Appendix

NOTE: Robust Continual Test-time Adaptation
Against Temporal Correlation

A Experimental details

For all the experiments in the paper, we used three different random seeds (0, 1, 2) and reported the
average errors (and standard deviations). We ran our experiments on NVIDIA GeForce RTX 3090
GPUs.

A.1 Baseline details

We referred to the official implementations of the baselines. We use the reported best hyperparam-
eters from their paper or code. We further tuned hyperparameters if there exists a hyperparameter
selection guideline. Here, we provide additional details of the baseline implementations, including
hyperparameters.

PL. Following the previous studies [41, 44], we update the BN layers only in PL. We set the
learning rate as LR = 0.001 as the same as [41].

ONDA. ONDA [27] has two hyperparameters, the update frequency NV and the decay of the moving
average m. The authors set N = 10 and m = 0.1 as the default values throughout the experiments,
and we follow this choice unless specified.

TENT. TENT [41] set the learning rate as LR = 0.001 for all datasets except for ImageNet, and
we follow this choice. We referred to the official code' for implementing TENT.

LAME. LAME [4] needs an affinity matrix and has hyperparameters related to it. We follow the
authors’ hyperparameter selection specified in the paper and their official code. Namely, we use the
kNN affinity matrix with the value of k set as 5. We referred to the official code® for implementing
LAME.

CoTTA. CoTTA [44] has three hyperparameters, augmentation confidence threshold p,, restoration
factor p, and exponential moving average (EMA) factor m. We follow the authors’ choice for
restoration factor (p = 0.01) and EMA factor (o« = 0.999). For the augmentation confidence
threshold, the authors provide a guideline to choose it, using 5% quantile for the softmax predictions’
confidence on the source domains. We follow this guideline, which results in p;;, = 0.92 for MNIST-
C and CIFARI10-C, p;;, = 0.72 for CIFAR100-C, and p;;, = 0.55 for KITTI. For 1D time-series
datasets (HARTH and ExtraSensory), the authors do not provide augmentations, and it is non-trivial
to select appropriate augmentations for them. We thus do not use augmentations for these datasets.
We referred to the official code® for implementing CoTTA.

A.2 Dataset details

A.2.1 Robustness to corruptions

MNIST-C. MNIST-C [28] applies 15 corruptions to the MNIST [21] dataset. Specifically, the
corruptions include Shot Noise, Impulse Noise, Glass Blur, Motion Blur, Shear, Scale, Rotate,
Brightness, Translate, Stripe, Fog, Spatter, Dotted Line, Zigzag, and Canny Edges, as illustrated
in Figure 1. Note that the result of this dataset is included only in the supplementary material. In
total, MNIST-C has 60,000 clean training data and 150,000 corrupted test data (10,000 for each
corruption type). We use ResNet18 [12] as the backbone network. We train it on the clean training
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Figure 1: Illustration of the 15 corruption types in the MNIST-C dataset.
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Figure 2: Illustration of the 15 corruption types in the CIFAR10-C/CIFAR100-C/ImageNet-C
dataset.
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data to generate source models, using stochastic gradient descent with momentum=0.9 and cosine
annealing learning rate scheduling [26] for 100 epochs with an initial learning rate of 0.1.

CIFAR10-C/CIFAR100-C. CIFAR10-C/CIFAR100-C [13] are common TTA benchmarks for
evaluating the robustness to corruptions [29, 33, 41, 44]. Both CIFAR10/CIFAR100 [19] have
50,000/10,000 training/test data. CIFAR10/CIFAR100 have 10/100 classes, respectively. CIFAR10-
C/CIFAR100-C apply 15 types of corruptions to CIFAR10/CIFAR100 test data: Gaussian Noise,
Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow, Frost,
Fog, Brightness, Contrast, Elastic Transformation, Pixelate, and JPEG Compression, as illustrated in
Figure 2. We use the most severe corruption level of 5, similar to previous studies [29, 33, 41, 44].
This results in a total of 150,000 test data for CIFAR10-C/CIFAR100-C, respectively. We use
ResNet18 [12] as the backbone network. We train it on the clean training data to generate source
models, using stochastic gradient descent with momentum=0.9 and cosine annealing learning rate
scheduling [26] for 200 epochs with an initial learning rate of 0.1 and a batch size of 128.

ImageNet-C. ImageNet-C is another common TTA benchmark for evaluating the robustness to
corruptions [29, 33, 41, 44, 4]. ImageNet [7] has 1,281,167/50,000 training/test data. ImageNet-C
applies the same 15 types of corruption used in CIFAR10-C and CIFAR100-C. We use a pre-trained
ResNet18 [12] on ImageNet training data and fine-tune it by replacing BN layers with JABN
layers on the clean ImageNet training data. For fine-tuning, we use stochastic gradient descent with
momentum=0.9 for 30 epochs with a fixed learning rate of 0.001 and a batch size of 256.

Temporally correlated streams via Dirichlet distribution. Note that most public vision datasets
are not time-series data, and existing TTA studies usually shuffled the order of these datasets resulting
in i.i.d. streams, which might be unrealistic in real-world scenarios. To simulate non-i.i.d. streams
from these “static” datasets, we utilize Dirichlet distribution that is widely used to simulate non-i.i.d.
settings. [23, 15, 43, 42] Specifically, we simulate a non-i.i.d partition for T" tokens on C classes. For
each class ¢, we draw a T-dimensional vector q. ~ Dir(dp), where Dir(-) denotes the Dirichlet
distribution, p is a prior class distribution over 7" classes, and § > 0 is a concentration parameter. We
assign data from each class to each token ¢, following proportion q.[n]. To simulate the nature of
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(a) Visualization of the class distribution in the entire KITTI dataset.
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Figure 3: [llustration of the test stream of the KITTI dataset. We apply a 200mm/hr rain intensity to
the original data.

real-world online data where sequences are temporally correlated, and data from the same classes
appear multiple times (e.g., walking, jogging, and then walking, see Figure 4 and 5 for illustrations),
we concatenate the generated 7" tokens to create a synthetic non-i.i.d. sequential data. We use § = 0.1
as the default value if not specified.

A.2.2 Real-distributions with domain shift

The following illustrates the summary and preprocessing steps of datasets collected in the real world
or have a resemblance to class distributions in the real world.

KITTI, KITTI-Rain. KITTI [9] is a well-known dataset used in numerous tasks such as object
detection, object tracking, depth estimation, etc. It must be emphasized that the dataset was collected
by driving around the city, in rural areas and on highways, which captures the real-world distribution.
From the available tasks, we select the object tracking task; to utilize its temporal correlation. In
order to reduce the task to a single image classification task, we crop each frame with respect to the
largest bounding box. Domain gap is introduced through synthetic generation of corresponding “rainy”’
frames, hereby denoted as KITTI-Rain [11]. KITTI-Rain is generated via a two-step procedure: (1)
generation of a depth-map estimation of each frame, and (2) generation of rainy images from the
vanilla frame and its corresponding depth map, as described in [11]. For the depth map generation, we
used Monodepth [10], and for rainy image generation, we used the source code available in [11]. The
rain intensity is set to 200mm/hr for training and testing. The final source domain consists of 7,481
samples, and each of the target domains consists of 7,800 samples. We use ResNet50 [12] pre-trained
on ImageNet [8] as the backbone network. We fine-tune it on the KITTI training data to generate
source models, using the Adam optimizer [18] and cosine annealing learning rate scheduling [26] for
50 epochs with an initial learning rate of 0.1 and a batch size of 64.

HARTH. Human Activity Recognition Trondheim dataset [25] was collected from 22 users, with
two three-axial Axivity AX3 accelerometers, each attached to the subject’s thigh and lower back.
HARTH was also collected in a free-living environment and labeled through recorded video. We set
the source domain as the accelerometer data collected from the back (15 users), and set the target
domain as one collected from the thigh (from the remaining seven users). We deem such a setting to
be natural, for one of the most dominant forms of domain shift in wearable sensory data is by the
positioning of sensors on the human body [20]. We use a window size of 50 and min-max scaled (0-1)
the data, following the original paper [25]. The final source domain consists of 82,544 samples, and
each of the seven target domains consists of {S008: 8,140, S018: 6,241, S019: 5,846, S021: 5,910,
S022: 6,448, S028: 3,271, S029: 3,521} samples. We use four one-dimensional convolutional layers
followed by one fully-connected layer as the backbone network. We train it on the source data to
generate source models, using stochastic gradient descent with momentum=0.9 for 100 epochs and
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Figure 4: Illustration of the target streams of the HARTH dataset. We specify x-axis accelerometer
values only.

cosine annealing learning rate scheduling [26] with an initial learning rate of 0.1 and a batch size of
64.

ExtraSensory. Extrasensory dataset [38] was collected from 60 users with the user’s own smart-
phones over a seven-day period in the wild, i.e., data was collected from users who engaged in
their regular natural behavior. As there were no constraints on the subject’s activity, the distribution
varied from user to user. We select the five most frequently occurred, mutually exclusive activ-
ities (lying down, sitting, walking, standing, running) and omit other labels. We further process
the data to only those consisting of the following sensor modalities - accelerometer, gyroscope,
magnetometer, and audio. We used a window size of five, with no overlap, and standardly scaled
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Figure 5: Illustration of the target streams of the Extrasensory dataset. We specify x-axis accelerometer
values only. Due to the length of the name of each domain, denoted here with the first three characters.

the datasets. After the pre-processing step, 23 users were left, 16 of them were used as source
domains, and seven of them were used as target domains. The final source domain consists of
17,777 samples, and each of the seven target domains consists of {4FC32141-E888-4BFF-8804-
12559A491D8C: 844, 59818CD2-24D7-4D32-B133-24C2FE3801ES5: 401, 61976C24-1C50-4355-
9C49-AAE44ATDO9F6: 776, 797D145F-3858-4A7F-A7C2-A4EB721E133C: 463, ASCDF89D-
02A2-4EC1-89F8-F534FDABDDY6 : 734, C48CE857-A0DD-4DDB-BEA5-3A25449B2153 : 850,
D7D20E2E-FC78-405D-B346-DBD3FD8FC92B: 794} samples. We use two one-dimensional con-
volutional layers followed by one fully-connected layer as the backbone network. We train it on the
source data to generate source models, using stochastic gradient descent with momentum=0.9 for
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Figure 6: Illustration of the real-time cumulative classification error change of different methods on
the KITTI dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the error rate
in percentage. Note that some lines are not clearly visible due to overlap.

100 epochs and cosine annealing learning rate scheduling [26] with an initial learning rate of 0.1 and
a batch size of 64.

Error on the source domain. We also measure the domain gap between the source and the targets
in the three real-distribution datasets: Table 1 for KITTI, Table 2 for HARTH, and Table 3 for
Extrasensory. As shown, there is a clear performance degradation from the source domain to the
target domain. For HARTH and ExtraSensory, the performance degradation was severe (30~40%p

increased error rates compared with Source), indicating the importance of overcoming the domain
shift problem in sensory applications.

Table 1: Average classification error (%) and their corresponding standard deviations on the KITTI
dataset of the source model. Bold fonts indicate the lowest classification errors. Averaged over three
runs.

Method Src domain Rain Avg
Source 74+1.0 123+23 99

Table 2: Average classification error (%) and their corresponding standard deviations on the HARTH
dataset of the source model. Bold fonts indicate the lowest classification errors. Averaged over three
runs.

Method Src domain S008 SO018 S019 S021 S022 S028 S029 Avg
Source 11.7%0.7 862+13 447+21 504+95 748+38 72.0+2.6 53.0+240 57.0+16.7 56.2

Table 3: Average classification error (%) and their corresponding standard deviations on the ExtraSen-

sory dataset of the source model. Bold fonts indicate the lowest classification errors. Averaged over
three runs.

Method Src domain 4FC 598 619 797 A5C C48 D7D Avg
Source  83%0.7 346+25 40.1+0.7 63.8+5.7 453+24 64.6+37 39.6+68 63.0+39 449




B Domain-wise results

B.1 Robustness to corruptions

Table 4: Average classification error (%) and their corresponding standard deviations on CIFAR10-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Table 5: Average classification error (%) and their corresponding standard deviations on CIFAR100-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Table 6: Average classification error (%) and their corresponding standard deviations on ImageNet-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Table 7: Average classification error (%) and their corresponding standard deviations on MNIST-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Table 8: Average classification error (%) and their corresponding standard deviations on CIFAR10-
C with uniformly distributed test streams, shown per domain. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. NOTE* indicates
NOTE used directly with test batches (without using PBRS). Averaged over three runs.
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+3.6 +40 £45 19 38 +04 +£15 08 41 £18 02 10 £09 £08 09

231 215 280 117 292 133 120 166 166 138 88 149 20.6 17.3 199
CoTTA [44] +0.7 £0.6 £03 0.5 £0.6 0.6 0.5 £02 03 £04 +02 £05 £0.7 £05 +04 17.8

NOTE 33.5 30.0 382 12.6 344 11.5 129 141 152 140 74 78 20.7 247 242 20.1
+1.7 £1.6 £09 £0.8 +08 £0.5 0.6 0.2 08 0.6 £02 *02 03 +0.7 £04 ’

NOTE* 23.8 23.0 31.1 11.8 309 11.8 119 153 140 133 86 7.5 212 169 23.0 17.6
+0.7 £09 £03 06 £13 £04 £07 13 07 07 +02 %03 £03 +06 +1.2 ~°°

LAME [4]

Table 9: Average classification error (%) and their corresponding standard deviations on CIFAR100-
C with uniformly distributed test streams, shown per domain. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs. NOTE* indicates NOTE used directly with test batches (without using PBRS)

+06 £06 £04 £09 £03 £02 £04 £08 +04 *03 +04 x04 +1.1 03

509 65.7 337 57.6 36.5 352 46.7 469 428 323 356 458 43.6 555
BN Stats [29] 06 206 +08 +04 04 £02 <04 03 04 £07 04 £05 £03 03 +02 100

60.8 602 660 339 S7.5 363 34.6 465 472 421 321 364 455 434 55.1
ONDA [27] +09 +05 £06 £04 +04 04 £04 +03 03 £0.6 =05 04 £0.1 £0.8 +0.1 46.5

PL [22] 52.2 50.3 59.4 335 54.0 357 33.1 42.8 445 39.2 309 355 455 399 504 43.1
+09 £1.0 £09 *05 06 *03 £05 09 16 +13 *02 *02 £1.0 £03 *13

487 47.2 556 315 50.9 335 317 39.6 410 368 294 336 423 368 46.4
TENTIHT 108 £06 209 202 0.5 £04 £02 03 01 £07 03 =04 £06 £0.5 0.5 403

91.0 89.5 952 68.1 82.7 57.1 60.2 54.7 68.‘9 61.8 33..7 85.2 50.3 76.7 56.2 63.8
+1.0 £1.0 207 209 £1.1 +05 203 £03 +12 0.6 £05 +04 £02 £13 +05
52.8 51.0 569 358 539 379 36.8 452 445 440 322 413 46.1 39.7 469

CoTTA [44] +0.7 £04 +06 04 +02 05 £0.1 £05 0.1 02 *05 *14 £0.1 03 +0.7 44.3

NOTE 65.6 62.6 72.0 36.8 60.5 349 36.7 39.6 41.7 423 28.6 323 43.8 47.7 509 46.4
+10 £0.7 02 +0.7 £0.7 05 £02 £02 06 +03 *02 *09 £02 04 x02

NOTES 518 50.0 60.7 32.6 544 33.0 335 385 38.6 367 297 273 432 37.1 47.6 410
210 £03 204 £02 +03 £02 04 £0.3 £01 £03 £05 £03 £04 02 £09 -

[

§ ) ) g >3 13)

5 g 3 S . S g5 & F

s 385 §8 & 55 P 5528
Method g § § 9 & § N & & &£ « C @ 4 5§ Ax

88.1 86.8 93.7 649 79.7 555 57.77 53.8 663 59.3 33.0 81.4 49.2 73.6 55.5
Source 102 66.6

60.9

LAME [4]




Table 10: Average classification error (%) and their corresponding standard deviations on ImageNet-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.

[
5 v 2 . g 5 )
S o5 S & £ 5 2 = s £ & F o
S S & % F & § £ & w0 & § & £ &
Method & & & & & § N & & & o S & & &8 Avg
98.4 97.7 98.4 90.6 92.5 89.8 81.8 89.5 85.0 864 51.1 972 853 769 71.7
Source 86.1

+0.0 £00 £00 *00 £0.0 0.0 £00 0.0 £0.0 £00 *00 00 =0.0 £0.0 £0.0

BN Stat 89.4 885 89.2 90.8 90.0 81.3 69.8 72.6 73.8 62.6 :14.3 92.1 645 603 70.7 76.0
A 100 £0.1 £02 +00 0.0 00 £02 £0.1 £0.0 £0.0 +03 0.0 +0.1 +0.1 £00 '

ONDA 89.2 88.2 89.0 90.9 90.0 81.6 69.5 72.6 73.7 62.7 439 92.1 64.3 60.1 70.0 75.9
+00 £00 0.1 +0.1 £0.1 £0.1 £0.0 £0.1 £0.0 £0.1 £0.0 *00 *0.0 +0.1 £00 "~

PL 89.8 86.1 88.5 93.0 925 822 64.6 70.2 79.7 558 439 972 57.8 52.7 60.5 744
19 +09 1.6 1.1 06 £00 £03 £06 £04 *02 *=0.1 *05 01 02 £0.1 "~

TENT 91.1 89.7 91.0 93.1 922 847 724 733 78.7 59.8 445 952 61.6 564 67.4 765
+24 £16 £25 +32 £32 £49 +35 1.1 £69 x40 +05 *£43 +43 £56 +£4.7 ’

LAME 98.6 97.8 98.6 90.7 92.6 89.9 819 89.8 85.0 86.5 51.1 97.3 85.6 77.0 71.7 863
£0.0 £0.0 £0.0 £0.0 £0.0 £0.0 £0.0 0.0 200 £0.0 +0.0 0.0 £0.0 +0.0 0.0 °>°

CoTTA 85.7 84.6 854 87.8 86.4 746 642 679 69.7 56.1 42.7 88.5 60.0 542 64.9 715
0 +02 0.1 0.0 +03 02 £00 0.2 00 £02 *0.1 0.0 *08 +0.0 0.1 0.1 )

NOTE 87.6 857 87.2 83.3 83.2 73.6 654 65.0 68.6 57.9 435 759 612 54.1 62.8 70.3
+0.1 £0.1 £02 0.2 £0.2 £0.0 +02 0.0 £0.1 +00 0.1 %01 0.1 £0.0 0.1 )

NOTE* §9.‘5 879 88.9 84.6 83.7 744 66.6 66.1 71.2 582 44.7 788 61.2 54.8 64.8 717
+04 £02 03 02 02 £0.1 0.1 £02 £0.1 £0.1 0.1 #0.1 02 0.0 *0.1 )

Table 11: Average classification error (%) and their corresponding standard deviations on MNIST-
C with uniformly distributed test streams, shown per domain. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs. NOTE* indicates NOTE used directly with test batches (without using PBRS).

° &
% &

$ IS ° § g Y 5 . 5

=i 2 9 A < s > k] Q R
Method F§ § 5 F 5 ¥ a & g & F 3 N T A
S 37 273 204 46 22 51 65 21.1 138 174 66.6 38 37 182 264 16.1
ource +0.7 £55 +64 05 £05 1.0 £1.0 £229 + 1.4 £17.0 £147 04 +04 £30 +11.4 >

29 70 91 30 20 38 6.1 1.1 125 65 22 33 25 114 6.7
BN Stats [29] +0.7 £1.6 £1.0 £08 £03 +£0.2 +£0.7 +0.1 +0.8 £26 +05 +03 £02 +0.2 +0.9 5.3

26 65 86 28 18 35 57 10 117 61 26 3.0 22 110 6.2
ONDA [27] +0.6 £1.4 £1.0+£08 £02 +£0.2 £0.7 £0.1 1.1 £26 +09 +04 £02 +04 0.8 5.0
16 35 48 17 15 23 49 08 68 27 10 22 17 53 39
+03 £0.7 £0.8 £0.0 £0.0 £0.1 £0.7 £0.1 0.8 £06 +00 £03 £02 04 =09
14 28 38 15 12 18 36 07 46 19 08 17 13 45 3.1
TENT [41] +0.1 £04 £05 £00 £0.0 £0.1 £0.2 £0.1 0.7 £02 00 0.1 £0.1 0.6 =0.5 23
3.0 30.7 189 34 19 42 63 259 139 185 782 33 32 193 28.0
+0.8 +83 £58 05 +03 £0.5 £09 £298 £+1.9 +21.2 +98 +0.7 £0.3 £32 +12.7
26 66 87 27 18 32 56 10 143 77 19 29 22 136 6.1

CoTTA [44] +06 £1.7 £09 £0.7 £03 £0.0 £08 £0.1 1.1 *6.0 *05 03 0.1 14 +0.6 >4

NOTE 25 107 109 20 15 24 55 09 55 121 1.2 28 3.0 109 9.1 54
+08 £1.9 £2.0 £0.3 £0.0 £0.1 £03 0.1 £02 *£57 *0.1 03 0.1 £1.6 04
1.3 27 38 13 11 16 35 07 28 22 07 17 14 48 35 21

+02 £01 £05 £01 £0.1 £0.0 £0.1 £0.0 0.0 £0.1 *0.1 04 +02 1.1 *0.1

PL [22] 3.0

LAME [4] 17.2

NOTE*

B.2 Real distributions with domain shift

Since the adaptation is done from a single source domain to a single target domain in KITTI, no
further per-domain tables are specified here.
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Table 12: Average classification error (%) and their corresponding standard deviations on HARTH
with real test streams, shown per domain. Bold fonts indicate the lowest classification errors, while
Red fonts show performance degradation after adaptation. Averaged over three runs.

Method S008 S018 S019 S021 S022 S028 S029 Avg

Source 86.2+13 447+2.1 504+95 748+38 720+£2.6 53.0+x24.0 57.0+16.7 62.6
BN Stats [29] 703+14 738+13 68.1+30 649+£09 685+03 655+05 0694+14 686
ONDA [27] 753+4.0 604+09 63.1+x46 679+£04 70.0+x38 73.6x0.7 745+x44 693
PL [22] 604+13 714+15 629+19 61.8+x12 63.1+£04 0645+0.8 694+£20 648
TENT [41] 59503 71.0+16 622+19 61.1+£11 61.7+x04 064105 0693+£2.1 064.1
LAME [4] 855+1.7 434+£2.0 488+109 732+38 70726 51.2+£294 54.1+£20.6 61.0
CoTTA[44] 704+14 738+13 682+29 649+£10 685+02 655+05 694+14 687

NOTE 848+0.7 329+1.8 363+109 69.1+24 67.1+1.2 30.0+13.8 36.6+9.8 51.0

Table 13: Average classification error (%) and their corresponding standard deviations on Extrasensory
with real test streams, shown per domain. Bold fonts indicate the lowest classification errors, while
Red fonts show performance degradation after adaptation. Due to the length of the name of each
domain, denoted here with the first three characters. Averaged over three runs.

Method 4FC 598 619 797 A5D C48 D7D Avg

Source 34625 40.1+£0.7 63.8+£57 453+24 646+37 396+£68 63.0+39 502

BN Stats[29] 61.7+4.2 50.1£5.1 51.6+15 594+1.1 544+£10 524+28 626+x29 560
1

ONDA [27] 363435 440+22 50.8+24 56.1+19 59.7+27 435+59 46.7+4.2 482
PL [22] 62.2+43 50.0+51 51.7£1.8 592+1.1 539+1.1 523+£29 628+3.0 56.0
TENT [41] 62.1+4.6 498+50 51.6+x19 594+12 539+10 522+29 628+3.0 560
LAME [4] 331+24 378+04 068.0+88 371x6.7 732+26 39.0+7.6 0664+40 507
CoTTA [44] 61.7+42 500+49 51.6+15 594+1.1 544+10 524+28 626+29 560

NOTE 417459 40.7+0.8 555+10.8 458+46 458+104 329+1.1 555+104 454

B.3 Ablation study

Table 14: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR10-C with temporally correlated test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.

[

f~i (z? “

= $ 3 <] g 5 Q) g

& ~ 9] o ~ & il &

§ 8 5 §85 § 5 & 8 § 578
Method g § 4§ 9 & S N & & £ a9 T g & & Ae
S 74.0 66.8 753 433 48.0 32.6 352 22.0 33.0 259 85 66.1 234 53.6 26.8 93
ource £33 £35 £42 £27 227 +12 £26 £04 £25 209 203 =18 +07 07 £07

IABN 445 413 48.0 163 399 13.8 16.1 149 178 163 7.6 88 225 340 26.7 24.6
+27 +23 +19 1.0 0.1 £0.7 £0.7 £03 £0.6 x0.6 *02 *03 03 *12 x0.6 ~

PBRS 45.2 38.5 46.8 245 382 19.1 20.0 165 19.1 165 7.1 344 215 39.8 25.2 275
+3.0 +49 +33 22 +28 £09 02 £02 £24 +04 +0.7 3.0 £05 £47 +04 ~

337 300 37.6 13.6 349 124 145 139 150 140 72 7.4 201 262 259
IABN +RS +64 £6.7 £29 £03 19 +12 £1.7 +1.1 £3.1 1.3 +00 0.7 +09 £44 1.1 20.5

349 323 39.6 13.6 358 118 145 141 152 142 77 7.6 208 277 264
IABN + PBRS +1.6 £3.1 +25 0.5 £19 £08 0.5 £06 £13 +0.6 £03 +£06 0.7 £2.6 £0.5 211




Table 15: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR100-C with temporally correlated test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.

Q 5 *~
5 $ 7 § s 5 ¢ F
§ 58§ 5 8§ 55 o8 5 538
Method S & § Q9 & T N & & & a9 O a4 & § Ag
Source 88.1 868 937 649 79.7 555 577 538 663 593 330 814 492 736 555 .
+02 06 0.6 +04 £09 £03 +02 04 £08 +04 03 *04 +04 =1.1 £03 ’
IABN 793 772 842 450 69.6 40.9 431 425 486 525 304 405 476 598 562 o,
+0.7 0.7 £1.0 £0.6 03 £03 0.6 £04 £03 +05 *01 £07 05 =1.1 £04 ’

PBRS 68.8 662 733 462 649 41.8 417 442 485 447 283 60.1 442 519 50.5 517
+0.6 £04 09 £0.6 £1.5 £06 £03 04 07 £02 x02 =04 04 +08 £05 ~

66.8 652 73.1 387 630 36.6 380 419 439 446 29.5 335 460 499 524
IABN +RS +21 03 £10 £04 09 £00 £02 *08 £04 05 *03 0.7 05 09 04 48.2

662 642 726 37.2 611 354 374 400 42.5 434 294 321 443 47.5 513
TABN +PBRS 08 +1.6 0.4 £08 £0.7 0.3 0.4 0.4 £03 £05 +0.1 205 +04 x0.6 03 470

Table 16: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR10-C with uniformly distributed test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.

g ¢ 3 I § g o
2 ~ 9] K - s &S 5 T
Method (<) g & Q9 g & N § & & g C @ £ S Ay
S 740 66.8 753 43.3 48.0 32.6 352 220 330 259 85 661 234 536 268 ,, .
ource £33 £35 £42 £27 £27 £12 £2.6 £04 £25 £09 +03 +18 07 07 =07
445 414 48.1 163 399 139 162 149 179 164 7.6 88 22.5 34.1 267

IABN +27 +23 +19 1.0 0.1 £0.7 £0.7 £03 £06 +05 02 *03 x04 12 0.6 246

PBRS 434 379 462 21.8 36.8 18.1 17.6 16.1 193 152 7.1 325 20.0 30.7 23.8 258
+08 +£06 £15 20 £1.0 £03 £08 0.1 £05 £03 04 *15 £0.2 £0.7 0.1 ’
33.8 31.1 404 133 356 11.8 132 14.6 149 147 7.7 8.1 223 24.6 25.1
+1.6 £09 13 £0.7 02 £06 £03 03 0.6 £04 +02 *£04 05 1.9 £12
33.5 30.0 38.2 12.6 344 11.5 129 141 152 140 74 7.8 20.7 247 242

IABN + PBRS +1.7 1.6 £09 08 08 05 0.6 02 08 0.6 +02 x0.2 x03 0.7 +04 201

IABN + RS 20.7

Table 17: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR100-C with uniformly distributed test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.

g $ 5 ] 5 g o
g ~ 3 S & §£ £ & =5 5 5 g I o
5 s 8 € g & S S & & 20 s g L yed]
Method S § § & & S N § & &35 & &4 & & ag
S 88.1 86.8 93.7 649 79.7 555 57.7 53.8 66.3 59.3 33.0 81.4 49.2 73.6 55.5 66.6
ource £02 £0.6 £06 04 09 03 £02 £04 +08 +04 +03 +04 204 =1.1 03 O
793 772 84.3 450 69.6 409 43.1 425 48.6 52.5 30.5 40.5 47.6 59.8 562

TABN +0.6 £06 +1.0 £05 02 £03 0.6 £04 £03 +05 0.1 *0.7 x05 =1.1 £04 4.5

PBRS 68.6 66.0 729 453 64.1 409 41.6 43.7 479 442 283 599 44..2 51.1 504 513
+1.0 +03 £03 03 08 05 05 02 £02 £03 +03 +0.7 £05 +1.6 0.6 ~

IABN + RS 67.1 65.6 74.0 39.0 61.4 36.5 38.7 414 440 450 30.0 34.0 46.0 48.8 52.5 483
+12 03 +04 +03 13 £0.1 +08 02 £04 +02 *02 *02 14 £13 £05 ’

65.6 62.6 72.0 36.8 60.5 34.9 36.7 39.6 41.7 42.3 28.6 32.3 43.8 47.7 509

IABN + PBRS +1.0 £0.7 £02 0.7 £0.7 £05 02 02 £0.6 £03 +02 *09 0.2 +£04 +02

46.4
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C Replacing BN with IABN during test time

Table 18: Average classification error (%) and corresponding standard deviations of varying ablation
settings on CIFAR10-C/100-C under temporally correlated (non-i.i.d.) and uniformly distributed
(i.i.d.) test data stream. ITABN* refers to replacing BN with TABN during test time (no pre-training
with IABN layers). Bold fonts indicate the lowest classification errors. Averaged over three runs.

Temporally correlated test stream  Uniformly distributed test stream

Method CIFAR10-C CIFAR100-C Avg CIFAR10-C CIFAR100-C Avg
Source 423+ 1.1 66.6 +0.1 544 423=+1.1 66.6 £ 0.1 54.4
IABN* 27.1+£04 60.8 £0.1 440 27104 60.8 0.2 44.0
IABN 246 0.6 545 +0.1 395 24.6%0.6 54.5+0.1 39.5

IABN*+PBRS 24.9+0.2 559+0.2 404 23204 55.3+0.1 39.3
IABN+PBRS 21.1+0.6 47.0 0.1 340 20105 46.4 + 0.0 33.2

For pre-trained models with BN layers such as ResNet [12], NOTE needs to re-train the model by
replacing BN layers with IABN layers in order to utilize the effectiveness of IABN. This requires the
additional computational cost of re-training, which might make it inconvenient to utilize off-the-shelf
models. We further investigate whether simply switching BN to ITABN without re-training still leads
to performance gain.

Table 18 shows the result of this experiment, where IABN* refers to replacing BN with IABN during
test time. We note that TABN* still shows a significant reduction of errors under CIFAR10-C and
CIFAR100-C datasets compared with BN (Source). We interpret this as the normalization correction
in IABN is somewhat valid without re-training the model. We notice that IABN* outperforms the
baselines in CIFAR10-C with 27.1% error, while the second best (LAME) shows 36.2% error 19. In
addition, IABN* also shows improvement combined with PBRS. This implies that IABN can be used
without re-training the model, which aligns with the fully test-time adaptation paradigm introduced
in a recent study [41].

D License of assets

Datasets KITTI dataset (CC-BY-NC-SA 3.0), KITTI-rain dataset (CC-BY-NC-SA 3.0), CIFAR10,
100 (MIT License), ImageNet-C (Apache 2.0), MNIST-C (CC-BY-NC-SA 4.0), HARTH dataset
(MIT License), and the Extrasensory dataset (CC-BY-NC-SA 4.0)

Codes Code for rain augmentation on the KITTI dataset (Apache 2.0), torch-vision for ResNet18
and ResNet50 (Apache 2.0), code for depth estimation used in rain augmentation on the KITTI
dataset (UCLB ACP-A License), code for generating Dirichlet distributions (Apache 2.0), the official
repository of CoTTA (MIT License), the official repository of TENT (MIT License), and the official
repository of LAME (CC BY-NC-SA 4.0).
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Figure 7: Illustration of the real-time cumulative classification error change of different methods on
the HARTH dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the error
rate in percentage. Note that some lines are not clearly visible due to overlap.
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Figure 8: Illustration of the real-time cumulative classification error change of different methods on
the Extrasensory dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the
error rate in percentage. Note that some lines are not clearly visible due to overlap.
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