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Figure 1: (Top) Comparison of T2I results by SDXL-Turbo for the prompt "kayak in the water, optical
color, aerial view, rainbow". The CFG-guided image has significant artifacts, which are reduced
in the CFG++ version. (Middle) DDIM Inversion results under CFG show noticeable artifacts at
various CFG scales, which are significantly reduced by CFG++. (Bottom) The evolution of denoised
estimates differs between CFG and CFG++. CFG exhibits sudden shifts and intense color saturation
early in reverse diffusion, while CFG++ transitions smoothly from low to high-resolution.

ABSTRACT

Classifier-free guidance (CFG) is a fundamental tool in modern diffusion mod-
els for text-guided generation. Although effective, CFG has notable drawbacks.
For instance, DDIM with CFG lacks invertibility, complicating image editing;
furthermore, high guidance scales, essential for high-quality outputs, frequently
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result in issues like mode collapse. This paper reveals that the problems may
stem from the off-manifold phenomenon associated with CFG, rather than the
diffusion models themselves. More specifically, inspired by the recent advance-
ments of diffusion model-based inverse problem solvers (DIS), we reformulate
text-guidance as an inverse problem with a text-conditioned score matching loss
and develop CFG++, a novel approach that tackles the off-manifold challenges
inherent in traditional CFG. CFG++ features a surprisingly simple fix to CFG,
yet it offers significant improvements, including better sample quality for text-to-
image generation, invertibility, smaller guidance scales, etc. Furthermore, CFG++
enables seamless interpolation between unconditional and conditional sampling
at lower guidance scales, consistently outperforming traditional CFG at all scales.
Moreover, CFG++ can be easily integrated into high-order diffusion solvers and
naturally extends to distilled diffusion models. Experimental results confirm that
our method significantly enhances performance in text-to-image generation, DDIM
inversion, editing, and solving inverse problems, suggesting a wide-ranging impact
and potential applications in various fields that utilize text guidance. Project Page:
https://cfgpp-diffusion.github.io.

1 INTRODUCTION

Classifier-free guidance (CFG) (Ho & Salimans, 2021) forms the key basis of modern text-guided
generation with diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022). Nowadays, it
is common practice to train a diffusion model with large-scale paired text-image data (Schuhmann
et al., 2022), so that sampling (i.e. generating) a signal (e.g. image, video) from a diffusion model
can either be done unconditionally from pθ(x|∅) ≡ pθ(x), or conditionally from pθ(x|c), where
c is the text conditioning. Once trained, it seems natural that one would acquire samples from the
conditional distribution by simply solving the probability-flow ODE or SDE sampling (Song et al.,
2021b;a; Karras et al., 2022) with the conditional score function. In practice, however, it is observed
that the conditioning signal is insufficient when used naively. To emphasize the guidance, one uses
the guidance scale ω > 1, where the direction can be defined by the direction from the unconditional
score to the conditional score (Ho & Salimans, 2021).

In modern text-to-image (T2I) diffusion models, the guidance scale ω is typically set within the
range of [5.0, 30], referred to as the moderately high range of CFG guidance (Chen et al., 2024;
Podell et al., 2023). The insufficiency in guidance also holds for classifier guidance (Dhariwal &
Nichol, 2021; Song et al., 2021b) so that a scale of 10 was used. While using a high guidance scale
yields higher-quality images with better alignment to the condition, it is also prone to mode collapse,
reduces sample diversity, and yields an inevitable accumulation of errors during the sampling process.
One example is DDIM inversion (Dhariwal & Nichol, 2021), a pivotal technique for controllable
synthesis and editing (Mokady et al., 2023), where running the inversion process with ω > 1.0
leads to significant compromise in the reconstruction performance (Mokady et al., 2023; Wallace
et al., 2023). Another extreme example would be score distillation sampling (SDS) (Poole et al.,
2022), where the guidance scale in the order of a few hundred is chosen. Using such a high guidance
scale leads to better asset quality to some extent, but induces blurry and saturated results. Several
research efforts have been made to mitigate this downside by exploring methods where using a
smaller guidance scale suffices (Wang et al., 2024; Liang et al., 2023). Although recent progress in
SDS-type methods has reduced the necessary guidance scale to a range that is similar to those of
ancestral samplers, using a moderately large ω is considered an inevitable choice.

In this work, we aim to give an answer to this conundrum by revisiting the geometric view of diffusion
models. In particular, inspired by the recent advances in diffusion-based inverse problem solvers
(DIS) (Kadkhodaie & Simoncelli, 2021; Chung et al., 2023a; Song et al., 2023; Kim et al., 2024b;
Chung et al., 2024), we reformulate the text guidance as an inverse problem with a text-conditioned
score-matching loss and derive a reverse diffusion sampling strategy by utilizing decomposed
diffusion sampling (DDS) (Chung et al., 2024). This results in a surprisingly simple fix of CFG to the
sampling process without any computational overhead. The resulting process, which we call CFG++,
works with a small guidance scale, typically λ ∈ [0.0, 1.0], that smoothly interpolates between
unconditional and conditional sampling, with λ = 1.0 having a similar effect as using CFG sampling
with ω ∼ 12.5 at 50 neural function evaluation (NFE). Furthermore, CFG++ reduces the inversion
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Algorithm 1 Reverse Diffusion with CFG
Require: xT ∼ N (0, Id), 0 ≤ ω ∈ R
1: for i = T to 1 do
2: ϵ̂ωc (xt) = ϵ̂∅(xt) + ω[ϵ̂c(xt)− ϵ̂∅(xt)]
3: x̂ω

c (xt)← (xt −
√
1− ᾱtϵ̂

ω
c (xt))/

√
ᾱt

4: xt−1 =
√
ᾱt−1x̂

ω
c (xt) +

√
1− ᾱt−1ϵ̂

ω
c (xt)

5: end for
6: return x0

Algorithm 2 Reverse Diffusion with CFG++
Require: xT ∼ N (0, Id), λ ∈ [0, 1]
1: for i = T to 1 do
2: ϵ̂λc (xt) = ϵ̂∅(xt) + λ[ϵ̂c(xt)− ϵ̂∅(xt)]

3: x̂λ
c (xt)← (xt −

√
1− ᾱtϵ̂

λ
c (xt))/

√
ᾱt

4: xt−1 =
√
ᾱt−1x̂

λ
c (xt) +

√
1− ᾱt−1ϵ̂∅(xt)

5: end for
6: return x0

Figure 2: Comparison between reverse diffusion process by CFG and CFG++. CFG++ proposes a
simple but surprisingly effective fix: using ϵ̂∅(xt) instead of ϵ̂ωc (xt) in updating xt−1.

error, enhancing and simplifying image reconstruction, as well as editing. Comparing CFG++ against
CFG shows that we achieve consistently better sample quality for text-to-image (T2I) generation,
significantly better DDIM inversion capabilities that lead to enhanced reconstruction and editing, and
enabling the incorporation of CFG guidance to diffusion inverse solvers (DIS) (Chung et al., 2023a).
While the applications of CFG++ that we show in this work are limited, we believe that our work will
have a broad impact that can be applied to all applications that leverage text guidance through the
traditional CFG.

2 BACKGROUND

Diffusion models. Diffusion models (Ho et al., 2020; Song et al., 2021b; Karras et al., 2022) are
generative models designed to learn the reversal of a forward noising process. This process starts
with an initial distribution p0(x) where x ∈ Rn, and progresses towards the standard Gaussian
distribution pT (x) ≈ N (0, I), utilizing forward Gaussian perturbation kernels. Sampling from the
data distribution can be performed by solving either the reverse stochastic differential equation (SDE)
or the equivalent probability-flow ordinary differential equation (PF-ODE) (Song et al., 2021b). For
example, under the choice p(xt|x0) = N (x0, σ

2
t I), the generative PF-ODE reads

dxt = −σt∇xt
log p(xt) dt =

xt − E[x0|xt]

σt
dt, xT ∼ pT (xT ), (1)

where Tweedie’s formula (Efron, 2011) E[x0|xt] = xt + σ2
t∇xt

log p(xt) is applied to achieve the
second equality. When aiming for a text-conditional diffusion model that can condition on arbitrary
c, one can extend epsilon matching to a conditional one where the condition is dropped with a
certain probability (Ho & Salimans, 2021) so that null conditioning with c = ∅ is possible. The
neural network architecture of ϵθ is designed so that the condition c can modulate the output through
cross attention (Rombach et al., 2022). For simplicity in notation throughout the paper, we define
ϵ̂c := ϵθ(xt, c) and ϵ̂∅ := ϵθ(xt,∅) by dropping θ and xt.

Extending the result of Tweedie’s formula to the unconditional case under the variance preserving
(VP) framework of DDPMs (Ho et al., 2020), we have

E[x0|xt,∅] = x̂∅(xt) := (xt −
√
1− ᾱtϵ̂∅(xt))/

√
ᾱt. (2)

Leveraging (2), it is common to use DDIM sampling (Song et al., 2021b) to solve the conditional
probability-flow ODE (PF-ODE) of the generative process. Specifically, a single iteration reads

x̂∅ = (xt −
√
1− ᾱtϵ̂∅)/

√
ᾱt (3)

xt−1 =
√
ᾱt−1x̂∅ +

√
1− ᾱt−1ϵ̂∅, (4)

where x̂∅ := x̂∅(xt) = E[x0|xt,∅] is the denoised signal by Tweedie’s formula, and (4) corre-
sponds to the renoising step1. This is repeated for t = T, T − 1, . . . , 1.

For modern diffusion models, it is common to train a diffusion model in the latent space (Rombach
et al., 2022) with the latent variable z. While most of our experiments are performed with latent
diffusion models (LDM), as our framework holds both for pixel- and latent-diffusion models, we will
simply use the notation x regardless of the choice.

Classifier free guidance. For a conditional diffusion, Ho & Salimans (2021) considered the
sharpened posterior distribution pω(x|c) ∝ p(x)p(c|x)ω . Using Bayes rule for some timestep t,

∇x log pω(xt|c) = ∇xt
log p(xt) + ω(∇xt

log p(xt|c)−∇xt
log p(xt)) (5)

1Similarly, we define x̂c := x̂c(xt) = E[x0|xt, c]
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Figure 3: Off-manifold phenomenon of CFG arise from: (a) the typical CFG scale ω > 1.0 which
leads to extrapolation and deviation from the piecewise linear data manifold, and (b) CFG’s renoising
process, which introduces a nonzero offset ∆ω from the correct manifold. CFG++ effectively
mitigates all these artifacts.

Parametrizing the score function with ϵθ, as in DDPM (Ho et al., 2020), we have

ϵ̂ωc (xt) := ϵ̂∅(xt) + ω[ϵ̂c(xt)− ϵ̂∅(xt)] (6)

where we introduce a compact notation ϵ̂ωc that guides the sampling from the sharpened posterior.
When sampling with CFG guidance with DDIM sampling, one replaces ϵ̂∅ with ϵ̂ωc for both the
Tweedie estimate (3) and the subsequent update step (4), leading to Algorithm 1.

Diffusion model-based inverse problem solvers. Diffusion model-based inverse problem solvers
(DIS) aims to perform posterior sampling from an unconditional diffusion model (Kadkhodaie &
Simoncelli, 2021; Chung et al., 2023a; Song et al., 2023; Kim et al., 2024b). Specifically, for a
given loss function ℓ(x) which often stems from the likelihood, the goal of DIS is to address the
optimization problem minx∈M ℓ(x), where M represents the clean data manifold sampled from the
unconditional distribution p0(x). It is essential to navigate in a way that minimizes cost while also
identifying the correct clean manifold.

Chung et al. (2023a) proposed diffusion posterior sampling (DPS), where the updated estimate from
the noisy sample xt ∈ Mt is constrained to stay on the same noisy manifold Mt. This is achieved
by computing the manifold constrained gradient (MCG) (Chung et al., 2022) on a noisy sample
xt ∈ Mt as ∇mcg

xt
ℓ(xt) := ∇xt

ℓ(x̂t), where x̂t is the denoised sample in (2) through Tweedie’s
formula (Efron, 2011). The resulting algorithm with DDIM (Song et al., 2021b) can be stated as
follows:

xt−1 =
√
ᾱt−1 (x̂∅ − γt∇xt

ℓ(x̂∅)) +
√
1− ᾱt−1ϵ̂∅, (7)

where γt > 0 denotes the step size. Under the linear manifold assumption (Chung et al., 2022; 2023a),
this allows precise transition to Mt−1. To mitigate the computational complexity and the instability
of neural network backprop, Chung et al. (2024) shows that (7) can be equivalently represented as

xt−1 ≃
√
ᾱt−1

(
x̂∅ − γt∇x̂∅ℓ(x̂∅)

)
+

√
1− ᾱt−1ϵ̂∅ (8)

under further assumptions on M. This method, often referred to as the decomposed diffusion
sampling (DDS), bypasses the computation of the score Jacobian, similar to Poole et al. (2022),
making it stable and suitable for large-scale medical imaging inverse problems (Chung et al., 2024).
In the following, we leverage the insight from DDS to propose an algorithm to improve upon the
CFG algorithm.

3 CFG++ : MANIFOLD-CONSTRAINED CFG

3.1 DERIVATION OF CFG++

Instead of uncritically adopting the sharpened posterior distribution pω(x|c) ∝ p(x)p(c|x)ω as
introduced by Ho & Salimans (2021), we adopt a fundamentally different strategy by reformulating
text-guidance as an optimization problem. Specifically, our focus is on identifying a loss function ℓ(x)
in (8) such that, when minimized under the condition set by the text, enables the reverse diffusion
process to generate samples that increasingly satisfy the text condition progressively.

One of the most significant contributions of this paper is to reveal that the text-conditioned score
matching loss or alternatively, score distillation sampling (SDS) loss (Poole et al., 2022) is ideally
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suited for our purpose. Specifically, we are interested in solving the following inverse problem
through diffusion models:

min
x∈M

ℓsds(x), ℓsds(x) := ∥ϵθ(
√
ᾱtx+

√
1− ᾱtϵ, c)− ϵ∥22 (9)

This implies that our goal is to identify solutions on the clean manifold M that optimally aligns with
the text condition c.

To avoid the Jacobian computation, in this paper, we attempt to solve (9) through DDS in (8). The
resulting sampling process from reverse diffusion is then given by

xt−1 =
√
ᾱt−1

(
x̂∅ − γt∇x̂∅ℓsds(x̂∅)

)
+

√
1− ᾱt−1ϵ̂∅. (10)

By using xt =
√
ᾱtx+

√
1− ᾱtϵ from the clean image x ∈ M, we can equivalently write the loss

as ℓsds(x) = ᾱt

1−ᾱt
∥x− x̂c∥2, which leads to

xt−1 =
√
ᾱt−1 (x̂∅ + λ(x̂c − x̂∅)) +

√
1− ᾱt−1ϵ̂∅ (11)

where λ := 2ᾱt

1−ᾱt
γt. Using the CFG notation ϵ̂λc(xt) := ϵ̂∅(xt) + λ[ϵ̂c(xt) − ϵ̂∅(xt)] and x̂∅ +

λ(x̂c − x̂∅) = (xt −
√
1− ᾱtϵ̂

λ
c(xt))/

√
ᾱt, (11) can be equivalently represented as

x̂λ
c(xt) = (xt −

√
1− ᾱtϵ̂

λ
c(xt))/

√
ᾱt (12)

xt−1 =
√
ᾱt−1x̂

λ
c(xt) +

√
1− ᾱt−1ϵ̂∅(xt) (13)

which is summarized in Algorithm 2. By examining Algorithm 1 and Algorithm 2, we observe
that CFG and CFG++ are mostly the same, with a crucial difference in the renoising process. This
surprisingly simple fix of utilizing the unconditional noise ϵ̂∅(xt) instead of ϵ̂ωc (xt) leads to a
smoother trajectory of generation, (Fig. 1 bottom) and generation with superior quality (Fig. 1 top).

Although we focus our construction of the solver on DDIM for simplicity, note that DDIM is just
one way of reverse sampling. There are other widely-used solvers such as Karras Euler and its
variants (Karras et al., 2022), DPM-solver (Lu et al., 2022a;b), their ancestral variants2, etc. For most
widely used solvers up to the second order, a single-step update of solving the unconditional PF-ODE
can be represented as

xi = x̂∅(xi−1) + aix̂∅(xi−1) + bix̂∅(xi−2) + cixi−1 + diϵ, ϵ ∼ N (0, I), (14)

with di ̸= 0 when one uses an ancestral sampler. Note that the first right-hand side term in (14)
corresponds to the denosing, whereas the rest terms describes the higher-order corrected version of the
renoising process. As the goal of CFG++ is to optimize the denoising process under the text-guidance
while keeping the renoising components equivalent to unconditional sampling, applying CFG++ to
the general iteration in (14) simply leads to

xi =
(
x̂∅(xi−1)− λ∇x̂∅(xi−1)ℓsds(x̂∅(xi−1))

)
+ aix̂∅(xi−1) + bix̂∅(xi−2) + cixi−1 + diϵ

= x̂λ
c(xi−1) + aix̂∅(xi−1) + bix̂∅(xi−2) + cixi−1 + diϵ, ϵ ∼ N (0, I). (15)

Moreover, CFG++ naturally extends to distilled diffusion models, such as SDXL-turbo (Sauer et al.,
2023) and SDXL-lightning (Lin et al., 2024), where akin to (15), we use the conditional denoised
estimate, but for the rest of the noise components in the Euler solver, we use the unconditional
estimate. For details in how to apply CFG++ to various solvers, see Appendix A.

3.2 GEOMETRY OF CFG++

Mitigating off-manifold phenomenon. In Fig. 1 (bottom), we illustrate the evolution of the posterior
mean through Tweedie’s formula during the reverse diffusion process. Notably, in the early phases of
reverse diffusion sampling under CFG, there is a sudden shift in the image and intense color saturation.
Conversely, CFG++ is free from the undesirable off-manifold phenomenon. In the following, we
investigate why this is the case.

Note that the denoised estimate of CFG and CFG++ at time t can be equivalently represented as

x̂λ
c(xt) = (1− λ)x̂∅(xt) + λx̂c(xt), x̂ω

c (xt) = (1− ω)x̂∅(xt) + ωx̂c(xt). (16)

2https://github.com/crowsonkb/k-diffusion
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Figure 4: Text-conditioned score matching loss throughout the reverse diffusion sampling for both
CFG and CFG++ in SDXL. Avg. loss computed with 55 prompts from (Chen et al., 2024).

λ, ω ∈ [0, 1] facilitates an interpolation. However, with ω > 1.0, CFG extrapolates beyond the
unconditional and conditional estimates. Consequently, under the assumption that the clean manifold
be piecewise linear (Chung et al., 2024), the conditional posterior mean estimates from CFG obtained
with a guidance scale outside the range of [0, 1], can easily extend beyond the piecewise linear
manifold. This may lead to the estimates potentially “falling off” the data manifold, as depicted by an
orange arrow pointing downwards in Fig. 3(a). Thus, we select λ ∈ [0, 1] as the guidance scale for
CFG++ to ensure it remains an interpolation between the unconditional and conditional estimate,
thus preventing it from ‘falling off’ the clean data manifold. An additional source of the off-manifold
phenomenon in CFG occurs during the transition from the clean manifold M to the subsequent
noisy manifold Mt−1, due to a similar off-manifold phenomenon from the large guidance scale (i.e.
extrapolation), illustrated in Fig. 3 (b).

Text-Image alignment. In Fig. 1 (top), and Fig. 10, we observe enhanced text-to-image alignment
achieved with CFG++. This enhanced alignment capability is a natural consequence of CFG++,
which directly minimizes the text-conditioned score-matching loss as shown in (9). In contrast, CFG
indirectly seeks text alignment through the sharpened posterior distribution pω(x|c) ∝ p(x)p(c|x)ω .
Therefore, CFG++ inherently outperforms CFG in terms of text alignment due to its fundamental
design principle. For example, Fig. 4 displays the normalized text-conditioned score matching
loss, represented as (1 − ᾱt)∥ϵ − ϵθ(xt, c)∥2/ᾱt = ∥x − x̂c∥2, throughout the reverse diffusion
sampling process for both CFG and CFG++. The loss plot associated with CFG shows fluctuations
and maintains a noticeable gap compared to CFG++ even after the completion of the reverse diffusion
process. In fact, the fluctuation associated with CFG is also related to the off-manifold issue, and
from Fig. 4 we can easily see that the off-manifold phenomenon is more dominant at early stage of
reverse diffusion sampling. Conversely, the loss trajectory for CFG++ demonstrates a much smoother
variation, particularly during the early stages of reverse diffusion.

DDIM inversion. As discussed in (Song et al., 2021a), the denoising process for unconditional DDIM
is approximately invertible, meaning that xt can generally be recovered from xt−1 Specifically, from
(3) and (4), we have the following approximate inversion formula for unconditional DDIM:

x̂∅(xt) = (xt−1 −
√
1− ᾱt−1ϵ̂∅(xt))/

√
ᾱt−1 ≃ (xt−1 −

√
1− ᾱt−1ϵ̂∅(xt−1))/

√
ᾱt−1 (17)

xt =
√
ᾱtx̂∅(xt) +

√
1− ᾱtϵ̂∅(xt) ≃

√
ᾱtx̂∅(xt) +

√
1− ᾱtϵ̂∅(xt−1) (18)

where the approximation arises from ϵ̂∅(xt) ≃ ϵ̂∅(xt−1). A similar inversion procedure has
been employed for conditional DDIM inversion under CFG by assuming ϵ̂ωc (xt) ≃ ϵ̂ωc (xt−1), and
replacing ϵ̂∅ by ϵ̂ωc as detailed in Algorithm 3.

On the other hand, by examining (12) and (13), we can obtain the following approximate DDIM
inversion formula under CFG++:

x̂λ
c(xt) ≃ (xt−1 −

√
1− ᾱt−1ϵ̂∅(xt−1))/

√
ᾱt−1 (19)

xt ≃
√
ᾱtx̂

λ
c(xt) +

√
1− ᾱtϵ̂

λ
c(xt−1) (20)
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ω = 2.0, λ = 0.2 ω = 5.0, λ = 0.4 ω = 7.5, λ = 0.6 ω = 9.0, λ = 0.8 ω = 12.5, λ = 1.0

Method FID ↓ CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑ FID ↓ CLIP ↑ IR ↑

CFG (Ho & Salimans, 2021) 13.84 0.298 -0.235 15.08 0.310 0.068 17.71 0.312 0.152 20.01 0.312 0.170 21.23 0.313 0.192

CFG++ (ours) 12.75 0.303 -0.218 14.95 0.310 0.071 17.47 0.312 0.156 19.34 0.313 0.208 20.88 0.313 0.194

Table 1: Quantitative evaluation of 50 NFE DDIM T2I with SD v1.5 on COCO 10k

where we apply the approximation ϵ̂λc(xt) ≃ ϵ̂λc(xt−1) alongside the usual assumption ϵ̂∅(xt) ≃
ϵ̂∅(xt−1). This formulation underpins the CFG++ guided DDIM inversion algorithm, presented in
Algorithm 4.

In practice, for small time step size the error ϵ̂∅(xt) ≃ ϵ̂∅(xt−1) is relatively small, so the un-
conditional DDIM inversion by (17) and (18) lead to relatively insignificant errors. Unfortunately,
the corresponding inversion from conditional diffusion under CFG is quite distorted as noted in
(Mokady et al., 2023; Wallace et al., 2023). In fact, this distortion is originated from the inaccuracy
of the approximation ϵ̂ωc (xt) ≃ ϵ̂ωc (xt−1). More specifically, even when ϵ̂∅(xt) ≃ ϵ̂∅(xt−1), the
approximation error from the CFG is given by

εcfg := ϵ̂ωc (xt)− ϵ̂ωc (xt−1) = (ϵ̂∅(xt)− ϵ̂∅(xt−1)) + ω
(
δϵ̂c(xt)− δϵ̂c(xt−1)

)
≃ ω

(
δϵ̂c(xt)− δϵ̂c(xt−1)

)
, (21)

where δϵ̂c(xt) := ϵ̂c(xt) − ϵ̂∅(xt) denotes the directional component from unconditional to the
conditional diffusion. Since the directional component by the text guidance is not negligible, this
error becomes significant for high guidance scale ω. Accordingly, the guidance scale must be heavily
downweighted in order for inversions on real world images to be stable, thus limiting the strength of
edits. To mitigate this issue, the authors in (Mokady et al., 2023; Wallace et al., 2023) developed null
text optimization and coupled transform techniques, respectively.

On the other hand, under the usual DDIM assumption ϵ̂∅(xt) ≃ ϵ̂∅(xt−1), the approximation error
of CFG++ mainly arises from (20), which is smaller than that of CFG since we have

∥εcfg++∥ = λ∥δϵ̂c(xt)− δϵ̂c(xt−1)∥ < ∥εcfg∥ (22)

thanks to λ < ω. Therefore, CFG++ significantly improves the DDIM inversion as shown Fig. 1
(middle) for representative results and Sec. 4.2 for further discussions.

4 EXPERIMENTAL RESULTS

In this section, we design experiments to show the limitations of CFG and how CFG++ can effectively
mitigate these downsides. The main experiments were conducted with SD v1.5 or SDXL with 50
NFE DDIM sampling. In this regime, we searched for the matching guidance values of ω and λ for
a fair comparison. We fix λ = 0.2, 0.4, 0.6, 0.8, 1.0 and find the ω values that produce the images
that are of closest proximity in terms of LPIPS distance given the same seed. We found that the
corresponding values were ω = 2.0, 5.0, 7.5, 9.0, 12.5, respectively. Some of the experiments were
also conducted with distilled model such as SDXL-turbo, lightning.

4.1 TEXT-TO-IMAGE GENERATION
Model Metric CFG CFG++ (ours)

SDXL-Turbo
FID↓ 59.67 59.21
CLIP↑ 0.320 0.325
ImageReward↑ 0.777 0.968

SDXL-Lightning
FID↓ 56.11 55.19
CLIP↑ 0.322 0.324
ImageReward↑ 0.691 0.829

SD v1.5 (DPM++ 2M)
FID↓ 32.72 32.58
CLIP↑ 0.313 0.312
ImageReward ↑ 0.086 0.023

Table 2: Quant. eval. on accelerated T2I sampling

Using the corresponding scales for ω and λ, we
directly compare the performance of the T2I
task using SD v1.5 and SDXL. In Tab. 1, we re-
port quantitative metrics using 10k images gen-
erated from COCO captions (Lin et al., 2014).
Here, we observe a constant improvement of
the FID metric across all guidance scales (also
see Fig. 15 for an apples-to-apples comparison),
with approximately the same level of CLIP sim-
ilarity or better. Additionally, we evaluate Im-
ageReward (IR) (Xu et al., 2024), trained on human judgment data for better correlation, and observe
improvements in this metric as well. The improvements can also be clearly seen in Fig. 11 (SD v1.5),
where the unnatural components of the generated images are corrected. Specifically, we see that
unnatural depictions of human hands, and incorrect renderings of the text are corrected in CFG++, a
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Figure 5: T2I using SDXL-{turbo, lightning}, 6 NFE, CFG vs CFG++.

long-standing research question in and of its own (Podell et al., 2023; Pelykh et al., 2024; Chen et al.,
2023). We find that the improvement gain from CFG++ is even more dramatic for distilled diffusion
models such as SDXL-{turbo, lightning}. We quantify the results on the same 5k prompts with 6
NFE sampling. In Fig. 5, Fig. 12 and Fig. 13 we see significant boosts in the quality of the generated
images, which is also depicted in the improvements seen in Tab. 2.

To show the compatibility of CFG++ with higher-order solvers, we experiment with the DPM++
2M (Lu et al., 2022b) solver using 20 NFE. We note that in such a low NFE regime, a CFG scale of
5.0 corresponds to a CFG++ scale of 1.0, and we have to slightly extrapolate the value of λ ≥ 1.0 to
achieve stronger guidance results. In Tab. 2, we observe that CFG++ is broadly comparable to CFG.
This outcome differs from the consistent improvement of CFG++ over CFG observed with 50 NFE
DDIM sampling. We attribute this to two factors: (1) the overall image quality for 20 NFE DPM++
2M is generally lower compared to 50 NFE DDIM, leading to noisier quantitative metrics, particularly
for metrics like ImageReward that are sensitive to subtle quality changes; and (2) the difference
between CFG and CFG++ tends to be less pronounced in low NFE regimes without distillation, as
stronger guidance effects emerge with higher NFEs.

4.2 DIFFUSION IMAGE INVERSION AND EDITING

We further explore the effect of CFG++ on DDIM inversion (Dhariwal & Nichol, 2021), where the
source image is reverted to a latent vector that can reproduce the original image through generative
process. DDIM inversion is well-known to break down in the usual CFG setting as CFG magnifies
the accumulated error of each inversion step (Mokady et al., 2023), violating local linearization
assumptions (Wallace et al., 2023). We show that CFG++ mitigates this issue by improving the
inversion and image editing capabilities. We evaluate our method following the experimental setups
in Park et al. (2024) and Kim et al. (2024b).

Diffusion Image Inversion. Using the matched set of scales for ω and λ, we demonstrate the
effect of CFG++ on the diffusion image inversion task. Specifically, we reconstruct the images after
inversion and evaluate it through PSNR and RMSE, following the methodology of Wallace et al.
(2023). In Fig. 6, we illustrate the reconstructed examples (6a) from a real image from COCO data
set and computed metrics (6b) for 5k COCO-2014 (Lin et al., 2014) validation set. Both qualitative
and quantitative evaluations demonstrate a consistent improvement on reconstruction performance
induced by CFG++. Notably, DDIM inversion with CFG++ leads to a consistent reconstruction of
the source image across all guidance scales, while DDIM inversion with CFG fails to reconstruct it,
as shown in Fig. 16 for another real image.

Image Editing. Fig. 6c compares the image editing result using CFG and CFG++ followed by image
inversion with 5 NFEs. In the image editing stage, a word in the source text highlighted by green
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Figure 6: Inversion and editing results. (a) Reconstructed samples after inversion by CFG and
CFG++. (b) Quantitative comparison between CFG and CFG++ for reconstruction. (c) Image editing
comparison via SDXL.

color is swapped with the target concept, and this modified text is used as the condition for sampling.
CFG++ successfully edits the target concept while preserving other concepts, such as background. In
particular, the water splashing in the background, which tends to disappear in the conventional CFG,
is maintained through the inversion process by CFG++. This emphasizes CFG++’s superior ability
to retain specific scene elements that are frequently lost in the standard CFG approach. Moreover,
standard CFG’s disrupted DDIM inversion leads to saturated and less faithful editing results, whereas
CFG++ delivers precise and high-fidelity edits.

4.3 TEXT-CONDITIONED INVERSE PROBLEMS

Inverse problem involves restoring the original data x from a noisy measurement y = A(x) + n,
where A represents an imaging operator introduces distortions (e.g, Gaussian blur) and n denotes
the measurement noise. Diffusion inverse solvers (DIS) address this challenge by leveraging pre-
trained diffusion models as implicit priors and performing posterior sampling x ∼ p(x|y). Methods
that leverage latent diffusion have gained recent interest (Rout et al., 2024; Song et al., 2024), but
leveraging texts for solving these problems remains relatively underexplored (Chung et al., 2023b;
Kim et al., 2023). One of the main reasons for this is that naively using CFG on top of latent
DIS leads to diverging samples (Chung et al., 2023b). Several heuristic modifications such as null
prompt optimization (Kim et al., 2023) with modified sampling schemes were needed to mitigate
this drawback. This naturally leads to the question: Is it possible to leverage CFG guidance as a
plug-and-play component of existing solvers? Here, we answer this question with a positive by
showing that CFG++ enables the incorporation of text prompts into a standard solver. Specifically,
we focus on comparing the performance of PSLD (Rout et al., 2024) combined with CFG and CFG++
in solving linear inverse problems. This evaluation utilizes the FFHQ (Karras et al., 2019) 512x512
dataset and the text prompt "a high-quality photo of a face". Further details about the experimental
settings can be found in the Appendix E.

As shown in Tab. 3, our method mostly outperforms both the vanilla PSLD and PSLD with CFG.
The superiority is also evident from the Fig. 7, where CFG++ consistently delivers high-quality
reconstructions across all tasks. PSLD with CFG often suffer from artifacts and blurriness. Conversely,
CFG++ achieves better fidelity, clearly distinguishing between faces and faithfully reproducing fine
details like eyelids and hair texture. For more results, please refer to the Appendix F.
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Figure 7: Qualitative comparison on various inverse problems using PSLD (Rout et al., 2024) under
CFG and CFG++. For more results, please refer to the Appendix F.

SR (x8) Deblur (motion) Deblur (gauss) Inpaint

Method FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑

PSLD 46.24 0.413 24.41 97.51 0.500 21.83 41.65 0.388 26.88 10.27 0.053 30.15

PSLD + CFG 41.24 0.394 24.91 91.90 0.493 22.29 41.52 0.390 26.94 9.36 0.055 30.27

PSLD + CFG++ (ours) 36.58 0.385 24.87 65.67 0.482 21.93 39.85 0.400 26.90 9.78 0.052 30.31

Table 3: Quantitative comparison (FID, LPIPS, PSNR) of PSLD, PSLD with CFG, and PSLD with
CFG++ on Latent Diffusion Inverse Solver.

5 RELATED WORKS AND DISCUSSIONS

Kynkäänniemi et al. (2024) observed that applying CFG guidance at the earlier stages of sampling
always led to detrimental effects and drastically reduced the diversity of the samples. The guidance at
the later stages of sampling had minimal effects. Drawing upon these observations, it was empirically
shown that applying CFG only in the limited time interval near the middle led to the best performance.
Similar observations were made in the SD community (Howard & Prashanth, 2022; Birch, 2023)
in adjusting the guidance scale across t. These works try to empirically adjust the strength of the
guidance, while we derive our trajectory in a principled manner. More recently, Bradley & Nakkiran
(2024) observed that the CFG score is not a valid denoising direction, showing that in the asymptotic
limit, CFG sampling can be considered as a specific type of predictor-corrector (PC) sampling,
dubbed PCG. PCG shares a similar spirit with CFG++ in that for the mainstream of sampling, one
defers from the use of mixed CFG score (we use unconditional score, PCG uses conditional score) to
avoid invalid directions. While PCG derives an interesting connection of PC sampling with CFG, the
proposed algorithm does not improve the sampling performance. In contrast, CFG++ improves the
sample quality without additional computation overhead. Since CFG++ attempts to make adjustments
of CFG using a linear combination of score functions, it is not surprising to see that CFG++ sampling
can be achieved by setting a time varying schedule. Specifically, by setting a time-varying schedule

ωt as ωt = −ω
(√

1− ᾱt−1 −
√

1−ᾱt−1

αt

)
, one can achieve the same effect with CFG as CFG++.

Details are shown in App. D. However, this specific choice of time-varying guidance scale has not
been reported in the literature, as it is a schedule that is relatively complex to be drawn heuristically.
We further show in Appendix C that such choice removes undesirable oscillatory behavior in the
evolution of the posterior mean.

6 CONCLUSION

This paper revises the most widespread guidance method, classifier-free guidance (CFG), highlighting
that a small and reasonable guidance scale, e.g. λ ∈ [0.0, 1.0], might suffice successful guidance
with a proper geometric correction. Observing that the original CFG suffers from off-manifold issues
during sampling, we propose a simple but surprisingly effective fix. This change translates the condi-
tional guidance from extrapolating to interpolating between unconditional and conditional sampling
trajectories, leading to more interpretable guidance in contrast to the conventional CFG which relies
on heuristic ω scaling. Given that CFG++ mitigates off-manifold issues, it may be beneficial for other
downstream applications requiring accurate latent denoised estimate representations, e.g. DIS, as
demonstrated in our experiments.
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Algorithm 3 DDIM Inversion with CFG
Require: x0, 0 ≤ ω ∈ R
1: for i = 0 to T − 1 do
2: ϵ̂ωc (xt) = ϵ̂∅(xt) + ω[ϵ̂c(xt)− ϵ̂∅(xt)]
3: x̂ω

c (xt)← (xt −
√
1− ᾱtϵ̂

ω
c (xt))/

√
ᾱt

4: xt+1 =
√
ᾱt+1x̂

ω
c (xt) +

√
1− ᾱt+1ϵ̂

ω
c (xt)

5: end for
6: return xT

Algorithm 4 DDIM Inversion with CFG++
Require: x0, λ ∈ [0, 1]
1: for i = 0 to T − 1 do
2: ϵ̂λc (xt) = ϵ̂∅(xt) + λ[ϵ̂c(xt)− ϵ̂∅(xt)]

3: x̂λ
c (xt)← (xt −

√
1− ᾱtϵ̂∅(xt))/

√
ᾱt

4: xt+1 =
√
ᾱt+1x̂

λ
c (xt) +

√
1− ᾱt+1ϵ̂

λ
c (xt)

5: end for
6: return xT

Figure 8: Comparison between DDIM inversion. CFG++ proposes a simple yet effective fix: using
ϵ̂∅(xt) instead of ϵ̂ωc (xt) in Tweedie’s denoising step.

A EXTENSION OF CFG++ TO OTHER SOLVERS

In this section, we discuss ways in which we can apply CFG++ to a more diverse set of ODE/SDE
solvers. We consider solving the variance exploding (VE) PF-ODE as presented in (1), as re-
parametrization VP diffusion models can easily recover the VE formulation, as often implemented in
widely used frameworks such as https://github.com/crowsonkb/k-diffusion. Following the
notation in Lu et al. (2022b), we consider a sequence of timesteps {ti}Mi=0, where t0 = T denotes the
initial starting point of the reverse sampling (i.e. Gaussian noise).

Euler (Karras et al., 2022) The construction is the same as in DDIM. We include it here for
completeness. The update step reads

xti+1
= x̂ω

c (xti) +
xti − x̂ω

c (xti)

σti

· σti+1
, (CFG)

xti+1
= x̂λ

c(xti) +
xti − x̂∅(xti)

σti

· σti+1
, (CFG++)

Euler Ancestral Euler Ancestral sampler follows Euler sampler, but introduces stochasticity by
taking larger steps and then adding a slight amount of noise. Adjusting with CFG++ is straightforward.

xti+1
= x̂ω

c (xti) +
xti − x̂ω

c (xti)

σti

· (σtdi
− σti) + σtiϵ, (CFG)

xti+1 = x̂λ
c(xti) +

xti − x̂∅(xti)

σti

· (σtdi
− σti) + σtiϵ, (CFG++)

where ti > tdi
> ti+1 and ϵ ∼ N (0, I).

DPM-solver++ 2M (Lu et al., 2022b) Define σt := e−t, hi := ti − ti−1, and ri := hi−1/hi.
After initializing xt0 with Gaussian noise, the first iteration is given by

xt1 = x̂ω
c (xt0) + e−h1(xt0 − x̂ω

c (xt0)) (CFG)

xt1 = x̂λ
c(xt0) + e−h1(xt0 − x̂∅(xt0)) (CFG++)

The following iterations by using the standard CFG reads

Di = x̂ω
c (xti−1

) +
1

2ri

(
x̂ω
c (xti−1

)− x̂ω
c (xti−2

)
)
, (23)

xti = e−hixti−1 − (e−hi − 1)Di. (24)

Rearranging (23), (24), we can rewrite the update steps as

xti = x̂ω
c (xti−1)− e−hi x̂ω

c (xti−1) +
1− e−hi

2ri

(
x̂ω
c (xti−1)− x̂ω

c (xti−2)
)
+ e−hixti−1 . (25)

Notice that in order to apply CFG++ to (25), we should only keep the first term as the conditional
Tweedie, and use the unconditional estimates for the rest of the components. i.e.

xti = x̂λ
c(xti−1

)− e−hi x̂∅(xti−1
) +

1− e−hi

2ri

(
x̂∅(xti−1)− x̂∅(xti−2)

)
+ e−hixti−1 (26)
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DPM-solver++ 2S (Lu et al., 2022b) With the same choices of σt, hi, we additionally define
the timesteps {si}Mi=1 with ti > si+1 > ti+1. Further, let ri =

si−ti−1

ti−ti−1
. Using standard CFG, the

iteration reads

ui = e−rihixti−1
+ (1− e−rihi)x̂ω

c (xti−1
) (27)

xti = x̂ω
c (xti−1

)− e−hi x̂ω
c (xti−1

) +
1− e−hi

2ri

(
x̂ω
c (ui)− x̂ω

c (xti−1
)
)
+ e−hixti−1

(28)

Applying the general transition rule from CFG to CFG++ as introduced in (15), we can keep all of
the Tweedie estimates to be unconditional, and only change the first term of (28), i.e.

ui = e−rihixti−1
+ (1− e−rihi)x̂∅(xti−1

) (29)

xti = x̂∅(xti−1
)− e−hi x̂∅(xti−1

) +
1− e−hi

2ri

(
x̂λ
c(ui)− x̂∅(xti−1

)
)
+ e−hixti−1

. (30)

For the ancestral version of DPM-solver++ 2S, we can follow the general transition rule, as was
shown for Euler → Euler Ancestral.

B EXTENSION OF CFG++ TO FLOW MATCHING

Here, we generalize CFG++ with flow matching which subsumes diffusion models as specific
instantiations. Let p0 and p1 be two data distributions on Rn, and Q01 denotes a coupling of p0 and
p1. Then, the flow matching loss is defined as follows:

ℓFM(θ;Q01) = E(x0,x1)∼Q01,t∼unif(0,1)[ℓMSE(x1 − x0,vθ(xt, t))], (31)

where vθ : Rn × (0, 1) → Rn refers to a velocity parameterized by θ, ℓMSE(x,y) = ∥x− y∥22, and
xt = (1− t)x0 + tx1. This objective can be reformulated in the form of denoising as follows:

ℓFM(θ;Q01) = E(x0,x1)∼Q01,t∼unif(0,1)

[ 1
t2
ℓMSE(x0,Dθ(xt, t))

]
, (32)

where Dθ(xt, t) = xt − tvθ(xt, t) serves as a denoiser function. Then, one can derive an ODE
which translates samples from p0 and p1 given a vector field vθ:

dxt = vθ(xt, t)dt =
xt −Dθ(xt, t)

t
dt, t ∈ (0, 1), (33)

which resembles (1) with a choice of σt = t. For text-conditional flow, CFG can be applied to (33)
by solving the following ODE (Kim et al., 2024a):

dxt =
[
vθ(xt, t,∅) + ω(vθ(xt, t, c)− vθ(xt, t,∅))

]
dt = ṽω

c (xt)dt, t ∈ (0, 1). (34)

We similarly define x̃ω
c (xt) = xt − tṽω

c (xt), x̃∅(xt) = xt − tvθ(xt, t,∅) = xt − tṽ∅(xt), and
x̃λ
c(xt) = xt − tṽλ

c (xt). Based on this ODE, we can reproduce results from a diverse set of solvers
in Sec. A. For example, a single update step of Euler solver reads:

xti+1
= x̃ω

c (xti) +
xti − x̃ω

c (xti)

ti
· ti+1, (CFG)

xti+1 = x̃λ
c(xti) +

xti − x̃∅(xti)

ti
· ti+1. (CFG++)

This implies that CFG++ is potentially compatible with various flow-based generative models.

C EVOLUTION OF THE POSTERIOR MEAN: CFG VS. CFG++

Recall that one can equivalently view the evolution of the posterior mean E[x0|xt] rather than the
noisy variables xt. In this context, we derive the sequential evolution of conditional posterior mean
x̂ω
c and x̂λ

c through time t to further understand the underlying behavior of the proposed sampling.
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Proposition 1. Let dz(xt) := z(xt)− z(xt+1) denote the discrete time evolution of some random
variable z at time t. Then, the evolution of x̂ω

c of CFG and x̂λ
c of CFG++ is given by

dx̂ω
c (xt) =

√
1− ᾱt√
ᾱt

dϵ̂∅(xt) + ω(∆(xt, c)−∆(xt+1, c)) (35)

dx̂λ
c(xt) =

√
1− ᾱt√
ᾱt

dϵ̂∅(xt)︸ ︷︷ ︸
uncond. shift

+λ∆(xt, c)︸ ︷︷ ︸
cond. shift

, (36)

where ∆(xt, c) := x̂c(xt)− x̂∅(xt).

Proof. We start by writing the iteration from t+ 1 → t

xt =
√
ᾱtx̂

ω
c (xt+1) +

√
1 + ᾱtϵ̂

ω
c (xt+1). (37)

The Tweedie estimate for the next step is then written as

x̂ω
c (xt) =

xt −
√
1− ᾱtϵ̂

ω
c (xt)√

ᾱt
(38)

=

√
ᾱtx̂

ω
c (xt+1) +

√
1− ᾱt(ϵ̂

ω
c (xt+1)− ϵ̂ωc (xt))√

ᾱt
(39)

= x̂ω
c (xt+1) +

√
1− ᾱt√
ᾱt

[
ϵ̂∅(xt+1)− ϵ̂∅(xt) + ω(ϵ̂c(xt+1)− ϵ̂∅(xt+1))

− ω(ϵ̂c(xt)− ϵ̂∅(xt))
]
. (40)

Using the relation ϵ̂ωc (xt) = −(
√
ᾱtx̂

ω
c (xt)− xt)/

√
1− ᾱt, we have

dx̂ω
c (xt) =

√
1− ᾱt√
ᾱt

dϵ̂∅(xt) + ω (x̂c(xt)− x̂∅(xt))− ω (x̂c(xt+1)− x̂∅(xt+1)) . (41)

Similarly, for CFG++,

x̂λ
c(xt) =

xt −
√
1− ᾱtϵ̂

λ
c(xt)√

ᾱt
(42)

=

√
ᾱtx̂

λ
c(xt+1) +

√
1− ᾱt(ϵ̂∅(xt+1)− ϵ̂λc(xt))√

ᾱt
(43)

= x̂λ
c(xt+1) +

√
1− ᾱt√
ᾱt

[ϵ̂∅(xt+1)− ϵ̂∅(xt)− λ(ϵ̂c(xt)− ϵ̂∅(xt))] . (44)

Hence,

dx̂λ
c(xt) =

√
1− ᾱt√
ᾱt

dϵ̂∅(xt) + λ(x̂c(xt)− x̂∅(xt)), (45)

Proposition 1 implies that the CFG++ update of x̂λ
c is decomposed into two shift terms: 1) dϵ̂∅(xt)

represents the difference between consecutive unconditional scores (i.e. unconditional shift), and
2) ∆(xt, c) denotes the direction of conditional guidance at time t (i.e. conditional shift). The
conditional shift term is multiplied by a small interpolation factor λ in the case of CFG++, inducing a
small nudge toward the condition.

CFG x̂ω
c , on the other hand, has the same unconditional shift, but has an oscillatory behavior for

the conditional shift. The difference between CFG/CFG++ sampling arises from the unexpected
additional shift from the previous timestep t+1 that exists for the CFG decomposition: −∆(xt+1, c),
and the scaling constant ω.The initial conditional shift ω∆(xt, c) with a large ω pushes the trajectory
off the manifold, but cancels some of its effects by subtracting the conditional shift from the previous
step ω∆(xt+1, c). The compounded vector ∆(xt, c) −∆(xt+1, c) does induce a nudge closer to
the condition but requires a large value of ω to have a meaningful effect, and thus is hard to interpret.
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Figure 9: Continuous transition between CFG and CFG++ schedule

D CFG++ AS REWEIGHTED CFG

One can rewrite the update step of CFG and CFG++ succinctly as

xt−1 =
√
ᾱt−1x̂

ω
c +

√
1− ᾱt−1ϵ̂

ω′

c (46)

=
√
ᾱt−1

(
xt −

√
1− ᾱtϵ̂

ω
c (xt)√

ᾱt
+
√
1− ᾱt−1ϵ̂

ω′

c

)
, (47)

where for CFG, ω′ = ω, and for CFG++, ω′ = 0. Note that we are using the same notation ω here,
but the guidance scale (represented as λ in the previous sections), is much smaller. One can derive

xt−1 =
√
ᾱt−1x̂∅ − ω

√
1− ᾱt(ϵ̂c − ϵ̂∅)√

αt
+

√
1− ᾱt−1ϵ̂∅ +

√
1− ᾱt−1ω

′(ϵ̂c − ϵ̂∅) (48)

=
(√

ᾱt−1x̂∅ +
√

1− ᾱt−1ϵ̂∅

)
− ω

√
1− ᾱt(ϵ̂c − ϵ̂∅)√

αt
+
√

1− ᾱt−1ω
′(ϵ̂c − ϵ̂∅) (49)

= xt−1,∅ + (ϵ̂c − ϵ̂∅)

ω′√1− ᾱt−1 − ω

√
1− ᾱt−1

αt︸ ︷︷ ︸
=:−ωt

 (50)

Here, we see that the guidance scale used in the original CFG is a composition of two time-dependent
functions. When composited with the same strength for ω′ and ω, as depicted in Fig. 9 (b), the
guidance scale of CFG peaks at the earlier stages of sampling, drops down, then rises back up. The
sudden peak in the earlier stages may explain the unnatural saturation in the earlier stages of sampling
using CFG. In contrast, the guidance scale of CFG++ has a convex-like function, where the scale
gradually increases to some value.

By enforcing that the guidance scales integrate to 1 (i.e. enforce it as a PDF), we can generalize
CFG/CFG++, and scrutinize the behavior when we interpolate between these two by setting 0 <
ω′ < ω. The guidance scale functions for these interpolations are shown in Fig. 9. In Tab. 4, we see
that the image quality measured by FID and ImageReward on COCO-1K data, gradually gets better
as we transition from CFG++ to CFG.
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ω′ = 0.0 (CFG++) ω′ = 0.4 ω′ = 0.6 ω′ = 0.8 ω′ = 1.0 (CFG)

ImageReward ↑ -0.112 -0.125 -0.126 -0.153 -0.420
FID ↓ 66.52 66.60 66.78 67.50 68.10

Table 4: Quantitative results of COCO-1k by interpolating between CFG and CFG++

E EXPERIMENTAL DETAILS

E.1 TEXT-CONDITIONED INVERSE PROBLEMS

Problem settings. We evaluate our approach across following degradation types: 1) Super-resolution
with a scale factor of x8, 2) Motion deblurring from an image convolved with a 61 x 61 motion kernel,
randomly sampled with an intensity value 0.32, 3) Gaussian deblurring from an image convolved
with a 61 x 61 kernel with an intensity value 0.5, and 4) Inpainting from 10-20% free-form masking,
as implemented in (Saharia et al., 2022). In inpainting evaluations, regions outside the mask are
overlaid with the ground truth image.

Datasets, Models. For evaluation, we use the FFHQ (Karras et al., 2019) 512x512 dataset and
follow (Chung et al., 2023a) by selecting the first 1,000 images for testing. For the pre-trained latent
diffusion model including baseline methods, we choose SD v1.5 trained on the LAION dataset. As a
baseline for latent DIS, we consider PSLD (Rout et al., 2024). It enforces fidelity by projecting onto
the subspace of A during the intermediate step between decoding and encoding, in conjunction with
the DPS (Chung et al., 2023a) loss term. For gradient updates in both vanilla PSLD and PSLD with
CFG, we use static step sizes of η = 1.0 and γ = 0.1 as recommended in (Rout et al., 2024). For
CFG scale ω, we applied the corresponing scales that we found to be corresponded for CFG++ scale
λ. Please refer to the Tab. 5 for the hyperparameters used for PSLD with CFG++.

SR(x8) Deblur(motion) Deblur(gauss) Inpaint

η 1.3 0.4 1.0 1.0

γ 0.1 0.025 0.12 0.1

λ 0.1 0.2 0.2 0.6

ω 1.5 2.0 2.0 7.5

Table 5: Hyperparameters for PSLD (Rout et al., 2024) with CFG++ and corresponding CFG scale ω.

F FURTHER EXPERIMENTAL RESULTS

F.1 T2I

Since the range of guidance scales for CFG and CFG++ is different, we matched the guidance values
of ω and λ for comparison by computing the LPIPS distance using the same seed.

Fig. 14 shows the clean estimates at each diffusion sampling time t, computed using Tweedie’s
formula, both with and without CFG. It is evident that the original CFG induces significant error,
particularly at earlier times, leading to off-manifold samples. However, the CFG++ addresses this
issue by adjusting the DDIM re-noising step and the guidance scale.

F.2 REAL IMAGE EDITING

In Fig. 17-19, we provide qualitative comparison on real image editing via DDIM inversion with
CFG and CFG++. For the DDIM inversion stage, we use "a photography of [source concept]"
as conditioning prompt. For the sampling stage, we swap [source concept] to [target concept] and
use it as conditioning prompt for generation. For example, in Fig. 17, we set [source concept] to
"dog" and [target concept] to "cat". For all experiments, we set the guidance scale as ω = 9.0 and
λ = 0.8 as described in the main paper. The comparison demonstrates that CFG++ successfully edits
the given image which was not possible by CFG. This results also support our claim on reduced error
during DDIM inversion by CFG++.
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Figure 10: Enhanced T2I results by SDXL (ω = 9.0, λ = 0.8) with CFG++. Under CFG, the lion
cub is not visible (top-left), the dog appears with two tails (top-right), the goggles have an unusual
shape (bottom-left), and the tree trunk is folded (bottom-right). These artifacts are absent in those
produced by CFG++.

F.3 TEXT-CONDITIONED INVERSE PROBLEMS

In Fig. 20-23, we display additional qualitative comparison for text-conditioned inverse problem
solver with CFG and CFG++. Experiments are conducted with FFHQ (512x512) validation set and
CFG++ consistently leads to better reconstruction of true solution for various tasks.
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Figure 11: T2I using SD v1.5, CFG vs CFG++ (ω = 9.0, λ = 0.8). Unnatural depictions of human
hands, and incorrect renderings of the text by CFG are corrected in CFG++.

Figure 12: T2I using SDXL-Turbo, 6 NFE, CFG vs CFG++. The overall image quality and sophisti-
cation have improved with CFG++. DreamShaper XL was used for both images and metrics in main
part.
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Figure 13: T2I using SDXL-Lightning, 6 NFE, CFG vs CFG++. The overall image quality and
sophistication have improved with CFG++. Leosam’s HelloWorld XL was used for both images and
metrics in main part.
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Figure 14: The discrete evolution of the posterior mean in CFG and CFG++. Denoised estimates in
latent space are decoded into pixel space at each timestep using SDXL.
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Figure 15: Interpolating behavior of T2I along various guidance scales using SD v1.5 with CFG and
CFG++

Figure 16: Real image inversion results at various CFG and CFG++ scales using SDv1.5. The image
is from COCO dataset. We use the text prompt “a white dog is sleeping on a street and a bicycle”
during the inversion.
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Figure 17: Comparison on real image editing via DDIM inversion under CFG and CFG++ using
SDXL. Cat → Dog.

Figure 18: Comparison on real image editing via DDIM inversion under CFG and CFG++ using
SDXL. Horse → Zebra.
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Figure 19: Comparison on real image editing via DDIM inversion under CFG and CFG++ using
SDXL. Cat → Cat with glasses.

Figure 20: Results of PSLD using CFG and CFG++ on the FFHQ dataset at Super-Resolution (x8).
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Figure 21: Results of PSLD using CFG and CFG++ on the FFHQ dataset at Motion Deblurring.

Figure 22: Results of PSLD using CFG and CFG++ on the FFHQ dataset at Gaussian Deblurring.
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Figure 23: Results of PSLD using CFG and CFG++ on the FFHQ dataset at Inpainting.
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