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A PROOF OF THEOREM

Our proof of Theorem[3.1]is structured as follows. First, we shows thatany f € RidgelessReLU(D)
satisfies properties (1) and (2). This constitutes the majority of the argument and requires several
preparatory results, starting with Proposition [A.T] and its Corollary [A.3] With these in hand, we
derive in Propositions|A.7} |A.9] and |A.11| constraints on the local behavior of f on small intervals
of the form (z;, ;41) or (x;_1, x;+1). Taken together these Propositions, and several other results,
imply properties (1) and (2). The details for this step are around Lemma[A.T2] Finally, establish in
Proposition that any f which satisfies properties (1) and (2) belongs to RidgelessReLU(D).
To start, we introduce some notation. For each f € PL(D) and every = € R, let us write

Sin(x) = sin(f,x) == €1_i>r(r)1+ Df(x —e), Sout () = Sout(f,x) := egr(% Df(x+e¢)

for the incoming and outgoing slopes of f at x. For any f € PL the second derivative D?f is an
atomic measure and we have

k
D*f = "cibe;, ¢ = Sout(f.&) — sin(f> &)
j=1
where ¢; are the points of discontinuity for the derivative D f. We will usually supress f from the
notation. Thus, D f, and in particular Dz for any one layer ReLU network z, has a well-defined

total variation
k

1D Allpy =3 lesl-
j=1
Much of the remainder of our proof results on the following fundamental observation.

Proposition A.1. Fix f € RidgelessReLU(D). Foreveryi = 1,...,m — 1 and D f is monotone
on (x;, x;y1) in the sense that the functions sin(f, z) and sout(f, x) are both either non-increasing
or non-decreasing for x € (x;, T;t1).

Proof. We proceed by contradiction. That is, let us suppose that f € RidgelessReLLU(D) and that
for some 7 there exist

T, S&6 <& <& <& <zt
such that f is given by distinct affine functions with slopes o; when restricted to any of (£, ;1) for
7 = 1,2, 3 but that the sequence o1, 02, 03 is not monotone. Without loss of generality we assume

01,03 < 09. &)
In particular, for all § sufficiently small, we have

Total Variation of D f on (§; — §,&4 + 0) = 209 — 01 — 03 + |01 — Oin| + |03 — Oout|, (10)

where
O = Sin(f,&1) = lim Df(& —e)
e—0t
and
Oout +— sout(f7 54) = lim Df(fﬁl + 6)'
e—0+t
Define

S f€) = f(&) _ 0182 = &) +02(83 — &) +03(6a — &3)
o §1—& §4— &1 '

Note that the constraint @) and the fact that o, is a convex combination of o; guarantees that

min {o1,03} < 0, < 09. (11
See FigureE]for the three possible cases. Consider g € PL(D) defined as follows:
g(x) = {f(w), z € (61,6)°
ou(z =)+ f(&1),  ze(1,8)

The function g represents a “straightening of ” between &; and &4, and we will now show that the
total variation of Dg on (1 — 6, &4+ 0) is strictly smaller than that of D f on the same interval. Since
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Figure 4: The three possible relative configurations for o, o, are shown. On the left, 03 < 0, <
01 < 09. In the center 01, 03 < 0, < 02. On the right, 01 < 0, < 03 < 02.

the total variations of D f and Dg agree on (&1, £4)€ this will contradict the minimality of || D f|| .,
over PL(D). Indeed, considering all possible cases for the relative sizes of oy, 0oyt and o, we find
for all § sufficiently small

Total Variation of Dg on (&1 — 0,&4 + 6) = max {|204 — Tin — Tout| s |Tin — Tout|} -

Combining this with the expression for the total variation of D f and the following elementary
Lemma completes the proof.

Lemma A.2. Forany 01,09, 03,0, satisfying we have

20—2 — 01 — 03 + |01 - Uin| + ‘0—3 - Jout| > maX{‘QU* — Oin — Uout| 5 |Uin - Uoutl} .

Proof. We consider all four cases for the maximum on the right hand side. We have
202 — 01 — 03 + |01 - Jin| + |03 - Uout' - (20* — Oin — Jout)
=2(02 — 04) + |01 — Oin| = (01 — Oin) + |03 — Oout| — (03 — Tout)
> 0,
as desired. Similarly,
209 — 01 — 03 + |01 — Oin| + |03 — Oout| — (Tin + Tous — 20+)
=2(02 + 04 — 01— 03) + |01 = Oin| = (Oin — 01) + |03 — Tout| — (Tout — 03)
> 0,
as desired. Further,
209 — 01 — 03+ |01 — Oin| + |03 — Tout| — (Tin — Tout)
=2(02 — 01) 4+ |01 = Oin| = (0in — 01) + |03 — Tout| — (03 — Tout)
> 0,
as desired. Finally,
202 — 01— 03 + |01 - CTin| + |U3 - Uoutl - (Uout - Uin)
=2(o2 — 03) + |01 — Oin| — (01 — Tin) + |03 — Tout| — (Tous — 03)
> 0,
completing the proof. [
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O

Proposition|A.1|shows that any f € RidgelessReLU(D) is either convex or concave on any interval
of the form (z;, x;11). This gives several useful consequences, for example the following

Corollary A.3 (of Proposition|A.1). Fix f € RidgelessReLU(D). Foreachi=1,...,m —1,

sgn (Sin (Ti41) — i) + sgn (Sout(z;) — $;) = 0.

Proof. Suppose first sgn(sout(z;) — ;) = 0. That is, sout(z;) = s;. By Proposition we have
Sout () is monotone for & € (x;, 2;11). Thus, if there exists £ € (z;, ;1) sothat Df(€) > s;, then
f(ziz1) > (®ix1 — xi)si + f(yi) = yit+1, contradicting the assumption that f € PL(D). A similar
contradiction occurs if there exists £ € (x;,z;+1) so that Df(§) < s;. Hence, we conclude that
Sin(Zi41) = 8i, as desired. Next, suppose Sout(2;) > s;. In particular, there exists £ € (2, Ti4+1)
such that

sin(f7 er) > ;.
Since f satisfies f(z;) = y; and f(2;41) = y;+1 there must exist {_ € (x;, 2;41) such that
sin(f,€-) < 8-

By Proposition sin(f,€) is monotone for & € (x;,z;41). We see by comparing s, (f, 1)
that it is in fact non-increasing. Since z;+1 — § > £_ for § sufficiently small, we conclude that
Sin(Ti41) < 8i, as desired. The case Sout(x;) < 8; is analogous, completing the proof. O

For the remainder of the proof we fix f € RidgelessReLU (D) and show that it must satisfy proper-

ties (1) and (2). To prove this, we use Proposition[A.T]and Corollary[A.3]to derive Propositi

and|A.9|that together determine the structure of f. Specifically, Propositions and
a combination of Propositions |A.7|and show that f satisfies property (1). Then, a different ap-

plication of Propositions and|A.9] together with the fact that f satisfies property (1), will imply
that f satisfies property (2) as well.

Proposition A.4 (f agrees with fp on colinear neighbors). Fix: = 2,...,m — 1. Suppose ¢; = 0.
Then

Sout(-ri—l) = Sin(xi) = Sout(xi) = Sin(xi—&-l) = S;—1 = Si-
Hence, f(x) = fp(x) forall x € (x;—1,xi41).
Proof. By definition, since ¢; = 0, we have s; = s;_1. Suppose for the sake of contradiction that
at least one of sout(zi—1), Sin(Zi), Sout(%:), Sin(zit1) does not equal s;.

By Corollary this means that either one or both least one of the pairs (Sout(€i—1), Sin(x;)) Or
(Sout (), Sin(xi+1)) are both not equal to s;. We will suppose without loss of generality that

min {Sout(2i—1), Sin (i) } < 8; < max {Sout(Ti—1), Sin(2i)} - (12)
Note also that by Corollary[A.3]and the fact that f(x;) = y; and f(z;11) = y;+1 we also have
min {Sout (€;), Sin(Ti+1)} < 8 < max {Sout (), Sin(Tit1)} - (13)

By definition, if ¢; = 0, then s;,_; = s;. By Proposition[A.1] the total variation of D f on (z;_1 —
3, ;1 + d) equals, for all ¢ sufficiently small,

[Sout (Zit1) — Sin(@it1)] + |Sin(@it1) — Sous (zi)] + |Sout (@i) — Sin(24)]

+ [Sin(2i) = Sout(Tiz1)| + |Sout (Ti=1) — Sin(ziz1)|,
which is bounded below by
|Sout (Tit1) = Sin(Tit1)| + [Sin(@it1) — Sout(%4)] + [Sin () — Sout(Ti—1)| + [Sout (Ti—1) — Sin(2i-1)|.

Define g € PL(D) to coincide with f on (x;—1,2;11)¢ and to coincide with fp on (z;—1,Z;11).
The total variation of Dg on (x;,_1 — §, 2,41 + ¢) equals, for all § sufficiently small,

|Sout (Tit1) — Si| + |Sin(@iz1) — 84l -
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Using that

[Sout (Tit1) = 8il < [Sout(Tit1) = Sin(Tit1)] + |Sin(Tig1) — 54
and

Isin(zi—1) — 8i| < [sin(Ti—1) = Sout(Ti—1)| + |Sout (Ti=1) — sS4/,
we find that the difference between the total variation of D f and Dg on (x;—1 — 0,241 + 0) is
bounded below by

i (Ti41) = Sout ()| = [Sin(Tig1) — 8l + [8in(®:) — Sous(zi—1)| — |8 — Sout(xi—1)] -
Note that if a, ¢ € R and min {a, ¢} < b < max {a, c}, then we have
lc—a| —]a—bl=|b—|.

Hence, using our assumptions (I2) and (I3)), we conclude that

8in(75) = Sout (Ti—1)| — [8i = Sout(Ti—1)| = [sin(x;) — 55| > 0
and that

|Sin(Tiv1) = Sout ()| — [Sin(Tit1) — 8i| = |sin(®it1) — si] > 0.
The difference between the total variation of D f and Dg on (z;—1 — 0, x;41 + J) is thus strictly

positive for all ¢ sufficiently small. Since f, g agree on (z;_1,2;41)¢ we find that ||Dgl|;, <
||D f|| 1y » contradicting the minimality of || D f|| ., over PL(D).

Our next result, Proposition|A.5| ensures that f and fp agree near infinity.

Proposition A.5. Suppose f € RidgelessReLU(D). Then for x < x5 and x > x,,,—1 we have that
f(z) = fp(2).

Proof. We focus on the analysis of f on (—o0, z2) since the conclusion on (z,,_1,00) follows by
symmetry. To start note that D f(x) = sout(x1) for all z < 1. Indeed, if this were not the case,
we could define g € PL(D) to coincide with f on (x1, 00) but to have slope sou (1) on (—o0, 1).
This g belongs to PL(D) and satisfies || Dg||, < ||Df]|1 since the total variation of its derivative
on (—oo, x1 + €)€ equals that of D f but the total variation of Dg on (—o0, 21 + €) vanishes while
that of f is non-zero.

Thus, we see that si, (1) = Sout(x1). Let us now prove that f(z) = fp(z) for € (x1,x2). This
will imply sout(21) = s1 and will complete the proof. Suppose for the sake of contradiction that
Sin(72) # s1. Then we have from Corollary [A.3]that

min {Sout (1), Sin(22)} < $1 < max {sout (1), sin(z2)} .

Define g € PL(D) to coincide with f on (23, 00) and with fp on (—o0, z2). The total variation of
Dg on (—o00, z9 4 ) for all § sufficiently small is

‘Sout($2> - 51| )
whereas the total variation of D f on the same interval is
|Sout (1) — Sin(22)] + [Sin(T2) — Sout(z2)| -

Since by construction D f and Dg agree on (2, 00), the following claim shows that || D f|| ., >
[|Dg|| 7y contradicting the minimality of || D f|| ., over PL(D):

Claim A.6. Suppose a,b, c € R satisfy
min {a,b} < ¢ < max {a,b} .
Then for any d € R we have
|d—c| <l]a—0b]+|b—d|
Proof. Suppose first a < ¢ < b. Then
la—b+ob—d| —|d—cl=b—a+|b—d| —|d—¢|

=c—a+b—dl—(d—b)—|d—c|+(d—¢)
> 0,
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Li—1 L Li+1 Ti—1 x; Tit1
Figure 5: The conclusion of Proposition whene; = 1.

as desired. Similarly, suppose b < ¢ < a then
la—0bl+b—dl—|d—c/=a—-b+|b—d|—|d—¢|. (14)
If d > cthen d > b and the right hand side of becomes
a—b+b—dl—(d—c)=a—-b+d—b—d+c=c—b+a—-b>0.
Finally, if d < c then the right hand side of becomes
a—b+|d=bl—(c—d)=a—c+]|d—b—(d—0b)>0.
This completes the proof. O

O

Proposition [A.5] allows us to know the “initial” and “final” conditions si, (z2) and Sout(Z,—1) for
the slopes of f. In contrast, Proposition|A.7|below allows us to take information about the incoming
slope sin(z;) of f at x; and use the local curvature information €; at z; to constrain the outgoing
slope sout(;). See Figure

Proposition A.7 (How slope of f changes at x;). Suppose €; = 1. Then

si—1 < sin(@i) < s = si—1 < sin(@i) < Sout (i) < s (15)
Similarly, suppose ¢; = —1. Then
Si—1 > sin(@i) > s = Si—1 > Sin(@i) > Sout (i) > s; (16)

Proof. The proof of (I6) is identical to that of (I3), and we therefore focus on proving the latter.
That is, we fix i = 2,...,m — 1 and assume ¢; = 1 and suppose that s; 1 < sjn(2;) < s;. For the
sake of contradiction assume also that sout(z;) > s;. By Corollarywe have si, (z;41) < s; and
therefore the total variation of D f on (z; — €, z;+1 + €) is

|Sout (Ti+1) = Sin(Tit1)| + 280ut (T:) — Sin(Tit1) — Sin(4).
Consider g € PL(D) defined to be equal to f on (z;,x;4+1)° and to fp on (x;,z;+1). The total
variation of Dg on (z; — §, ;41 + 0) for all § sufficiently small is
|Sout (Ti+1) — si| + 8i — Sin(24).
The following claim shows that the total variation of Dg on (x; — d, z;+1 + ¢) for all ¢ sufficiently

small is strictly smaller than that of D f. Implies that ||Dg||,, < ||D f||;y,, which is a contradic-
tion.
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Ti—1 Z; Ti+1

Figure 6: The function g(z) used to derive a contradiction with the assumption that syt (2;) <

Sin(x;) in Proposition

Claim A.8. Suppose a,b,c,d € R with max {a,b} < ¢ < d. Then for all x € R we have
|t —bl+2d—a—-b>|x—c/+c—a

Proof. Since |z — ¢| < |z —d| + d — ¢, we have
|t —bl+2d—a—-b—(Jx—c|+c—a)>d—b>0.
O

Next, again for the sake of contradiction, suppose that we still have ¢; = 1 and s;_1 < sin(z;) <
$;+1 but also that su¢(x;) < sin(x;). Then, by Corollarywe have s, (z;4+1) > s;. Moreover,
by Propositionthe total variation of D f on (x; — d, 2,11 + 0) for all 0 small enough is

|Sout (Tit1) = Sin(Tit1)] + in(Tig1) + 8in(2i) — 250ut(24).
Consider g € PL(D) defined to be equal to f for z € (x;,z;41) but for € (x;, 2;41) given by

g(z) = max {(z — ;) sin(:) + ¥i, (@ — Ti—1)Sin(Tig1) + Yit1}-

See Figure@ The total variation of Dg on (z; — €, ;11 + €) is
ISout (Tit1) = Sin(Tit1)] + sin(Tit1) — sin(24).
Therefore the difference between the total variation of D f and Dg on (z; — 0, z; 41 + J) is
2(sin (i) — sout(z:)) > 0.

Since f and g agree on (x;, ;41 )¢ this contradicts the minimality of || D f|| ., in PL(D) and com-
pletes the proof of (I5). O

Proposition allows us to translate information about the incoming slope s;,(z;) to outgoing
information about s.,¢(2;). To make use of this, we also need a way to translate between outgoing
information s, (;) and incoming information ;, (z;41). This is done in the following Proposition,
whose conclusion is illustrated in Figure[7]

Proposition A.9 (How slope of f changes between x; and x;4.1 when €;, €,41 agree). Ife; = 1 and
5i—1 < 8in(2:) < Sout(2:) < 54, then

€iy1 =1 = $i < sin(@ig1) < Sit1 (17)
Similarly, if e; = —1 and s;—1 > sin(x;) > Sout(T;) > s;, then
€iy1 = —1 — $i > Sin(Tig1) > Sit1 (18)

17



Under review as a conference paper at ICLR 2022

Si+1

: Sin(wi)_?‘ : sm(ﬂci+1)/_.'

~

~

. Sout (mz)

Li—1 L Tit+1 Ti—1 x; Tit1
Figure 7: Illustration of the conclusion in Propositionwhen € = €41 = L.

Proof. The relation (I8) follows in the same way as (I7), and so we focus on showing the latter. That

is, we suppose ¢; = €;41 = 1 and that s;_1 < sip(%;) < Sout(i) < ;. Corollaryimmediately
gives sin(ziy1) > s;. To complete the proof of (17) let us suppose for the sake of contradiction that
in fact sip (2;41) > Si4+1. To derive a contradiction, we need the following observation.

Lemma A.10. Suppose that we have €¢;11 = 1 and sin(x;y1) > Si+1. Then we must have

Sout (Zi+1) < Sin(Tit1).

Proof. 1If i = m — 2, then the conclusion follows immediately from the fact that by Proposition
we have sout(Ti11) = sm. If i < m — 2, let us suppose for the sake of contradiction that
Sout(Ti+1) = Sin(wit1). In particular, we have sout(zi+1) > si41. Hence, by Corollary [A.3] we
have

Sin(Tit2) < Sit1-
Also by Corollarysince Sin(Tit1) > 8i41 > s; we have

Sout (i) < 8i.
See Figure The total variation of D f on (z; — §, 2,12 + 0) for § sufficiently small is therefore
|Sout (Tit2) = Sin(Tit2)| + 250ut(Tir1) — Sin(Tit2) — sin(2:)

Consider ¢ € PL(D) that coincides with f on (z;,2;12)¢ and with fp on (x;,2;42). The total
variation of Dg on (z; — 0, ;42 + &) for ¢ sufficiently small is

[Sout (Tit2) — Sit1| + Sit1 — Sin(T:)

Using that |30ut (JJH_Q) — Si+1| < |50ut (Z‘i+2) — Sin($i+2)| + Siy1 — Sin($i+2)a we conclude that
the difference between the total variation of D f and Dg is bounded below by

2 (Sout(it1) — Si+1) > 0,

contradicting the minimality of || D f|| . O

Returning now to the proof of (17, we continue to assume that s;_1 < sin (2;) < Sout(2;) < s; and
Sin(Zi+1) > Si+1. The previous Lemma ensures that therefore

Sin(Tip1) > sy := max {S;+1, Sout(®i+1)} -

18



Under review as a conference paper at ICLR 2022

Sout (xi—i-l),,

Sin(xi-i-l) //
/

/

X; Ti41 Ti42

Figure 8: Illustration of hypotheses for contradiction in Lemma

Sx = Sout (iUH_l)

~
SS Y= g(.’L’) /1
~ ~ 7]
\\ /7 sin(wi-l-l)
NS \// 1
ZT; Ti+1 Ti+2

Figure 9: Illustration of the function g used for contradiction at the end of the proof of Proposition

From this last condition we conclude that the total variation of D f on (x; — 8, z;41 + §) for all §
sufficiently small is

28in (@i41) — Sin(@:) — Sous (Tit1)-
Consider g € PL(D) defined to be equal to f on (z;,2;+1)° but on (x;, z;41) given by
9(x) = max {(z — Tit1)$s + Yir1, (¥ — Ti)sout (i) +¥i}, T € (Ti @it1).
See Figure[9] Since s, > 5,41 > s;, we find that the total variation of Dg on (z; — &, z;41 + 0) for
all § small enough equals
Ss — Sin(X;).
The difference of the total variation of D f and Dg on (x; — 6, ;41 + 0) is therefore given by
Sin(Tig1) — Sit1 + Sin(@ig1) — 84 > 0.

19
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This contradicts the minimality of || D f||;.,, among PL(D) and completes the proof of .
O

Proposition |A.9|showed how to use information about the incoming and outgoing slopes of f at a;
to obtain information on the incoming slop at z; if €; = €;4.1. The following Proposition explains
how to do this if instead €; # €;41.

Proposition A.11 (How slope of f changes between z; and x;11 when €;, €;11 disagree). Ife; =1
and s;—1 < sin(2;) < Sout(2;) < i, then

€ir1 = —1 = Sout (Ti) = Sin(Tit1) = 4. (19)
Similarly, if €, = —1 and $;_1 > $in(x;) > Sout(2;) > ;, then

€i+1 =1 = Sout (i) = Sin(Tit1) = . (20)

Proof. Relations (19) and (20) are proved in the same way, and so we focus on the former. To show
(19), we suppose €; = 1, €;41 = —l and that s;_1 < sin(2;) < Sout(x;) < s;. Suppose for the sake
of contradiction that sout(2;) < s;. Then, by Corollary we have si,(z;41) > s;. To see why
this cannot occur, we give somewhat different arguments depending on whether sout(2;41) > s; or

Sout(Ti+1) < 8.

Let us first suppose Sout(%i41) > s;. By Corollary [A.3|we have si,(2;+2) < si+1. Thus, the total
variation of D f on (z; — 0, x;4+2 + J) equals

|Sout (Zi+2) — Sin(Tit2)|+Sout (Tit2) — Sin (Tit2) +[Sout (Tit1) — Sin(Tit1)]+Sin(Tit1) —sin (@),
which is bounded below by
|Sout (Tit2) — Sin(Tiv2)| + 280ut(Tit1) — Sin(Tir2) — Sin(2s).

Define g € PL(D) to coincide with f on (x;, 2;12)¢ and with fp on (z;,2;12). The total variation
of Dgon (z; — 0, x;y2 + 9) is

|Sout (Tiv2) — Sin(Tig2)| +28; — sin(Tiv2) — Sin(24)-
Hence, the difference between the total variation of D f and Dg is bounded below by
2(Sout(xi+1) — Sl) > 0.

This contradicts the minimality of || D f|| ;... Let us now consider the other case: sout(zi41) < ;. In
this case, we have that si, (;11) > Sout(@;+1). Thus, the total variation of D f on (z; —§, ;41 +0)
is

28in(Tig1) — Sin (@) — Sous (Tit1)-

Define g € PL(D) to coincide with f on (z;,2;11)¢ and with fp on (z;,2;11). The total variation
of Dgon (z; —§, 2,41 + ) is

28; — Sout(Tit1) — Sin(Ti).
Hence, the difference between the total variation of D f and Dg is bounded below by
2(5in(xi+l) — Si) > 0.
This contradicts the minimality of || D f|| -, completing the proof of Proposition O
We are now ready to show that any f € RidgelessReLU(D) satisfies (1) and (2). We already know

from Propositions and that f satisfies properties (1a) and (1b). In order to check that f
satisfies (1c) and (2), we will use the following result.

Lemma A.12. Suppose f € RidgelessReLU(D). Fori =2,...,m — 1 we have

€ =1 = Si—1 < Sin(@;) < Sous (i) < 85
€ =—1 = Si—1 > Sin(®;) > Sous (i) > 85

20
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Figure 10: Illustration of the set of discrete inflections points I used in Proposition

Proof. We induct on 7. When ¢ = 2, we have from Proposition [A.3]that
S1 = Sin(IQ).
If e = 1, we may therefore apply Proposition [A.7]to conclude that s1 < sin(21) < Sout(22) < s2,
as desired. The case e = —1 is similar, completing the base case. Let us now suppose we have
the claim for 2, ... 4. Suppose that €;,17 = 1 (the case €¢;,1 = —1 is similar). If ¢; # 1, then we
conclude from the definition of €; 1 = 1, the inductive hypothesis, and Propositions and
that
8i = 8in(Tiy1) < Si1

Hence, we may apply Proposition to conclude that s; = sin(Zi+1) < Sout(Tit1) < Sit1, as
desired. This completes the inductive step and hence the proof of this Lemma. O

Lemma in combination with Corollary immediately implies that f satisfies property (2).
Finally, in combination with Proposition [A.11} Lemma also shows that f satisfies property
(Ic). This completes the proof that f € RidgelessReLU(D) satisfies properties (1) and (2). It
remains to show that every f which satisfies Properties (1) and (2) belongs to RidgelessReLLU(D),
which we now establish.

Proposition A.13. Suppose f € PL(D) satisfies conditions (1) and (2) of Theorem m Then, f
belongs to RidgelessReLU(D).

Proof. Define the set I C {1,...,m} of discrete inflection points for the connect-the-dots inter-
polant fp (see Figure|10):

I={ic{2,....om=2} | #e 1 }U{l,m—1} ={i1 =1<iy < - <ijp_1 <ijpy=m—1}.

By construction, foreach ¢ = 1, ..., |I|.— 1 on the ir.ltervals' (Ti,, Tig41),- - - ,'(a:qu s iy, +1) the
sequence of slopes s;,,...,s;,,, of fp is either non-increasing or non-decreasing. Hence,
ig41—1
E |5j - Sj+1| = |5iq - Siq+1|
j:iq
and we find
m—1 ||
IDfollpy =D Isi = sipal = > _ |si, — si,_, |- 21
i=1 q=2
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The key observation is
1]
f € PL(D) satisfies (1) and (2) — IDfllpy = 1Dfollpy = |si, = si,0 |- (22)
q=2
Indeed, by property (2), the function f is either convex or concave on any interval of the form
(w4,,%,,,+1). Therefore, D f is monotone on any such interval. Thus, we find that
11
IDfllry = [Sout(fo2i,) = Sous(fr24,_,)| -
q=2
But property (1) guarantees that
sout(fa xiq) = siq
and for all ¢ = 1,...,|I|, proving . The proof of Proposition therefore follows from the
following result, which was already observed in Theorem 3.3 of |Savarese et al.|(2019).

Lemma A.14. We have

RidgelessReLU(D) = {f € PL(D) ’ |Dfllpy = |DfD||TV} (23)

Proof. Consider any f € RidgelessReLU(D). We seek to show that |[Df||;, > [|Dfp||;y -
Note that for any sequence of points & < - -- < & at which D f(§;) exists, we have

k—1
IDfllpy =D IDf(&11) — DFE)I-
j=1

We will now exhibit a set of points where the right hand side equals || D fp|| . To begin, note that
by Proposition[A.5|we have f(z) = fp(z) for z < x5 and > p,—1. Forall &, € (21,22) =
(Tiy, Tiy41) and & ) € (Tm—1,Tm) = (T4 ;,_,, i), ) we thus have

Df(gil):‘sla Df(fim):sm’

Further, for any ¢ = 2,...,m — 1 on any interval (x;, z,11), there exist & + such that Df(&; 1)
exist and
Df(&i4) 2 s Df(&-) < si.
In particular, for ¢ = 2,..., |I| — 1 we may find ;_ satisfying
iy € (i, Tigr1), sgn(si, — Df(&,)) = €igys-
As we saw just before this Lemma, for each ¢ = 1,...,|I| — 1 we have

sgn (Siq+1 - Siq) = eiq+1'
Hence, for each ¢ = 1,...,|I| — 1 we conclude
|Df(£7'q) - Df(é_iq-%-l)‘ 2 ’siq - siq+l| !

Thus,
[T]—1
IDfllry = > Isi, = Sign| = IDfDII7y »
qg=1

as desired. ]
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