to find the optimal solution we solve the stationary conditions. By setting derivative with
respect to ⌘ to zero we obtain

�1⌘
 
kq

kak2

d + ⌘2
 
k

+ ⌘

r
⇢ 

⇣
1�

1

k

⌘
�

q
�2
1 + ⇢�2

2 = 0 . (38)
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In addition by setting the derivative with respect to �1 and �2 to zero, we obtain
r

kak2

d
+ ⌘2

 

k
=

⇣
⌘p

�2
1 + ⇢�2

2

+ 1
⌘
�1 ,

⌘

r
⇢ 

⇣
1�

1

k

⌘
=

⇣
⇢⌘p

�2
1 + ⇢�2

2

+ 1
⌘
�2 .

(39)

By substituting for �1 and �2 from (39) into (38) we get

⌘
 
k

⌘ + c
� 1 +

⇢⌘ (1� 1
k )

⇢⌘ + c
= 0 , (40)

where c =
p
�2
1 + ⇢�2

2 .

Also by substituting for �1 and �2 from (39) into the definition c =
p
�2
1 + ⇢�2

2 , we have

kak2

d + ⌘
2  
k

(⌘ + c)2
+
⇢
2
⌘
2
 (1� 1

k )

(⇢⌘ + c)2
= 1 . (41)

We next make the change of variable: c = ⌘u, and rewriting equations (40 and 41) as follows:
8
<

:

 
1+u + ⇢ (k�1)

⇢+u = k ,

kkak2

d⌘2 + 

(1+u)2 + ⇢2 (k�1)
(⇢+u)2 = k .

Defining v := kkak2

 d⌘2 we get the system of equations given in the lemma statement.

As the final step, recall that as we discussed at the beginning of the proof, ↵⇤ = MUa. Therefore,

n

kak2
kMUak22 =

n

kak2
k↵⇤k

2
2

(p)
!

n

kak2
⌘
2
⇤ =

k

v⇤
,

which completes the proof.
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