
Appendix
NOTE: Robust Continual Test-time Adaptation

Against Temporal Correlation

A Experimental details

For all the experiments in the paper, we used three different random seeds (0, 1, 2) and reported the
average errors (and standard deviations). We ran our experiments on NVIDIA GeForce RTX 3090
GPUs.

A.1 Baseline details

We referred to the official implementations of the baselines. We use the reported best hyperparam-
eters from their paper or code. We further tuned hyperparameters if there exists a hyperparameter
selection guideline. Here, we provide additional details of the baseline implementations, including
hyperparameters.

PL. Following the previous studies [41, 44], we update the BN layers only in PL. We set the
learning rate as LR = 0.001 as the same as [41].

ONDA. ONDA [27] has two hyperparameters, the update frequency N and the decay of the moving
average m. The authors set N = 10 and m = 0.1 as the default values throughout the experiments,
and we follow this choice unless specified.

TENT. TENT [41] set the learning rate as LR = 0.001 for all datasets except for ImageNet, and
we follow this choice. We referred to the official code1 for implementing TENT.

LAME. LAME [4] needs an affinity matrix and has hyperparameters related to it. We follow the
authors’ hyperparameter selection specified in the paper and their official code. Namely, we use the
kNN affinity matrix with the value of k set as 5. We referred to the official code2 for implementing
LAME.

CoTTA. CoTTA [44] has three hyperparameters, augmentation confidence threshold pth, restoration
factor p, and exponential moving average (EMA) factor m. We follow the authors’ choice for
restoration factor (p = 0.01) and EMA factor (↵ = 0.999). For the augmentation confidence
threshold, the authors provide a guideline to choose it, using 5% quantile for the softmax predictions’
confidence on the source domains. We follow this guideline, which results in pth = 0.92 for MNIST-
C and CIFAR10-C, pth = 0.72 for CIFAR100-C, and pth = 0.55 for KITTI. For 1D time-series
datasets (HARTH and ExtraSensory), the authors do not provide augmentations, and it is non-trivial
to select appropriate augmentations for them. We thus do not use augmentations for these datasets.
We referred to the official code3 for implementing CoTTA.

A.2 Dataset details

A.2.1 Robustness to corruptions

MNIST-C. MNIST-C [28] applies 15 corruptions to the MNIST [21] dataset. Specifically, the
corruptions include Shot Noise, Impulse Noise, Glass Blur, Motion Blur, Shear, Scale, Rotate,
Brightness, Translate, Stripe, Fog, Spatter, Dotted Line, Zigzag, and Canny Edges, as illustrated
in Figure 1. Note that the result of this dataset is included only in the supplementary material. In
total, MNIST-C has 60,000 clean training data and 150,000 corrupted test data (10,000 for each
corruption type). We use ResNet18 [12] as the backbone network. We train it on the clean training

1
https://github.com/DequanWang/tent

2
https://github.com/fiveai/LAME

3
https://github.com/qinenergy/cotta
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Original Shot Noise Impulse Noise Glass Blur Motion Blur Shear Scale Rotate

Brightness Translate Stripe Fog Spatter Dotted Line Zigzag Canny Edges

Figure 1: Illustration of the 15 corruption types in the MNIST-C dataset.

Original Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur Motion Blur Zoom Blur

Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG

Figure 2: Illustration of the 15 corruption types in the CIFAR10-C/CIFAR100-C/ImageNet-C
dataset.

data to generate source models, using stochastic gradient descent with momentum=0.9 and cosine
annealing learning rate scheduling [26] for 100 epochs with an initial learning rate of 0.1.

CIFAR10-C/CIFAR100-C. CIFAR10-C/CIFAR100-C [13] are common TTA benchmarks for
evaluating the robustness to corruptions [29, 33, 41, 44]. Both CIFAR10/CIFAR100 [19] have
50,000/10,000 training/test data. CIFAR10/CIFAR100 have 10/100 classes, respectively. CIFAR10-
C/CIFAR100-C apply 15 types of corruptions to CIFAR10/CIFAR100 test data: Gaussian Noise,
Shot Noise, Impulse Noise, Defocus Blur, Frosted Glass Blur, Motion Blur, Zoom Blur, Snow, Frost,
Fog, Brightness, Contrast, Elastic Transformation, Pixelate, and JPEG Compression, as illustrated in
Figure 2. We use the most severe corruption level of 5, similar to previous studies [29, 33, 41, 44].
This results in a total of 150,000 test data for CIFAR10-C/CIFAR100-C, respectively. We use
ResNet18 [12] as the backbone network. We train it on the clean training data to generate source
models, using stochastic gradient descent with momentum=0.9 and cosine annealing learning rate
scheduling [26] for 200 epochs with an initial learning rate of 0.1 and a batch size of 128.

ImageNet-C. ImageNet-C is another common TTA benchmark for evaluating the robustness to
corruptions [29, 33, 41, 44, 4]. ImageNet [7] has 1,281,167/50,000 training/test data. ImageNet-C
applies the same 15 types of corruption used in CIFAR10-C and CIFAR100-C. We use a pre-trained
ResNet18 [12] on ImageNet training data and fine-tune it by replacing BN layers with IABN
layers on the clean ImageNet training data. For fine-tuning, we use stochastic gradient descent with
momentum=0.9 for 30 epochs with a fixed learning rate of 0.001 and a batch size of 256.

Temporally correlated streams via Dirichlet distribution. Note that most public vision datasets
are not time-series data, and existing TTA studies usually shuffled the order of these datasets resulting
in i.i.d. streams, which might be unrealistic in real-world scenarios. To simulate non-i.i.d. streams
from these “static” datasets, we utilize Dirichlet distribution that is widely used to simulate non-i.i.d.
settings. [23, 15, 43, 42] Specifically, we simulate a non-i.i.d partition for T tokens on C classes. For
each class c, we draw a T -dimensional vector qc ⇠ Dir(�p), where Dir(·) denotes the Dirichlet
distribution, p is a prior class distribution over T classes, and � > 0 is a concentration parameter. We
assign data from each class to each token t, following proportion qc[n]. To simulate the nature of
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(a) Visualization of the class distribution in the entire KITTI dataset.

(b) Original data with an interval of three frames.

(c) Rain data with an interval of three frames.

Figure 3: Illustration of the test stream of the KITTI dataset. We apply a 200mm/hr rain intensity to
the original data.

real-world online data where sequences are temporally correlated, and data from the same classes
appear multiple times (e.g., walking, jogging, and then walking, see Figure 4 and 5 for illustrations),
we concatenate the generated T tokens to create a synthetic non-i.i.d. sequential data. We use � = 0.1
as the default value if not specified.

A.2.2 Real-distributions with domain shift

The following illustrates the summary and preprocessing steps of datasets collected in the real world
or have a resemblance to class distributions in the real world.

KITTI, KITTI-Rain. KITTI [9] is a well-known dataset used in numerous tasks such as object
detection, object tracking, depth estimation, etc. It must be emphasized that the dataset was collected
by driving around the city, in rural areas and on highways, which captures the real-world distribution.
From the available tasks, we select the object tracking task; to utilize its temporal correlation. In
order to reduce the task to a single image classification task, we crop each frame with respect to the
largest bounding box. Domain gap is introduced through synthetic generation of corresponding “rainy”
frames, hereby denoted as KITTI-Rain [11]. KITTI-Rain is generated via a two-step procedure: (1)
generation of a depth-map estimation of each frame, and (2) generation of rainy images from the
vanilla frame and its corresponding depth map, as described in [11]. For the depth map generation, we
used Monodepth [10], and for rainy image generation, we used the source code available in [11]. The
rain intensity is set to 200mm/hr for training and testing. The final source domain consists of 7,481
samples, and each of the target domains consists of 7,800 samples. We use ResNet50 [12] pre-trained
on ImageNet [8] as the backbone network. We fine-tune it on the KITTI training data to generate
source models, using the Adam optimizer [18] and cosine annealing learning rate scheduling [26] for
50 epochs with an initial learning rate of 0.1 and a batch size of 64.

HARTH. Human Activity Recognition Trondheim dataset [25] was collected from 22 users, with
two three-axial Axivity AX3 accelerometers, each attached to the subject’s thigh and lower back.
HARTH was also collected in a free-living environment and labeled through recorded video. We set
the source domain as the accelerometer data collected from the back (15 users), and set the target
domain as one collected from the thigh (from the remaining seven users). We deem such a setting to
be natural, for one of the most dominant forms of domain shift in wearable sensory data is by the
positioning of sensors on the human body [20]. We use a window size of 50 and min-max scaled (0-1)
the data, following the original paper [25]. The final source domain consists of 82,544 samples, and
each of the seven target domains consists of {S008: 8,140, S018: 6,241, S019: 5,846, S021: 5,910,
S022: 6,448, S028: 3,271, S029: 3,521} samples. We use four one-dimensional convolutional layers
followed by one fully-connected layer as the backbone network. We train it on the source data to
generate source models, using stochastic gradient descent with momentum=0.9 for 100 epochs and
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(a) S008.

(b) S018.

(c) S019.

(d) S021.

(e) S022.

(f) S028.

(g) S029.

Figure 4: Illustration of the target streams of the HARTH dataset. We specify x-axis accelerometer
values only.

cosine annealing learning rate scheduling [26] with an initial learning rate of 0.1 and a batch size of
64.

ExtraSensory. Extrasensory dataset [38] was collected from 60 users with the user’s own smart-
phones over a seven-day period in the wild, i.e., data was collected from users who engaged in
their regular natural behavior. As there were no constraints on the subject’s activity, the distribution
varied from user to user. We select the five most frequently occurred, mutually exclusive activ-
ities (lying down, sitting, walking, standing, running) and omit other labels. We further process
the data to only those consisting of the following sensor modalities - accelerometer, gyroscope,
magnetometer, and audio. We used a window size of five, with no overlap, and standardly scaled
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(a) 4FC.

(b) 598.

(c) 619.

(d) 797.

(e) A5D.

(f) C48.

(g) D7D.

Figure 5: Illustration of the target streams of the Extrasensory dataset. We specify x-axis accelerometer
values only. Due to the length of the name of each domain, denoted here with the first three characters.

the datasets. After the pre-processing step, 23 users were left, 16 of them were used as source
domains, and seven of them were used as target domains. The final source domain consists of
17,777 samples, and each of the seven target domains consists of {4FC32141-E888-4BFF-8804-
12559A491D8C: 844, 59818CD2-24D7-4D32-B133-24C2FE3801E5: 401, 61976C24-1C50-4355-
9C49-AAE44A7D09F6: 776, 797D145F-3858-4A7F-A7C2-A4EB721E133C: 463, A5CDF89D-
02A2-4EC1-89F8-F534FDABDD96 : 734, C48CE857-A0DD-4DDB-BEA5-3A25449B2153 : 850,
D7D20E2E-FC78-405D-B346-DBD3FD8FC92B: 794} samples. We use two one-dimensional con-
volutional layers followed by one fully-connected layer as the backbone network. We train it on the
source data to generate source models, using stochastic gradient descent with momentum=0.9 for
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(a) Rain-200.

Figure 6: Illustration of the real-time cumulative classification error change of different methods on
the KITTI dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the error rate
in percentage. Note that some lines are not clearly visible due to overlap.

100 epochs and cosine annealing learning rate scheduling [26] with an initial learning rate of 0.1 and
a batch size of 64.

Error on the source domain. We also measure the domain gap between the source and the targets
in the three real-distribution datasets: Table 1 for KITTI, Table 2 for HARTH, and Table 3 for
Extrasensory. As shown, there is a clear performance degradation from the source domain to the
target domain. For HARTH and ExtraSensory, the performance degradation was severe (30⇠40%p
increased error rates compared with Source), indicating the importance of overcoming the domain
shift problem in sensory applications.

Table 1: Average classification error (%) and their corresponding standard deviations on the KITTI
dataset of the source model. Bold fonts indicate the lowest classification errors. Averaged over three
runs.

Method Src domain Rain Avg
Source 7.4 ± 1.0 12.3 ± 2.3 9.9

Table 2: Average classification error (%) and their corresponding standard deviations on the HARTH
dataset of the source model. Bold fonts indicate the lowest classification errors. Averaged over three
runs.
Method Src domain S008 S018 S019 S021 S022 S028 S029 Avg
Source 11.7 ± 0.7 86.2 ± 1.3 44.7 ± 2.1 50.4 ± 9.5 74.8 ± 3.8 72.0 ± 2.6 53.0 ± 24.0 57.0 ± 16.7 56.2

Table 3: Average classification error (%) and their corresponding standard deviations on the ExtraSen-
sory dataset of the source model. Bold fonts indicate the lowest classification errors. Averaged over
three runs.
Method Src domain 4FC 598 619 797 A5C C48 D7D Avg
Source 8.3 ± 0.7 34.6 ± 2.5 40.1 ± 0.7 63.8 ± 5.7 45.3 ± 2.4 64.6 ± 3.7 39.6 ± 6.8 63.0 ± 3.9 44.9
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B Domain-wise results

B.1 Robustness to corruptions

Table 4: Average classification error (%) and their corresponding standard deviations on CIFAR10-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

BN Stats [29] 77.2
± 0.7

76.7
± 1.0

78.9
± 0.8

70.0
± 1.7

78.6
± 0.6

70.5
± 1.5

71.1
± 1.4

72.5
± 1.4

71.9
± 1.1

70.6
± 1.6

68.7
± 1.9

69.1
± 1.9

75.1
± 1.5

73.6
± 1.4

76.8
± 1.4 73.4

ONDA [27] 69.3
± 1.0

68.5
± 1.0

71.8
± 0.6

58.5
± 1.4

71.0
± 0.2

59.9
± 1.0

59.5
± 1.0

62.4
± 1.4

62.1
± 1.0

59.6
± 1.3

55.6
± 1.4

58.4
± 1.4

65.6
± 1.0

63.9
± 1.4

67.6
± 1.1 63.6

PL [22] 78.3
± 1.0

78.0
± 1.5

80.4
± 1.0

72.2
± 1.6

80.1
± 1.2

72.4
± 2.2

73.1
± 1.4

74.5
± 2.5

73.9
± 1.8

73.4
± 1.7

71.5
± 2.7

71.7
± 2.5

77.3
± 2.1

75.7
± 1.5

78.6
± 2.7 75.4

TENT [41] 79.0
± 2.9

78.8
± 2.8

80.6
± 2.2

73.3
± 1.7

80.5
± 2.9

74.4
± 2.4

74.5
± 3.3

74.8
± 2.2

75.0
± 2.3

74.0
± 2.2

72.3
± 3.4

74.9
± 3.2

78.2
± 2.8

76.5
± 2.9

79.0
± 2.9 76.4

LAME [4] 73.6
± 5.2

64.8
± 4.6

74.8
± 6.4

36.2
± 4.4

37.7
± 5.3

24.9
± 1.6

27.9
± 3.4

12.4
± 1.0

22.4
± 3.9

19.4
± 0.9

3.6
± 0.3

65.1
± 1.5

12.6
± 0.8

50.3
± 0.9

16.4
± 1.2 36.2

CoTTA [44] 77.0
± 0.7

76.8
± 0.6

79.0
± 0.7

74.1
± 0.9

79.6
± 0.6

74.3
± 0.5

74.0
± 0.8

74.8
± 1.1

73.3
± 0.9

72.9
± 0.5

72.2
± 0.9

76.5
± 0.8

76.5
± 0.9

75.1
± 0.8

76.6
± 0.6 75.5

NOTE 34.9
± 1.6

32.3
± 3.1

39.6
± 2.5

13.6
± 0.5

35.8
± 1.9

11.8
± 0.8

14.5
± 0.5

14.1
± 0.6

15.2
± 1.3

14.2
± 0.6

7.7
± 0.3

7.6
± 0.6

20.8
± 0.7

27.7
± 2.6

26.4
± 0.5 21.1

Table 5: Average classification error (%) and their corresponding standard deviations on CIFAR100-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Avg

Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

BN Stats [29] 73.9
± 0.5

73.5
± 0.4

77.2
± 0.7

56.9
± 0.2

72.3
± 0.5

58.8
± 0.3

57.9
± 0.4

65.3
± 0.4

65.0
± 0.4

62.4
± 0.6

55.6
± 0.2

57.6
± 0.4

64.6
± 0.5

63.6
± 0.3

71.0
± 0.4 65.0

ONDA [27] 63.0
± 0.7

62.5
± 0.4

68.0
± 0.5

37.3
± 0.2

60.0
± 0.2

40.0
± 0.3

38.3
± 0.1

49.6
± 0.3

50.0
± 0.6

45.2
± 0.6

35.7
± 0.2

40.9
± 0.5

48.6
± 0.5

46.9
± 0.3

57.5
± 0.2 49.6

PL [22] 71.9
± 1.4

72.0
± 0.5

76.3
± 0.7

59.3
± 0.8

73.8
± 0.9

61.5
± 0.9

59.9
± 0.5

67.1
± 0.9

66.7
± 1.4

63.0
± 1.0

57.9
± 0.5

62.2
± 1.5

67.6
± 1.0

65.2
± 0.3

71.1
± 0.5 66.4

TENT [41] 71.8
± 0.9

71.0
± 0.4

76.4
± 1.2

60.2
± 0.6

75.0
± 1.0

61.9
± 0.9

60.2
± 0.7

67.8
± 0.5

67.8
± 0.7

63.3
± 1.1

58.4
± 0.7

65.0
± 1.8

68.4
± 0.9

65.0
± 0.2

71.8
± 0.1 66.9

LAME [4] 89.0
± 1.1

87.1
± 0.8

94.5
± 0.7

62.3
± 1.2

79.7
± 1.2

49.4
± 1.0

52.8
± 0.3

46.6
± 0.4

63.9
± 1.9

55.6
± 1.2

25.2
± 0.6

82.4
± 0.2

40.8
± 0.5

71.9
± 1.4

47.8
± 0.7 63.3

CoTTA [44] 68.6
± 0.3

67.9
± 0.4

71.4
± 0.4

60.7
± 0.4

69.9
± 0.4

60.8
± 0.5

60.2
± 0.2

64.0
± 0.3

62.9
± 0.5

63.2
± 0.6

56.7
± 0.2

65.6
± 0.3

64.5
± 0.3

60.9
± 0.0

65.3
± 0.1 64.2

NOTE 66.2
± 0.8

64.2
± 1.6

72.6
± 0.4

37.2
± 0.8

61.1
± 0.7

35.4
± 0.3

37.4
± 0.4

40.0
± 0.4

42.5
± 0.3

43.4
± 0.5

29.4
± 0.1

32.1
± 0.5

44.3
± 0.4

47.5
± 0.6

51.3
± 0.3 47.0
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Table 6: Average classification error (%) and their corresponding standard deviations on ImageNet-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.
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Source 98.4
± 0.0

97.7
± 0.0

98.4
± 0.0

90.6
± 0.0

92.5
± 0.0

89.8
± 0.0

81.8
± 0.0

89.5
± 0.0

85.0
± 0.0

86.4
± 0.0

51.1
± 0.0

97.2
± 0.0

85.3
± 0.0

76.9
± 0.0

71.7
± 0.0 86.1

BN Stats 98.3
± 0.0

98.1
± 0.0

98.4
± 0.0

98.7
± 0.0

98.8
± 0.0

97.8
± 0.0

96.6
± 0.0

96.2
± 0.0

96.0
± 0.0

95.1
± 0.0

93.1
± 0.0

98.6
± 0.0

96.3
± 0.0

95.6
± 0.0

96.1
± 0.0 96.9

ONDA 95.1
± 0.0

94.7
± 0.0

95.0
± 0.0

96.2
± 0.0

96.1
± 0.0

92.5
± 0.0

87.2
± 0.0

87.4
± 0.0

87.8
± 0.0

82.7
± 0.0

71.0
± 0.0

96.4
± 0.0

84.9
± 0.0

81.7
± 0.0

86.1
± 0.0 89.0

PL 99.3
± 0.0

99.3
± 0.0

99.4
± 0.0

99.5
± 0.0

99.4
± 0.0

99.5
± 0.0

98.8
± 0.0

99.1
± 0.0

99.2
± 0.0

98.1
± 0.0

97.3
± 0.1

99.8
± 0.0

98.4
± 0.0

98.5
± 0.0

98.5
± 0.0 98.9

TENT 98.3
± 0.0

98.1
± 0.0

98.4
± 0.0

98.7
± 0.0

98.8
± 0.0

97.8
± 0.0

96.6
± 0.0

96.2
± 0.0

96.0
± 0.0

95.1
± 0.0

93.1
± 0.0

98.6
± 0.0

96.3
± 0.0

95.6
± 0.0

96.1
± 0.0 96.9

LAME 98.1
± 0.0

97.1
± 0.0

98.0
± 0.0

87.9
± 0.0

90.9
± 0.0

87.1
± 0.0

78.3
± 0.0

87.1
± 0.0

80.2
± 0.0

81.5
± 0.0

39.8
± 0.0

96.4
± 0.0

82.5
± 0.0

70.7
± 0.0

64.9
± 0.0 82.7

CoTTA 98.2
± 0.0

98.1
± 0.0

98.3
± 0.0

98.8
± 0.0

98.8
± 0.0

97.7
± 0.0

96.8
± 0.0

96.6
± 0.1

96.3
± 0.0

95.3
± 0.0

93.5
± 0.0

98.8
± 0.0

96.5
± 0.0

95.6
± 0.0

96.2
± 0.0 97.0

NOTE 94.7
± 0.1

93.7
± 0.3

94.5
± 0.1

91.2
± 0.1

91.0
± 0.2

83.3
± 0.1

79.0
± 0.2

79.0
± 0.4

78.7
± 0.3

66.3
± 0.6

48.0
± 0.4

94.1
± 0.1

76.9
± 0.6

62.6
± 0.7

76.6
± 0.6 80.6

Table 7: Average classification error (%) and their corresponding standard deviations on MNIST-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.

Method Sh
ot

Im
pu

lse

G
la

ss
M

ot
io

n
Sh

ea
r

Sc
al

e

Ro
ta

te
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ig
ht

ne
ss

Tr
an

sla
te

St
rip

e

Fo
g

Sp
at

te
r

D
ot

te
d

lin
e

Zi
gz

ag
Ca

nn
y

ed
ge

s

Avg

Source 3.7
± 0.7

27.3
± 5.5

20.4
± 6.4

4.6
± 0.5

2.2
± 0.5

5.1
± 1.0

6.5
± 1.0

21.1
± 22.9

13.8
± 1.4

17.4
± 17.0

66.6
± 14.7

3.8
± 0.4

3.7
± 0.4

18.2
± 3.0

26.4
± 11.4 16.1

BN Stats [29] 72.0
± 0.6

75.2
± 0.8

73.7
± 1.0

72.1
± 0.8

71.2
± 1.1

71.4
± 0.6

71.2
± 0.3

71.6
± 0.6

78.5
± 0.2

72.3
± 1.2

70.8
± 1.2

71.6
± 0.9

73.8
± 0.7

74.6
± 0.6

72.3
± 0.3 72.8

ONDA [27] 53.3
± 3.0

59.9
± 3.0

59.2
± 3.3

54.1
± 3.5

51.6
± 2.2

53.9
± 2.5

54.6
± 2.0

50.5
± 2.3

65.2
± 2.1

57.5
± 0.7

54.8
± 2.9

54.2
± 3.0

55.4
± 2.8

61.0
± 2.2

56.7
± 2.1 56.1

PL [22] 73.7
± 1.0

76.4
± 0.4

75.3
± 0.5

74.7
± 1.1

72.7
± 0.9

73.3
± 1.6

73.7
± 0.9

73.7
± 1.0

78.7
± 0.3

74.1
± 1.4

75.8
± 2.6

72.5
± 0.8

75.8
± 0.6

76.9
± 1.4

74.5
± 0.1 74.8

TENT [41] 74.7
± 1.1

78.1
± 0.9

76.6
± 0.6

76.1
± 0.7

75.8
± 1.1

73.7
± 1.3

75.2
± 1.1

75.4
± 0.3

78.9
± 0.2

76.7
± 1.8

81.4
± 1.7

73.9
± 0.5

77.3
± 0.7

79.2
± 2.0

75.8
± 1.0 76.6

LAME [4] 1.1
± 0.3

17.0
± 8.7

12.5
± 6.5

1.1
± 0.3

0.4
± 0.2

1.5
± 0.6

2.3
± 0.6

17.2
± 26.0

6.0
± 2.3

12.3
± 17.2

68.3
± 15.8

0.7
± 0.3

0.7
± 0.4

13.2
± 3.4

22.1
± 12.3 11.8

CoTTA [44] 76.9
± 0.5

79.4
± 0.4

79.1
± 0.5

77.6
± 0.6

75.4
± 0.4

76.2
± 1.3

77.6
± 0.2

76.0
± 0.5

81.6
± 0.9

76.8
± 0.6

78.0
± 0.4

77.6
± 0.6

79.3
± 0.4

80.6
± 1.0

77.6
± 0.5 78.0

NOTE 3.9
± 1.3

13.8
± 2.4

14.3
± 1.5

3.3
± 2.4

1.7
± 0.2

3.8
± 0.7

6.5
± 0.3

0.9
± 0.0

8.0
± 1.2

14.4
± 8.1

1.6
± 0.3

3.9
± 0.4

4.5
± 1.2

12.6
± 2.5

13.4
± 3.9 7.1
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Table 8: Average classification error (%) and their corresponding standard deviations on CIFAR10-
C with uniformly distributed test streams, shown per domain. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. NOTE* indicates
NOTE used directly with test batches (without using PBRS). Averaged over three runs.

Method G
au

ss
ia

n

Sh
ot
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pu

lse
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ss
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g
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ig

ht
ne

ss

Co
nt

ra
st
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as

tic

Pi
xe

la
te

JP
EG

Avg

Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

BN Stats [29] 33.1
± 0.9

31.1
± 1.0

39.8
± 0.9

12.3
± 0.4

34.8
± 0.3

13.7
± 0.3

12.6
± 0.4

18.3
± 0.7

19.9
± 0.6

14.5
± 0.6

9.3
± 0.3

13.0
± 0.3

23.3
± 0.3

20.8
± 0.2

28.0
± 0.6 21.6

ONDA [27] 33.4
± 0.6

31.3
± 0.9

40.0
± 1.1

12.3
± 0.4

34.6
± 0.7

13.7
± 0.3

12.4
± 0.5

18.3
± 0.6

19.8
± 0.8

14.3
± 0.4

9.1
± 0.0

14.0
± 0.2

23.3
± 0.4

20.9
± 0.2

28.0
± 0.7 21.7

PL [22] 29.4
± 1.1

26.3
± 1.0

36.8
± 1.6

13.7
± 0.4

36.5
± 1.1

14.0
± 1.0

13.5
± 0.2

19.7
± 0.8

21.2
± 0.6

15.6
± 1.5

10.0
± 0.6

14.8
± 0.2

24.5
± 2.0

20.1
± 0.9

27.4
± 1.3 21.6

TENT [41] 25.3
± 0.8

23.1
± 1.1

32.1
± 1.2

11.7
± 0.6

33.1
± 3.0

13.2
± 1.1

11.2
± 0.1

15.9
± 0.3

18.8
± 0.7

12.9
± 0.8

8.6
± 0.3

14.4
± 0.6

21.7
± 0.9

16.5
± 0.8

23.6
± 0.7 18.8

LAME [4] 78.2
± 3.6

70.6
± 4.0

80.5
± 4.5

46.6
± 1.9

48.0
± 3.8

34.2
± 0.4

37.4
± 1.5

20.8
± 0.8

30.5
± 4.1

26.9
± 1.8

9.8
± 0.2

71.9
± 1.0

24.2
± 0.9

56.4
± 0.8

25.8
± 0.9 44.1

CoTTA [44] 23.1
± 0.7

21.5
± 0.6

28.0
± 0.3

11.7
± 0.5

29.2
± 0.6

13.3
± 0.6

12.0
± 0.5

16.6
± 0.2

16.6
± 0.3

13.8
± 0.4

8.8
± 0.2

14.9
± 0.5

20.6
± 0.7

17.3
± 0.5

19.9
± 0.4 17.8

NOTE 33.5
± 1.7

30.0
± 1.6

38.2
± 0.9

12.6
± 0.8

34.4
± 0.8

11.5
± 0.5

12.9
± 0.6

14.1
± 0.2

15.2
± 0.8

14.0
± 0.6

7.4
± 0.2

7.8
± 0.2

20.7
± 0.3

24.7
± 0.7

24.2
± 0.4 20.1

NOTE* 23.8
± 0.7

23.0
± 0.9

31.1
± 0.3

11.8
± 0.6

30.9
± 1.3

11.8
± 0.4

11.9
± 0.7

15.3
± 1.3

14.0
± 0.7

13.3
± 0.7

8.6
± 0.2

7.5
± 0.3

21.2
± 0.3

16.9
± 0.6

23.0
± 1.2 17.6

Table 9: Average classification error (%) and their corresponding standard deviations on CIFAR100-
C with uniformly distributed test streams, shown per domain. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs. NOTE* indicates NOTE used directly with test batches (without using PBRS)

Method G
au

ss
ia

n

Sh
ot

Im
pu

lse

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow
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os

t
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g

Br
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ht
ne

ss

Co
nt

ra
st
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as

tic

Pi
xe

la
te

JP
EG

Avg

Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

BN Stats [29] 60.9
± 0.8

59.9
± 0.6

65.7
± 0.8

33.7
± 0.4

57.6
± 0.4

36.5
± 0.2

35.2
± 0.4

46.7
± 0.3

46.9
± 0.4

42.8
± 0.7

32.3
± 0.4

35.6
± 0.5

45.8
± 0.3

43.6
± 0.3

55.5
± 0.2 46.6

ONDA [27] 60.8
± 0.9

60.2
± 0.5

66.0
± 0.6

33.9
± 0.4

57.5
± 0.4

36.3
± 0.4

34.6
± 0.4

46.5
± 0.3

47.2
± 0.3

42.1
± 0.6

32.1
± 0.5

36.4
± 0.4

45.5
± 0.1

43.4
± 0.8

55.1
± 0.1 46.5

PL [22] 52.2
± 0.9

50.3
± 1.0

59.4
± 0.9

33.5
± 0.5

54.0
± 0.6

35.7
± 0.3

33.1
± 0.5

42.8
± 0.9

44.5
± 1.6

39.2
± 1.3

30.9
± 0.2

35.5
± 0.2

45.5
± 1.0

39.9
± 0.3

50.4
± 1.3 43.1

TENT [41] 48.7
± 0.8

47.2
± 0.6

55.6
± 0.9

31.5
± 0.2

50.9
± 0.5

33.5
± 0.4

31.7
± 0.2

39.6
± 0.3

41.0
± 0.1

36.8
± 0.7

29.4
± 0.3

33.6
± 0.4

42.3
± 0.6

36.8
± 0.5

46.4
± 0.5 40.3

LAME [4] 91.0
± 1.0

89.5
± 1.0

95.2
± 0.7

68.1
± 0.9

82.7
± 1.1

57.1
± 0.5

60.2
± 0.3

54.7
± 0.3

68.9
± 1.2

61.8
± 0.6

33.7
± 0.5

85.2
± 0.4

50.3
± 0.2

76.7
± 1.3

56.2
± 0.5 68.8

CoTTA [44] 52.8
± 0.7

51.0
± 0.4

56.9
± 0.6

35.8
± 0.4

53.9
± 0.2

37.9
± 0.5

36.8
± 0.1

45.2
± 0.5

44.5
± 0.1

44.0
± 0.2

32.2
± 0.5

41.3
± 1.4

46.1
± 0.1

39.7
± 0.3

46.9
± 0.7 44.3

NOTE 65.6
± 1.0

62.6
± 0.7

72.0
± 0.2

36.8
± 0.7

60.5
± 0.7

34.9
± 0.5

36.7
± 0.2

39.6
± 0.2

41.7
± 0.6

42.3
± 0.3

28.6
± 0.2

32.3
± 0.9

43.8
± 0.2

47.7
± 0.4

50.9
± 0.2 46.4

NOTE* 51.8
± 1.0

50.0
± 0.3

60.7
± 0.4

32.6
± 0.2

54.4
± 0.3

33.0
± 0.2

33.5
± 0.4

38.5
± 0.3

38.6
± 0.1

36.7
± 0.3

29.7
± 0.5

27.3
± 0.3

43.2
± 0.4

37.1
± 0.2

47.6
± 0.9 41.0
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Table 10: Average classification error (%) and their corresponding standard deviations on ImageNet-C
with temporally correlated test streams, shown per corruption. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs.

Method G
au

ss
ia

n

Sh
ot

Im
pu

lse

D
ef

oc
us
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la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t
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g
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ne

ss

Co
nt

ra
st
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as

tic

Pi
xe

la
te

JP
EG

Avg

Source 98.4
± 0.0

97.7
± 0.0

98.4
± 0.0

90.6
± 0.0

92.5
± 0.0

89.8
± 0.0

81.8
± 0.0

89.5
± 0.0

85.0
± 0.0

86.4
± 0.0

51.1
± 0.0

97.2
± 0.0

85.3
± 0.0

76.9
± 0.0

71.7
± 0.0 86.1

BN Stats 89.4
± 0.0

88.5
± 0.1

89.2
± 0.2

90.8
± 0.0

90.0
± 0.0

81.3
± 0.0

69.8
± 0.2

72.6
± 0.1

73.8
± 0.0

62.6
± 0.0

44.3
± 0.3

92.1
± 0.0

64.5
± 0.1

60.3
± 0.1

70.7
± 0.0 76.0

ONDA 89.2
± 0.0

88.2
± 0.0

89.0
± 0.1

90.9
± 0.1

90.0
± 0.1

81.6
± 0.1

69.5
± 0.0

72.6
± 0.1

73.7
± 0.0

62.7
± 0.1

43.9
± 0.0

92.1
± 0.0

64.3
± 0.0

60.1
± 0.1

70.0
± 0.0 75.9

PL 89.8
± 1.9

86.1
± 0.9

88.5
± 1.6

93.0
± 1.1

92.5
± 0.6

82.2
± 0.0

64.6
± 0.3

70.2
± 0.6

79.7
± 0.4

55.8
± 0.2

43.9
± 0.1

97.2
± 0.5

57.8
± 0.1

52.7
± 0.2

60.5
± 0.1 74.4

TENT 91.1
± 2.4

89.7
± 1.6

91.0
± 2.5

93.1
± 3.2

92.2
± 3.2

84.7
± 4.9

72.4
± 3.5

73.3
± 1.1

78.7
± 6.9

59.8
± 4.0

44.5
± 0.5

95.2
± 4.3

61.6
± 4.3

56.4
± 5.6

67.4
± 4.7 76.5

LAME 98.6
± 0.0

97.8
± 0.0

98.6
± 0.0

90.7
± 0.0

92.6
± 0.0

89.9
± 0.0

81.9
± 0.0

89.8
± 0.0

85.0
± 0.0

86.5
± 0.0

51.1
± 0.0

97.3
± 0.0

85.6
± 0.0

77.0
± 0.0

71.7
± 0.0 86.3

CoTTA 85.7
± 0.2

84.6
± 0.1

85.4
± 0.0

87.8
± 0.3

86.4
± 0.2

74.6
± 0.0

64.2
± 0.2

67.9
± 0.0

69.7
± 0.2

56.1
± 0.1

42.7
± 0.0

88.5
± 0.8

60.0
± 0.0

54.2
± 0.1

64.9
± 0.1 71.5

NOTE 87.6
± 0.1

85.7
± 0.1

87.2
± 0.2

83.3
± 0.2

83.2
± 0.2

73.6
± 0.0

65.4
± 0.2

65.0
± 0.0

68.6
± 0.1

57.9
± 0.0

43.5
± 0.1

75.9
± 0.1

61.2
± 0.1

54.1
± 0.0

62.8
± 0.1 70.3

NOTE* 89.5
± 0.4

87.9
± 0.2

88.9
± 0.3

84.6
± 0.2

83.7
± 0.2

74.4
± 0.1

66.6
± 0.1

66.1
± 0.2

71.2
± 0.1

58.2
± 0.1

44.7
± 0.1

78.8
± 0.1

61.2
± 0.2

54.8
± 0.0

64.8
± 0.1 71.7

Table 11: Average classification error (%) and their corresponding standard deviations on MNIST-
C with uniformly distributed test streams, shown per domain. Bold fonts indicate the lowest
classification errors, while Red fonts show performance degradation after adaptation. Averaged over
three runs. NOTE* indicates NOTE used directly with test batches (without using PBRS).

Method Sh
ot

Im
pu

lse

G
la

ss
M

ot
io

n
Sh

ea
r

Sc
al

e

Ro
ta

te
Br

ig
ht

ne
ss
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Avg

Source 3.7
± 0.7

27.3
± 5.5

20.4
± 6.4

4.6
± 0.5

2.2
± 0.5

5.1
± 1.0

6.5
± 1.0

21.1
± 22.9

13.8
± 1.4

17.4
± 17.0

66.6
± 14.7

3.8
± 0.4

3.7
± 0.4

18.2
± 3.0

26.4
± 11.4 16.1

BN Stats [29] 2.9
± 0.7

7.0
± 1.6

9.1
± 1.0

3.0
± 0.8

2.0
± 0.3

3.8
± 0.2

6.1
± 0.7

1.1
± 0.1

12.5
± 0.8

6.5
± 2.6

2.2
± 0.5

3.3
± 0.3

2.5
± 0.2

11.4
± 0.2

6.7
± 0.9 5.3

ONDA [27] 2.6
± 0.6

6.5
± 1.4

8.6
± 1.0

2.8
± 0.8

1.8
± 0.2

3.5
± 0.2

5.7
± 0.7

1.0
± 0.1

11.7
± 1.1

6.1
± 2.6

2.6
± 0.9

3.0
± 0.4

2.2
± 0.2

11.0
± 0.4

6.2
± 0.8 5.0

PL [22] 1.6
± 0.3

3.5
± 0.7

4.8
± 0.8

1.7
± 0.0

1.5
± 0.0

2.3
± 0.1

4.9
± 0.7

0.8
± 0.1

6.8
± 0.8

2.7
± 0.6

1.0
± 0.0

2.2
± 0.3

1.7
± 0.2

5.3
± 0.4

3.9
± 0.9 3.0

TENT [41] 1.4
± 0.1

2.8
± 0.4

3.8
± 0.5

1.5
± 0.0

1.2
± 0.0

1.8
± 0.1

3.6
± 0.2

0.7
± 0.1

4.6
± 0.7

1.9
± 0.2

0.8
± 0.0

1.7
± 0.1

1.3
± 0.1

4.5
± 0.6

3.1
± 0.5 2.3

LAME [4] 3.0
± 0.8

30.7
± 8.3

18.9
± 5.8

3.4
± 0.5

1.9
± 0.3

4.2
± 0.5

6.3
± 0.9

25.9
± 29.8

13.9
± 1.9

18.5
± 21.2

78.2
± 9.8

3.3
± 0.7

3.2
± 0.3

19.3
± 3.2

28.0
± 12.7 17.2

CoTTA [44] 2.6
± 0.6

6.6
± 1.7

8.7
± 0.9

2.7
± 0.7

1.8
± 0.3

3.2
± 0.0

5.6
± 0.8

1.0
± 0.1

14.3
± 1.1

7.7
± 6.0

1.9
± 0.5

2.9
± 0.3

2.2
± 0.1

13.6
± 1.4

6.1
± 0.6 5.4

NOTE 2.5
± 0.8

10.7
± 1.9

10.9
± 2.0

2.0
± 0.3

1.5
± 0.0

2.4
± 0.1

5.5
± 0.3

0.9
± 0.1

5.5
± 0.2

12.1
± 5.7

1.2
± 0.1

2.8
± 0.3

3.0
± 0.1

10.9
± 1.6

9.1
± 0.4 5.4

NOTE* 1.3
± 0.2

2.7
± 0.1

3.8
± 0.5

1.3
± 0.1

1.1
± 0.1

1.6
± 0.0

3.5
± 0.1

0.7
± 0.0

2.8
± 0.0

2.2
± 0.1

0.7
± 0.1

1.7
± 0.4

1.4
± 0.2

4.8
± 1.1

3.5
± 0.1 2.2

B.2 Real distributions with domain shift

Since the adaptation is done from a single source domain to a single target domain in KITTI, no
further per-domain tables are specified here.
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Table 12: Average classification error (%) and their corresponding standard deviations on HARTH
with real test streams, shown per domain. Bold fonts indicate the lowest classification errors, while
Red fonts show performance degradation after adaptation. Averaged over three runs.
Method S008 S018 S019 S021 S022 S028 S029 Avg
Source 86.2 ± 1.3 44.7 ± 2.1 50.4 ± 9.5 74.8 ± 3.8 72.0 ± 2.6 53.0 ± 24.0 57.0 ± 16.7 62.6
BN Stats [29] 70.3 ± 1.4 73.8 ± 1.3 68.1 ± 3.0 64.9 ± 0.9 68.5 ± 0.3 65.5 ± 0.5 69.4 ± 1.4 68.6
ONDA [27] 75.3 ± 4.0 60.4 ± 0.9 63.1 ± 4.6 67.9 ± 0.4 70.0 ± 3.8 73.6 ± 0.7 74.5 ± 4.4 69.3
PL [22] 60.4 ± 1.3 71.4 ± 1.5 62.9 ± 1.9 61.8 ± 1.2 63.1 ± 0.4 64.5 ± 0.8 69.4 ± 2.0 64.8
TENT [41] 59.5 ± 0.3 71.0 ± 1.6 62.2 ± 1.9 61.1 ± 1.1 61.7 ± 0.4 64.1 ± 0.5 69.3 ± 2.1 64.1
LAME [4] 85.5 ± 1.7 43.4 ± 2.0 48.8 ± 10.9 73.2 ± 3.8 70.7 ± 2.6 51.2 ± 29.4 54.1 ± 20.6 61.0
CoTTA [44] 70.4 ± 1.4 73.8 ± 1.3 68.2 ± 2.9 64.9 ± 1.0 68.5 ± 0.2 65.5 ± 0.5 69.4 ± 1.4 68.7
NOTE 84.8 ± 0.7 32.9 ± 1.8 36.3 ± 10.9 69.1 ± 2.4 67.1 ± 1.2 30.0 ± 13.8 36.6 ± 9.8 51.0

Table 13: Average classification error (%) and their corresponding standard deviations on Extrasensory
with real test streams, shown per domain. Bold fonts indicate the lowest classification errors, while
Red fonts show performance degradation after adaptation. Due to the length of the name of each
domain, denoted here with the first three characters. Averaged over three runs.
Method 4FC 598 619 797 A5D C48 D7D Avg
Source 34.6 ± 2.5 40.1 ± 0.7 63.8 ± 5.7 45.3 ± 2.4 64.6 ± 3.7 39.6 ± 6.8 63.0 ± 3.9 50.2
BN Stats[29] 61.7 ± 4.2 50.1 ± 5.1 51.6 ± 1.5 59.4 ± 1.1 54.4 ± 1.0 52.4 ± 2.8 62.6 ± 2.9 56.0
ONDA [27] 36.3 ± 3.5 44.0 ± 2.2 50.8 ± 2.4 56.1 ± 1.9 59.7 ± 2.7 43.5 ± 5.9 46.7 ± 4.2 48.2
PL [22] 62.2 ± 4.3 50.0 ± 5.1 51.7 ± 1.8 59.2 ± 1.1 53.9 ± 1.1 52.3 ± 2.9 62.8 ± 3.0 56.0
TENT [41] 62.1 ± 4.6 49.8 ± 5.0 51.6 ± 1.9 59.4 ± 1.2 53.9 ± 1.0 52.2 ± 2.9 62.8 ± 3.0 56.0
LAME [4] 33.1 ± 2.4 37.8 ± 0.4 68.0 ± 8.8 37.1 ± 6.7 73.2 ± 2.6 39.0 ± 7.6 66.4 ± 4.0 50.7
CoTTA [44] 61.7 ± 4.2 50.0 ± 4.9 51.6 ± 1.5 59.4 ± 1.1 54.4 ± 1.0 52.4 ± 2.8 62.6 ± 2.9 56.0
NOTE 41.7 ± 5.9 40.7 ± 0.8 55.5 ± 10.8 45.8 ± 4.6 45.8 ± 10.4 32.9 ± 1.1 55.5 ± 10.4 45.4

B.3 Ablation study

Table 14: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR10-C with temporally correlated test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.
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EG

Avg

Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

IABN 44.5
± 2.7

41.3
± 2.3

48.0
± 1.9

16.3
± 1.0

39.9
± 0.1

13.8
± 0.7

16.1
± 0.7

14.9
± 0.3

17.8
± 0.6

16.3
± 0.6

7.6
± 0.2

8.8
± 0.3

22.5
± 0.3

34.0
± 1.2

26.7
± 0.6 24.6

PBRS 45.2
± 3.0

38.5
± 4.9

46.8
± 3.3

24.5
± 2.2

38.2
± 2.8

19.1
± 0.9

20.0
± 0.2

16.5
± 0.2

19.1
± 2.4

16.5
± 0.4

7.1
± 0.7

34.4
± 3.0

21.5
± 0.5

39.8
± 4.7

25.2
± 0.4 27.5

IABN + RS 33.7
± 6.4

30.0
± 6.7

37.6
± 2.9

13.6
± 0.3

34.9
± 1.9

12.4
± 1.2

14.5
± 1.7

13.9
± 1.1

15.0
± 3.1

14.0
± 1.3

7.2
± 0.0

7.4
± 0.7

21.1
± 0.9

26.2
± 4.4

25.9
± 1.1 20.5

IABN + PBRS 34.9
± 1.6

32.3
± 3.1

39.6
± 2.5

13.6
± 0.5

35.8
± 1.9

11.8
± 0.8

14.5
± 0.5

14.1
± 0.6

15.2
± 1.3

14.2
± 0.6

7.7
± 0.3

7.6
± 0.6

20.8
± 0.7

27.7
± 2.6

26.4
± 0.5 21.1
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Table 15: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR100-C with temporally correlated test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.

Method G
au

ss
ia

n

Sh
ot

Im
pu

lse

D
ef

oc
us

G
la

ss

M
ot

io
n

Zo
om

Sn
ow

Fr
os

t

Fo
g

Br
ig

ht
ne

ss

Co
nt

ra
st

El
as

tic

Pi
xe

la
te

JP
EG

Avg

Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

IABN 79.3
± 0.7

77.2
± 0.7

84.2
± 1.0

45.0
± 0.6

69.6
± 0.3

40.9
± 0.3

43.1
± 0.6

42.5
± 0.4

48.6
± 0.3

52.5
± 0.5

30.4
± 0.1

40.5
± 0.7

47.6
± 0.5

59.8
± 1.1

56.2
± 0.4 54.5

PBRS 68.8
± 0.6

66.2
± 0.4

73.3
± 0.9

46.2
± 0.6

64.9
± 1.5

41.8
± 0.6

41.7
± 0.3

44.2
± 0.4

48.5
± 0.7

44.7
± 0.2

28.3
± 0.2

60.1
± 0.4

44.2
± 0.4

51.9
± 0.8

50.5
± 0.5 51.7

IABN + RS 66.8
± 2.1

65.2
± 0.3

73.1
± 1.0

38.7
± 0.4

63.0
± 0.9

36.6
± 0.0

38.0
± 0.2

41.9
± 0.8

43.9
± 0.4

44.6
± 0.5

29.5
± 0.3

33.5
± 0.7

46.0
± 0.5

49.9
± 0.9

52.4
± 0.4 48.2

IABN + PBRS 66.2
± 0.8

64.2
± 1.6

72.6
± 0.4

37.2
± 0.8

61.1
± 0.7

35.4
± 0.3

37.4
± 0.4

40.0
± 0.4

42.5
± 0.3

43.4
± 0.5

29.4
± 0.1

32.1
± 0.5

44.3
± 0.4

47.5
± 0.6

51.3
± 0.3 47.0

Table 16: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR10-C with uniformly distributed test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.
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Source 74.0
± 3.3

66.8
± 3.5

75.3
± 4.2

43.3
± 2.7

48.0
± 2.7

32.6
± 1.2

35.2
± 2.6

22.0
± 0.4

33.0
± 2.5

25.9
± 0.9

8.5
± 0.3

66.1
± 1.8

23.4
± 0.7

53.6
± 0.7

26.8
± 0.7 42.3

IABN 44.5
± 2.7

41.4
± 2.3

48.1
± 1.9

16.3
± 1.0

39.9
± 0.1

13.9
± 0.7

16.2
± 0.7

14.9
± 0.3

17.9
± 0.6

16.4
± 0.5

7.6
± 0.2

8.8
± 0.3

22.5
± 0.4

34.1
± 1.2

26.7
± 0.6 24.6

PBRS 43.4
± 0.8

37.9
± 0.6

46.2
± 1.5

21.8
± 2.0

36.8
± 1.0

18.1
± 0.3

17.6
± 0.8

16.1
± 0.1

19.3
± 0.5

15.2
± 0.3

7.1
± 0.4

32.5
± 1.5

20.0
± 0.2

30.7
± 0.7

23.8
± 0.1 25.8

IABN + RS 33.8
± 1.6

31.1
± 0.9

40.4
± 1.3

13.3
± 0.7

35.6
± 0.2

11.8
± 0.6

13.2
± 0.3

14.6
± 0.3

14.9
± 0.6

14.7
± 0.4

7.7
± 0.2

8.1
± 0.4

22.3
± 0.5

24.6
± 1.9

25.1
± 1.2 20.7

IABN + PBRS 33.5
± 1.7

30.0
± 1.6

38.2
± 0.9

12.6
± 0.8

34.4
± 0.8

11.5
± 0.5

12.9
± 0.6

14.1
± 0.2

15.2
± 0.8

14.0
± 0.6

7.4
± 0.2

7.8
± 0.2

20.7
± 0.3

24.7
± 0.7

24.2
± 0.4 20.1

Table 17: Average classification error (%) and their corresponding standard deviations of varying
ablation settings on CIFAR100-C with uniformly distributed test streams, shown per domain. Bold
fonts indicate the lowest classification errors. Averaged over three runs.
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Source 88.1
± 0.2

86.8
± 0.6

93.7
± 0.6

64.9
± 0.4

79.7
± 0.9

55.5
± 0.3

57.7
± 0.2

53.8
± 0.4

66.3
± 0.8

59.3
± 0.4

33.0
± 0.3

81.4
± 0.4

49.2
± 0.4

73.6
± 1.1

55.5
± 0.3 66.6

IABN 79.3
± 0.6

77.2
± 0.6

84.3
± 1.0

45.0
± 0.5

69.6
± 0.2

40.9
± 0.3

43.1
± 0.6

42.5
± 0.4

48.6
± 0.3

52.5
± 0.5

30.5
± 0.1

40.5
± 0.7

47.6
± 0.5

59.8
± 1.1

56.2
± 0.4 54.5

PBRS 68.6
± 1.0

66.0
± 0.3

72.9
± 0.3

45.3
± 0.3

64.1
± 0.8

40.9
± 0.5

41.6
± 0.5

43.7
± 0.2

47.9
± 0.2

44.2
± 0.3

28.3
± 0.3

59.9
± 0.7

44.2
± 0.5

51.1
± 1.6

50.4
± 0.6 51.3

IABN + RS 67.1
± 1.2

65.6
± 0.3

74.0
± 0.4

39.0
± 0.3

61.4
± 1.3

36.5
± 0.1

38.7
± 0.8

41.4
± 0.2

44.0
± 0.4

45.0
± 0.2

30.0
± 0.2

34.0
± 0.2

46.0
± 1.4

48.8
± 1.3

52.5
± 0.5 48.3

IABN + PBRS 65.6
± 1.0

62.6
± 0.7

72.0
± 0.2

36.8
± 0.7

60.5
± 0.7

34.9
± 0.5

36.7
± 0.2

39.6
± 0.2

41.7
± 0.6

42.3
± 0.3

28.6
± 0.2

32.3
± 0.9

43.8
± 0.2

47.7
± 0.4

50.9
± 0.2 46.4
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C Replacing BN with IABN during test time

Table 18: Average classification error (%) and corresponding standard deviations of varying ablation
settings on CIFAR10-C/100-C under temporally correlated (non-i.i.d.) and uniformly distributed
(i.i.d.) test data stream. IABN* refers to replacing BN with IABN during test time (no pre-training
with IABN layers). Bold fonts indicate the lowest classification errors. Averaged over three runs.

Temporally correlated test stream Uniformly distributed test stream
Method CIFAR10-C CIFAR100-C Avg CIFAR10-C CIFAR100-C Avg
Source 42.3 ± 1.1 66.6 ± 0.1 54.4 42.3 ± 1.1 66.6 ± 0.1 54.4
IABN* 27.1 ± 0.4 60.8 ± 0.1 44.0 27.1 ± 0.4 60.8 ± 0.2 44.0
IABN 24.6 ± 0.6 54.5 ± 0.1 39.5 24.6 ± 0.6 54.5 ± 0.1 39.5
IABN*+PBRS 24.9 ± 0.2 55.9 ± 0.2 40.4 23.2 ± 0.4 55.3 ± 0.1 39.3
IABN+PBRS 21.1 ± 0.6 47.0 ± 0.1 34.0 20.1 ± 0.5 46.4 ± 0.0 33.2

For pre-trained models with BN layers such as ResNet [12], NOTE needs to re-train the model by
replacing BN layers with IABN layers in order to utilize the effectiveness of IABN. This requires the
additional computational cost of re-training, which might make it inconvenient to utilize off-the-shelf
models. We further investigate whether simply switching BN to IABN without re-training still leads
to performance gain.

Table 18 shows the result of this experiment, where IABN* refers to replacing BN with IABN during
test time. We note that IABN* still shows a significant reduction of errors under CIFAR10-C and
CIFAR100-C datasets compared with BN (Source). We interpret this as the normalization correction
in IABN is somewhat valid without re-training the model. We notice that IABN* outperforms the
baselines in CIFAR10-C with 27.1% error, while the second best (LAME) shows 36.2% error 19. In
addition, IABN* also shows improvement combined with PBRS. This implies that IABN can be used
without re-training the model, which aligns with the fully test-time adaptation paradigm introduced
in a recent study [41].

D License of assets

Datasets KITTI dataset (CC-BY-NC-SA 3.0), KITTI-rain dataset (CC-BY-NC-SA 3.0), CIFAR10,
100 (MIT License), ImageNet-C (Apache 2.0), MNIST-C (CC-BY-NC-SA 4.0), HARTH dataset
(MIT License), and the Extrasensory dataset (CC-BY-NC-SA 4.0)

Codes Code for rain augmentation on the KITTI dataset (Apache 2.0), torch-vision for ResNet18
and ResNet50 (Apache 2.0), code for depth estimation used in rain augmentation on the KITTI
dataset (UCLB ACP-A License), code for generating Dirichlet distributions (Apache 2.0), the official
repository of CoTTA (MIT License), the official repository of TENT (MIT License), and the official
repository of LAME (CC BY-NC-SA 4.0).

13



(a) S008.

(b) S018.

(c) S019.

(d) S021.

(e) S022.

(f) S028.

(g) S029.

Figure 7: Illustration of the real-time cumulative classification error change of different methods on
the HARTH dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the error
rate in percentage. Note that some lines are not clearly visible due to overlap.
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(a) 4FC.

(b) 598.

(c) 619.

(d) 797.

(e) A5D.

(f) C48.

(g) D7D.

Figure 8: Illustration of the real-time cumulative classification error change of different methods on
the Extrasensory dataset. The x-axis denotes the samples in order, whereas the y-axis denotes the
error rate in percentage. Note that some lines are not clearly visible due to overlap.
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