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1 APPENDIX A: DATASET DETAILS

We perform extensive evaluation of SepRep-Net on five benchmark datasets, i.e., Office-31 [Saenko
et al.| (2010), Office-Home Venkateswara et al.| (2017), DigitS Peng et al.| (2019), Office-
Caltech Gong Boqing & Grauman|(2012), and DomainNet Peng et al.|(2019). 1) Office-31|Saenko
et al.| (2010) contains 4, 652 images from 31 categories collected in the office environment, which
forms three domains, i.e., Amazon (A), DSLR (D) and Webcam (W); 2) Office-Home|Venkateswara
et al.| (2017) consists of 15, 500 images, 65 categories from 4 domains, i.e., Art (Ar), Clipart (Cl),
Product (Pr) and Real World (Rw). The domain gap in Office-Home is much larger than Office-31;
3) Digit5 Peng et al.|(2019) is a benchmark dataset for cross-domain digit recognition, with 5 do-
mains, i.e., MNIST (MT), USPS (UP), SVHN (SV), MNIST-M (MM) and Synthetic Digits (SY);
4) Office-Caltech|Gong Boging & Grauman|(2012) takes the common classes between Caltech-256
and Office-31. It has images from 10 categories and 4 domains, i.e., Amazon (A), Caltech (C),
DSLR (D), and Webcam (W); 5) DomainNet |Peng et al.| (2019) has 345 categories and 6 domains,
i.e., Infograph (I), Clipart (C), Painting (P), Quickdraw (Q), Real (R) and Sketch (S).

2 APPENDIX B: IMPLEMENTATION DETAILS

Following previous works, we take ResNet pre-trained on ImageNet as the feature extractor to rec-
ognize objects in the real world. For digit recognition, we adopt the network structure in|Liang et al.
(2020) and train it from scratch. We use the same bottleneck layer and task-specific classifier as
Liang et al.| (2020).

We take one domain as the target domain and view the remaining domains as source domains, which
forms multiple tasks in each dataset. For real-world objects, we follow the conventions of image size
and augmentation in|/Ahmed et al.|(2021); [Liang et al.|(2020). For digit datasets, we rescale images
to 32 x 32 and convert gray-scale images to RGB. We obtain source models following the training
scheme in|Ahmed et al.| (2021); Liang et al.| (2020) to ensure a fair comparison.

The target model is trained with the SGD optimizer. The training schedule follows the settings in
Liang et al.|(2020). Moreover, the learning rate of the bottleneck and classifier is 10x larger than
the feature extractor. The whole framework is trained end-to-end. We implement our experiments
with Pytorch, run each experiment 5 times and report the average results.

3 APPENDIX C: EXPERIMENT RESULTS

3.1 OFFICE-CALTECH

Besides Office-31 |Saenko et al.| (2010), Office-Home [Venkateswara et al. (2017), Digit5 [Peng
et al| (2019), and DomainNet Peng et al.| (2019) that are reported in the main paper, on Office-
Caltech |Gong Boqing & Grauman| (2012), as shown in Table |1} our method can also be readily
integrated into DECISION [Ahmed et al.| (2021)), CAiDA Dong et al| (2021), and SHOT |Liang
et al.| (2020). By reassembling three source models into one target model, our method consistently
achieves better performance than the vanilla method with much less computational costs. Compared
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Table 1: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H) and Model Efficiency
on Office-Caltech dataset. ResNet-50 is adopted in experiments. A, C, D, W indicate different
domains (A: Amazon, C: Caltech, D: DSLR, W: Webcam). SHOT-ens indicates the performance of
model ensemble with all models that are adapted via SHOT. KD indicates knowledge distillation.

CDW — A ADW — C ACW =D ACD— W Avg
METHOD ‘ FLOPS ‘ s T H ‘ s T H ‘ s T H ‘ s T H ‘ s T H
ResNet/He et al.|(2016) 12.3 - 88.7 - - 85.4 - - 98.2 - - 99.1 - - 929
DAN|Long et al.|(2015) 12.3 - 91.6 - - 89.2 - - 99.1 - - 99.5 - - 94.8
DCTN|Xu et al.|(2018} 12.3 - 92.7 - - 90.2 - - 99.0 - - 99.4 - - 95.3
MCD|Saito et al.|[(2018) 12.3 - 92.1 - - 91.5 - - 99.1 - - 99.5 - - 95.6
M3SDA [Peng et al.|(2019) 123 - 94.5 - - 922 - - 99.2 - - 99.5 - - 96.4 -
DECISION |Ahmed et al. |(2021) 12.3 93.1 959 945|931 959 945|881 1000 937|914 99.6 953|914 98.0 94.6
DECISION + KD|Hinton et al.[(2015) 4.1 883 96.0 920|907 957 93.1 |879 994 933|850 99.7 91.8 | 8.0 97.7 925
DECISION + SepRep-Net 4.1 948 96.1 954|951 96.1 956|902 1000 956|925 99.8 96.0 | 93.2 98.0 955
CAiDA [Liang et al.|(2020) 12.3 96.0 96.8 964 | 962 97.1 96.6 |98.0 100.0 99.0 | 98.1 99.8 989 |97.1 984 977
CAIiDA + KD Hinton et al.|(2015) 4.1 915 96.6 940|923 96.8 945|946 1000 972|959 99.8 978 |93.6 983 959
CAiDA + SepRep-Net 4.1 972 97.1 97.1 | 968 97.1 969 | 984 100.0 992 | 979 99.7 988 | 97.6 985 98.0
SHOT-ens|Liang et al. |(2020) 123 | 987 957 972|980 958 969|983 968 975|981 996 988|983 97.0 97.6
SHOT-ens + KD|Hinton et al. (2015} 4.1 934 956 945|950 957 953|942 96,6 954|903 965 933|932 961 94.6
SHOT + SepRep-Net 4.1 993 959 97.6 | 98.1 956 968|977 975 976|981 997 989|983 972 977

with knowledge distillation (KD), our method also shows better performance, especially in source
domains, which indicates stronger generability.
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