Under review as a conference paper at ICLR 2022

A CONVERGENCE PROOFS

To support our larger point about the irrelevance of this type of result when comparing LAMB and
Adam, below we derive a convergence bound for Adam in a similar manner to the LAMB bound in
You et al. (2019). Note that all of these bounds are loose upper bounds on the worst case behavior of
the algorithms, so there is no reason that comparing them reflects the relative behaviors of optimizers
in reality. For example in Equation [3] below, we follow similar operations as the LAMB bound
derivation and simply switch a — to a 4 for algebraic convenience.

We define the following as our optimization objective

A
min f(z) := Esep[l(z, s)] + f||:17\|2, (D
reRd 2

with an optimal solution(s) z*. = € R? are the neural network parameters, ¢ a smooth and possibly
nonconvex loss function, PP a data distribution, and) the regularization strength.

Let T be the number of training steps, h the number of neural network layers, b the batch size, i the
learning rate, n the mini-batch size, and ¢(v) : Rt — RT a function that is layerwise multiplied by
the learning rate in LARS and LAMB updates. Let L be a vector of the layerwise Lipschitz constants
for the neural network, and Lg,4 the mean of L. Let s be a training step uniformly sampled from
{1,2,...,T}.

We define the stochastic minibatch estimate of the true gradient as E[g(¥)] = V, f(x) and assume that
its variance is bounded by £ [g(i) - Vif (x)] ? < o? layerwise for a vector of standard deviations
o= [cW,...0™] and elementwise for 5 := [1),...5(M].

The LARS and LAMB update rules are defined as

Algorithm 2 LAMB
my = Bimy_1+ (1 —B1) gt
Algorithm 1 LARS v = Bovy_1 + T(nlt — B2) g7
my = Fime + (1= By) (g0 +) T
Ti41 = T = N vy = (1_*@)
Ty = ﬁ + Az

— Tt
AR]

where my, vg are initialized to zeros.

Next, let 9, = n = % Vte [T, b=T, oy < ¢(v) < a, Yo > 0, ag,ay > 0.

Crucially, additionally let b = T', 81 = 0, A = 0. Under these conditions |You et al.| (2019) show the
convergence rate for LARS is

o (@) = £ L ol
(]E \/E;Vz‘f(xs)”) SO(T o Th)

They also derive the convergence rate of LAMB as

Gd l\/%f(wl) —J DLl |l

— X
h(1 - B2) T VT
Additionally, for 52 = 0, the convergence rate of LAMB can be derived as

(e U&nwm)nl])g <o (VS | J1E),

Below we derive a similar bound for the 85 > 0 case for Adam updates. We note that the S5 = 0
case where the bound depends on L, instead of ||L||; can be very similarly derived for Adam, but
is also a very unrealistic condition in practice.

E[|Vf(z.)]*] <O (

) |

13

Under review as a conference paper at ICLR 2022

Proof. Under the assumption 31 = 0, A = 0, one could write the Adam update rule as follows:

i 9
N

where vy = Bovy_1 + (1 — B2)g? forall i € [h)].

Since the function f is L-smooth, we have the following:

Flaer) < flae) +(Vif (o), xthl - mt)+ Z |$t+1 (i)||2

d;

h h
SODSICYEEE gﬂ f%) @
=1 j=1 tj =1

T

Where the last term comes from the fact that 1 — Bé < 1. We bound term 73 in the following manner,
in line with (You et al.,|2019):

hods ©)

T == Y S IVid (w0l - B \%
t,j

i=1 j=1

mzz 9wl

=1 j=1

—mZZ . mf (sign([Vif (z0);) # sign(s;)))

=1 j=1

Relying on the following inequalities: \/v; < Gand 1 — 5 > 1 — f3,.
Taking expectation, we have the following:

Bt < 0> >0 VPR [0 5e)o!)]

1=1j5=1

h d; 1= 3
) P A

= [(Vif ()]0t Lsign(Vaf (@o)],) # sign(gi))

i=1 j=1

E[Th] < ﬁtzz 1 Lo {Vf(xt)]ygt”

=1 j=1

Yy L= B [[[Vf (@) | Blsign([Vf (a0)) # sign(ef)))] @)

=1 j=1

14

Under review as a conference paper at ICLR 2022

similarly what is shown in signsgd, we bound the probability by first relaxing the condition, then
applying Markov’s and then Jensen’s inequality:

B(sign([Vif (x.)];) # sign(g})) < B (|[Vif(z)]; — 9] > lot')))
E[|[Vif(20)l; — 9]

=TI

B [artw, - o7
N ATEN
= Vel

= UV @l

where the last inequality is from the fact that ¢, ; is the minibatch variance at time ¢ with batch size
n. Substituting this into our derivation of 7T}

NP @l + Y

E[Ty] <

11]1

and replacing this with our definition of 7T} in Eq. (2) we get

2
Elf(re1)] < f(e) — 22T F @)l 4+ mey/T- ”ﬂh 'ﬁhﬁj- @

We then arrive at the final bound by summing Eq. (@) to step 7" and cancelling consecutlve terms via
the telescoping sum, followed by rearranging and then multiplying through by T \/7

—3, & ;
t=1

Vihy * o]l | TILIn7d
miGQZHVf(l't)HQSf(xl)—f(g;)+T77t\/m ;ﬁl n 2(1 _1;7;)
T

s (L) = 1) 1ol I\l
Z V5l <G(Try/1 = Po " vn +2(1—52)g)

Taking g, =n = % and letting n = T as is similarly done in (You et al., 2019), we

can recover a bound that, up to some constants, is similar to the bound for LAMB:

5 200 FGE)
1) — fla” o LI/ ier; (1 B2)d
BVl <O 2(f 1) f<x*§> : * H\/'ﬁ1 2(1 — By)?
Tha=sa V1~ B2 3

1 2(f(@1) — f(@*))||L][xd | [[5]] 1 2(f(@1) — f(@*))||L]2d
O<G<2\/ T + \/ﬁl+2(1—ﬂz)2\/ : T :))

1\ 2T TEIEL | Clsll
O<GQ+u—mP>¢ B %r)

15

Under review as a conference paper at ICLR 2022

B ADDITIONAL EXPERIMENT DETAILS

B.1 RESNET-50 TRAINING BENCHMARK

All experiments were run on Google TPUs (Jouppi et al.| 2017). We typically trained on TPUv2-256
or TPUV3-128 in order to accommodate the 32,768 batch size. The ResNet-50 experiments used Jax
(Bradbury et al.|[2018]) using the Flax library, with code released here. The BERT experiments were
run using TensorFlow (Abadi et al., 2015)) version 1.15. We used the standard train/validation split
from the previous literature and MLPerf competition.

For ImageNet, we used the following sequence of TensorFlow functions for pre-processingE]

tf .image.sample_distorted_bounding_box
tf.image.decode_and_crop_jpeg

tf .image.resize

tf .image.random_flip_left_right

tf .image.convert_image_dtype

B.2 BERT PRE-TRAINING

We used the same experimental setup as the official BERT codebas and the standard train/test
split from the previous literature. This matches the experimental setup of [You et al.| (2019). We
trained on Google TPUs, using TPUv3-256 or TPUv3-512 for the 32,768 batch size experiments, and
TPUv3-1024 for the 65,536 batch size experiments.

We trained the two pretraining objectives on the combined Wikipedia and Books corpus (Zhu et al.,
2015) datasets (2.5B and 800M words, respectively). We used sequence lengths of 128 and 512,
respectively, for the pretraining tasks. We ran the fine-tuning phase on the SQuaD v1.1 question
answering task. In order to match|You et al.|(2019)), we report the F1-score on the dev set as the target
metric. We followed the fine-tuning protocol described in the LAMB optimizer setup and did not
perform any additional tuning for fine-tuning.

We tuned Adam hyperparameters using quasi-random search (Bousquet et al., |2017) in a simple
search space. Hyperparameters included learning rate 7, 51, (2, the polynomial power for the
learning rate warmup puyarmup. and weight decay A. We fixed the € in Adam to 10~ for all BERT
experiments. See Appendix [E.2]for the search spaces. We selected the best trial using the masked
language model accuracy over 10k examples from the training set. The number of training steps for
each of the phases, as well as the warmup steps are identical to|You et al.|(2019) and are listed in
Appendix Each phase of pretraining used completely independent Adam hyperparameters. We
found the final hyperparameters within 30 trials of random search for each of the phases, except for
the second phase of 65,536 batch size which used 130 trials.

MAX —— BERT

Relative Step Size

0 2000 4000 6000 8000 10000
Step

Figure 3: An illustration of the sudden drop in the BERT learning rate schedule in the official
codebase.

7 Full code available athttps: //git.io/JtgtE ® https://github.com/google-research/bert

16

https://github.com/anonymized
https://git.io/JtgtE
https://github.com/google-research/bert

Under review as a conference paper at ICLR 2022

91.25-

(0]
£91.00-
S
9 90.75- ' ———
.
90.50-
90.25- %
2% 66\(,3’1,\4 oo%

Figure 4: 6 finetuning runs starting from the same pretraining checkpoint to show the stability of our
results, at each of the 32,768, mixed 65,536-32,768, and 65,536 batch size settings.

C NESTEROV ABLATIONS

To explore the sensitivity of our best Nesterov momentum configuration (Configuration A), we ablated
several elements of the experiment pipeline, one at a time, and tested their impact on performance.
Figure 5] shows the results of these experiments. “Base” refers to Nesterov momentum Configuration
A (Table[5). “ResNet version™ is the same point as “Base” but with ResNet version 1.0 instead of
version 1.5. “BN init” is the same point as “Base” but with 79 = 1.0 instead of 0.4138. “Virtual BN”
is the same point as “Base” but with a virtual batch size of 256 instead of 64, which is the largest that
fits in a single TPUV3 core. “BN & LR tuning” is Configuration B (Table[)), the same point as “Base”
but with paecay: twarmup, 10, P, € set to their values in the LARS pipeline. Finally, “L2 variables” is
the same point as “Base” but where the L2 regularization is applied to all variables. The only ablation
whose median over 50 seeds continues to beat the target 75.9% accuracy (noted by the dotted red
line) is “BN & LR tuning”, with the rest having between 0.1%-0.3% drops in median accuracy.

0.762-

0.760-

Accuracy
e
~
(9)]
o]

0.756-

0.754-

20® N e

8os° « N And p\es
aese W (e g e ®

Figure 5: Distributions over 50 training runs for each ablation study around our best Nesterov
momentum configuration (Configuration A). The dotted red line is at the target accuracy of 75.9%,
and the boxes show the min, max, and quartiles of the distribution of accuracies over the 50 training
runs.

D EASE OF HYPERPARAMETER TUNABILITY

Overall, we see a mixed picture of which algorithm is “easier” to tune given our setup. This section
analyzes the performance of LARS and Nesterov on as similar of a hyperparamter sweep as we
could design, in an attempt to gain insight into how “easy” it is to tune their hyperparameters. The
hyperparameter searches in this section contained 10 hyperparamter settings for each of the learning
rate () and weight decay (), on a log scale, resulting in a 2D grid of 100 total hyperparameter
settings. The grid is centered around the best points found in the hyperparameter searches of Table 4]
(see Table[8]for more details, and Tensorboard links for the best hyperparameter settings). As done in
Section[d] we use a simple cosine decay learning rate schedule, so we only have a single learning rate
hyperparameter.

Under review as a conference paper at ICLR 2022

Between Figures[f] [7] there is evidence that the strength of LARS is in regularizing, whereas Nesterov
is better at minimizing the training objective; this can complicate comparisons on problems where
regularization is important such as ImageNet. As seen in Figure[6] for very competitive validation
accuracies > 76.6% LARS has a slightly larger fraction of hyperparameter settings that achieve the
target validation accuracy, for accuracies between [76.2%, 76.6%)] the two algorithms are very close,
and for all accuracies < 76.2% (which include the target 75.9% used in the main text) Nesterov has a
larger fraction of hyperparameter settings achieving the goal. However, in Figure[7] we see a reversal
when looking at the training accuracy; Nesterov seems to achieve the target training accuracy more
frequently than LARS for more competitive targets, giving further evidence that LARS is actually
acting more as a regularizer.

o
©

—— Nesterov
LARS

e
N

o
o

o
o

o
w

J

/

J

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30
Validation Error Rate

o
N

o
s

Fraction of trials better than target error rate
o
IS

o
o

Figure 6: The fraction of hyperparameter settings that achieve better than a target validation error
rate on ImageNet using the ResNet-50 setup from SectionEl

—— Nesterov
LARS

o
wn

o
'S

o
w

o
N

J

_—

7

0.00 0.02 0.04 0.06 0.08 0.10
Train Error Rate

o
s

Fraction of trials better than target error rate

o
o

Figure 7: The fraction of hyperparameter settings that achieve better than a target training error rate
on ImageNet using the ResNet-50 setup from Section E}

In Figures [0} [8] we find that LARS has an optimal learning rate that is independent of the value
of weight decay, whereas Nesterov seemed to have an optimal learning rate inversely proportional
to weight decay. This means that LARS can tune 7 and then A independently, which could lead
to simpler tuning setups that still result in high-performing settings. This could also mean that for
Nesterov the best 77 values were not contained in our search space for extreme values of A\. However,
given that LARS (and LAMB) contain a weight decay term in the denominator of their step size
calculations, it could make sense to reparameterize the Nesterov search space to 7 by 4 it is unclear
if there should also be reparameterizations applied to LARS tuning as well, and how reparameterizing
would affect the fairness of comparisons.

18

Under review as a conference paper at ICLR 2022

e

°
0
@

Validation Top-1 Error Rate

°
i
>

Nesterov

°
N

°
i
>

°
b

°
i
kS

Validation Top-1 Error Rate

°
i
>

°
N

°
i
>

°
b

°
i
kS

Weight Decay

10° 10%
Learning Rate

10" 1
Learning Rate

Figure 8: The validation error rate on ImageNet using the ResNet-50 setup from Section bucketed
by weight decay value.

Optimal LR

Nesterov

10°

Optimal LR

1073
Weight Decay

10°*

Weight Decay

Figure 9: The best performing learning rate for a given weight decay, as measured by the validation
error rate on ImageNet using the ResNet-50 setup from SectionE}

Slicing the data a different way, we can look at how 7 affects performance for a particular value of
X in Figures These figures also show Nesterov can achieve a slightly better training
accuracy compared to LARS. However, both algorithms have similar ranges of performance for a
given A, implying neither algorithm is notably more or less sensitive to 1 when using a fixed .

Weight Decay: 0.001

o o o
> o ©

Train Top 1 Error Rate

o
o

o
N
@

o
Y
N

o
N
&

o
N
i

o
N
@

o
N
N

Valid Top 1 Error Rate
o
N
o

—e— nesterov
lars.

0.8

2 04 X 0’8
Relative Learning Rate

0.2

04 X
Relative Learning Rate

Figure 10: For A = 1073, validation error rate on ImageNet using the ResNet-50 setup from

Section E}

19

Under review as a conference paper at ICLR 2022

Weight Decay: 0.0003

0.
0250 [
0.29 /
0.225 /
20200 4078
2 2
50175 5027 |
o o /
- < ~0.26)
goase 2 |
2 2
£0125 5025 /1
£ s
= =
0.100 0.24 4//
0.075 0.23{ —— nesterov
\.__‘K o4 lars -
0.050 022
00 02 04 0% 038 4700 02 04 0% 038

Figure 11: For A = 3 x 104, validation error rate on ImageNet using the ResNet-50 setup from

Section @

Relative Learning Rate

Weight Decay: 0.0001

Relative Learning Rate

0.
0.18 —=— nesterov
029 lars
0.16
028
£o14 / 2
2 2
5 5027
£0.12 2
& &
- ~0.26
go10 g
< 2025
£o.08 \ g
024
0.06 “ -
023
0.04 .
.22
00 02 04 038 10 02275% 02 038 10

Figure 12: For A = 10~%, validation error rate on ImageNet using the ResNet-50 setup from

Section @

Relative Learning Rate

Weight Decay: 1e-05

0.4
Relative Learning Rate

o.
—— nesterov
0.14{ 029 lars
0 0.12 \ 0028
® ®
& 2
5010 5027
o o
- ~026
20.08 o
2 2
< \ 2025
£ 0.06 s
=0 >
p / 0.24
0.04
\ . 0.23
0.02 M
.22
0.0 0.2 0.6 0.8 1.0 0 0.0 0.2 0.8 1.0

Figure 13: For A
Section 4]

10~°, validation error rate on ImageNet using the ResNet-50 setup from

20

0.4 0.6
Relative Learning Rate

Under review as a conference paper at ICLR 2022

E HYPERPARAMETER TUNING

For each search space, we include all the hyperparameter points and their performance in Tensorboards
hosted on|tensorboard. dev. The exact points generated from each search are available in the
“hparams” tab. This data can be downloaded via the Tensorboard DataFrames API as CSV files or
pd.DataFrames, for example to be analyzed however any future hyperparameter studies see fit.

E.1 NESTEROV MOMENTUM TRAINING SPEED ON RESNET-50

We considered two configurations of Nesterov hyperparameters: Configuration A, where we tuned a
wide set of hyperparameters in the experiment pipeline, and Configuration B, where we reve eeed the
less impactful hyperparameters to the same values as the LARS baseline (or in the case of pywarmup.

a simpler value). We included Configuration B in order to demonstrate the minimal set of changes
to the baseline necessary to still reach the target accuracy. The hyperparameter values for these

configurations can be found in Table[5}

Configuration A | Configuration B | LARS
twarmup 638 706 706
Pwarmup 2.497 2.0 1.0
Ddecay 1.955 2.0 2.0
p 0.94 0.9 0.9
€ 4 %1076 107° 10°
Tpeak 7.05 7.05 29.0
Tfinal 6 x 1076 6 x 10~ 10~4
1—p 0.02397 0.02397 0.071
A 5.8 x 107° 5.8 x 107° 104
T 0.15 0.15 0.10
Yo 0.4138 0.4138 0.0

Table 5: Nesterov momentum Configurations A and B.

E.2 ADAM ON BERT

The search space used to tune Adam on BERT for all phases of the pipeline can be found in Table [6]

which yielded our best Adam results on BERT in Table

Hyperparameter Range Scaling
D {1,2} Discrete

n [1075,1.0] Log

1—5 [1072,0.5] Log

1— B [1072,0.5] Log

A (1073, 10] Log

Table 6: The search space used to tune Adam on BERT for all phases of the pipeline. A refers to
weight decay and p refers to the polynomial power in the learning rate schedule for both the warmup
and decay phases. Tensoboards: 32k Phase 1}, 32k Phase 2, 65k Phase 1, 65k Phase 2, Mixed Phase 2.

21

tensorboard.dev
https://www.tensorflow.org/tensorboard/dataframe_api
https://tensorboard.dev/experiment/idYK5WLHQYyC2MQeBgrOug
https://tensorboard.dev/experiment/Lo9mluKVRXqYGXqFq5nXBA
https://tensorboard.dev/experiment/Q1nAOjT2QYGPVZrNm4x1Lw
https://tensorboard.dev/experiment/g9pQf7TeRkeQq5sOs4RnHQ
https://tensorboard.dev/experiment/pp1pF4i6QKSYBENxbZMdSg

Under review as a conference paper at ICLR 2022

Batch size | Phase | Seqlen | Warmup | Train Learning b1 B2 A D
steps steps rate
32,768 1 128 3,125 14,063 | 5.9415 x 10~* | 0.934271 | 0.989295 | 0.31466 | 1
32,768 2 512 781 1,562 | 2.8464 x 10~* | 0.963567 | 0.952647 | 0.31466 | 1
65,536 1 128 2,000 7,037 | 1.3653 x 103 | 0.952378 | 0.86471 | 0.19891 | 2
32,768 2 512 781 1,562 | 2.8464 x 10~* | 0.952647 | 0.963567 | 0.19891 | 2
65,536 2 512 390 781 6.1951 x 10=> | 0.65322 | 0.82451 | 0.19891 | 2
Table 7: Best hyperparameters from tuning Adam on BERT-Large pretraining. A refers to weight
decay and p refers to the polynomial power in the learning rate schedule for both the warmup and
decay phases. All trials used € = 10711,

Weights Optimizer | Bias/BN Optimizer | Name Initial Range Final Range Best
Nesterov Nesterov 7 np.logspace(-.5, .5, 10) [0.8,3] 1.173
Nesterov Nesterov A np.logspace(-4, -3, 10) [3x107%,1077] 3.026 x 1074

LARS Heavy-ball n | np.logspace(0, 2, 10) 110, 40] 14.49
momentum

LARS Heavy-ball A | nplogspace(-5, -2, 10) | [5 x 1072,2 x 10-4] | 1.708 x 104
momentum

LARS LARS 7 [1,30] [10, 30] 14.18

LARS LARS A [107%,1071] [5x 10755 x 1074] | 5.278 x 10~°

Adam (e = 107%) | Adam (e = 107%) n [1073,1] [4x1073,2 x 1072 0.004596

Adam (e = 107%) | Adam (e = 1078) A (1072, 4] [2x 1071, 1] 0.6182

Adam (e = 107%) | Adam (e = 1079) n np.logspace(-3, 0, 10) [3x1073,1072] 3.332 x 1073

Adam (e = 107%) | Adam (e = 1079) A np.logspace(-2, 0.5, 6) [0.5, 2] 1.055

LAMB LAMB 7 np.logspace(-4, 0,30) | [4 x 1073,5 x 1072 0.01134
LAMB LAMB A np.logspace(-5, -2, 4) [1x10720.1] 0.02657
LAMB Adam (e = 1079) 7 [1073,1] [1072,8 x 1072] 0.02569
LAMB Adam (e = 1079) A (1072, 4] [1,8] 2.500
LAMB Adam (e = 1079) n np.logspace(-3, 0, 10) [1072,8 x 1072] 0.03378
LAMB Adam (e = 107%) A np.logspace(-2, 0.5, 6) 1, 8] 4.197

Table 8: Search spaces used for the 6,000 step, cosine learning rate schedule experiments. All
hyperparameters were tuned on a logarithmic scale, except for those which define a discrete sequence
of points to evaluate such as “np.logspace”. Some Tensorboards: Nesterov, Adam (¢ = 10~°) Final,
Adam (e = 10~®) Initial, Adam (¢ = 10~®) Final, LAMB/Adam (¢ = 10~°) Initial, LAMB/Adam
(e = 10~°) Final, LAMB/Adam (¢ = 10~%) Initial, LAMB/Adam (e = 10~®) Final, LAMB/LAMB
Final, LARS/LARS Initial, LARS/LARS Final, LARS/Momentum Final.

E.3 LESS STRINGENT STEP BUDGET ON RESNET-50

All trials used a cosine decay learning rate schedule and tuned the initial learning rate n and L2
regularization or weight decay parameteﬁ A according to Table 8} We used 50 or more trials to
search in the “Initial Range” and then 25 trials to search in the refined “Final Range.” Finally, we
ran the best point from the latter for 5 random seeds. When LARS or LAMB were used alongside
a different optimizer for the batch normalization and ResNet-50 bias parameters, we set A = 0 on

19" As suggested in|You et al|(2019), we used L2 regularization for LARS and weight decay for LAMB. For
consistency, we used L2 regularization for Nesterov momentum (which is more analogous to LARS) and weight
decay for Adam (which is more analogous to LAMB).

22

https://tensorboard.dev/experiment/DwZpzRNzSqORKXi5vI1q6g
https://tensorboard.dev/experiment/U98OFOQ3QCmGRu95DJodOg/
https://tensorboard.dev/experiment/XPYbvwhMR9uMIo3TLGZqwA/
https://tensorboard.dev/experiment/1ly4KBKTRzG8LgdZ2sQRKQ/
https://tensorboard.dev/experiment/8LQZZMu6Qi6kNteuNF2hDA/
https://tensorboard.dev/experiment/g3oO8nvWSBGymGj8yjPuQA
https://tensorboard.dev/experiment/g3oO8nvWSBGymGj8yjPuQA
https://tensorboard.dev/experiment/I9Q4EepnRlipnw1gSYeLBA/
https://tensorboard.dev/experiment/mrvF0sAUQR2Xg2t7fVSmqA
https://tensorboard.dev/experiment/dBVAmWNKRVORIXsbZ2jVEg/
https://tensorboard.dev/experiment/dBVAmWNKRVORIXsbZ2jVEg/
https://tensorboard.dev/experiment/08SaluNQS9aFy0uOBguGtA
https://tensorboard.dev/experiment/lHQNF1wjSW2HYLqWfdF4xg/
https://tensorboard.dev/experiment/hw5KuW5QRHOgahe9G42e3A

Under review as a conference paper at ICLR 2022

Range Scaling
70 [1073,50.0] Log
Ndecay factor | 1107%,1073,1072,107 1} | Discrete
1—p [1073,1.0] Log
A [107°,1071] Log
T [1072,2 x 1071] Linear

Table 9: First search space of the Nesterov tuning journey. The search spaces were mostly by
informed guesses by the authors. A refers to weight decay, which is applied to all variables. Tuned for
251 trials. Trained for 2,815 steps (‘72 epochs” as defined by MLPerf epoch calculations). We used
a linear learning rate decay schedule that decays for all training steps, starting from 1)y and ending at
10 X Ndecay_factor- Virtual batch size 128. Tensorboard.

Range Scaling
Mo [1073,50.0] Log
Ndecay factor | 11074,1073,1072,10~'} | Discrete
1—p [1073,1.0] Log
A [1075,107}] Log
T [1072,2 x 1071 Linear

Table 10: Same as Table E] but trained for 2,658 steps (“68 epochs” as defined by MLPerf epoch
calculations) for 50 trials. Tensorboard.

the batch normalization and ResNet-50 bias parameters. When LAMB was used all parameters, the
majority of trials diverged during training — it took 67 trials to get 25 trials that did not NaN during
training. Our trial budgets refer to the number of feasible trials, i.e. trials that do not diverge during
training.

E.4 NESTEROV RESNET50 SEARCH SPACE CHRONOLOGY

Below we list the sequence of search spaces we used to arrive at our final values in Table[5} Given
that the final results reported in papers are rarely found in a single iteration of experiments, we believe
that it is important to document the full journey to arriving at our results.

Note that although we tuned a wide range of hyperparameters to match the LARS result with Nesterov
momentum, we later realized that many of these hyperparameters could be reverted to the values
from the LARS pipeline (see Table[5). We started tuning with a training budget of 2,815 steps, which
is the number of steps in the MLPerf 0.6 submission. We sometimes would decrease this to 2,658
steps to test how decreasing the training budget would affect tuning performance, before eventually
moving to the 2,512 steps used to generate the results in the main text.

23

https://tensorboard.dev/experiment/1Ztb5TA2Q9m0h2P4Urgh2A
https://tensorboard.dev/experiment/XVXAUyxBTbaS94MX6tM61A

Under review as a conference paper at ICLR 2022

Range Scaling
0 [10~1,20.0] Log
Ndecayfactor | 1107°,107%,1073} | Discrete
Ldecay (2392, 2.658] Linear
1—pu [1072,1.0] Log
A [107°,2 x 1071] Log
T [1072,2 x 1071] Linear

Table 11:) refers to weight decay, which is now not applied to the bias and batch normalization
variables. 50 trials. Trained for 2,658 steps. Linear learning rate decay schedule that decays for ?gecay
steps, starting from 7o and ending at 19 X Ngecay_factor- Virtual batch size 128. Tensorboard.

Range Scaling
Tpeak [1071,32.0] Log
Ndecay factor | 1107°,107%,107%} | Discrete
Ldecay (2392, 2.658] Linear
1—p (104,107 Log
A [107%,1071] Log
T [5x 1072,0.15] Linear

Table 12: X refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,658 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step fgecay, and then is constant at the final learning rate 19 X Ndecay_factor- Virtual batch
size 128. We increased the max learning rate based off the larger learning rates used by LARS. We
also ran two additional studies which were the same except with 250 and 977 warmup steps.
250 warmup Tensorboard, 500 warmup Tensorboard, 977 warmup Tensorboard.

Range Scaling
Tpeak [10-1,32.0] Log
Ndecay factor | [3 X 107°,3 x 107] Log

Tdecay [2533,2.815] Linear
1—p [10-%,107Y] Log
A [107%,1071] Log

T [5x 1072,0.15] Linear

Table 13: X refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,815 steps. Linear warmup for 500 steps followed by a quadratic decay, which

decays until step fgecay, and then is constant at the final learning rate 19 X Ndecay_factor- Virtual batch
size 128. Tensorboard.

24

https://tensorboard.dev/experiment/Tj5dZKDrQXGQWZMZeGCPgA
https://tensorboard.dev/experiment/uO3CLW0DTpK3cWe1T4N7QA
https://tensorboard.dev/experiment/E832w1ugR0mdAZ6J0GwRsA
https://tensorboard.dev/experiment/263D5ojzTKK4wNXvXDJO8A
https://tensorboard.dev/experiment/Y1ZmGetWTzuxwT2zA2RvYQ

Under review as a conference paper at ICLR 2022

Range Scaling
Tpeak [10-1,32.0] Log
Ndecay factor | [3 X 107°,3 x 107%] | Log

tdecay [2533,2.815] Linear
1—p [5x1073,1071] Log
A [1072,107Y] Log

T [5x 1072,0.15] Linear

Table 14: X refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,815 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step ?gecay, and then is constant at the final learning rate 19 X Ndecay_factor- Virtual batch
size 128. Tensorboard.

Range Scaling
Tpeak (1071, 32.0] Log
Ndecay factor | [3 X 1075,3 x 1074] Log

Tdecay [2533,2.815] Linear
1—p [5x1073,1071) Log
A [1072,107Y] Log

T [5x 1072,0.15] Linear

Table 15: The same as Table [14|except with virtual batch size 64. Tensorboard.

Range Scaling
Tlpeak {10%,2x10%,..,9 < 107} Discrete
Vo € {-3,...2}} + {100, }

"decay_factor 8.144 x 107° _
Ldecay 2250 _
1—p 0.02397 _

A 0.009992 _
T 0.07786 _

Table 16: X refers to weight decay, which is not applied to the bias and batch normalization variables.
Trained for 2,815 steps. Virtual batch size 64. Using the best hyperparameters from Table [I5] we
swept over the peak learning rate in a discrete set of ten values per order of magnitude, each for
three random seeds, to find the max stable learning rate. Tensorboard.

25

https://tensorboard.dev/experiment/5ldMzlqVTdGlLlF1oBogTw
https://tensorboard.dev/experiment/6PnpS5rPTqetws25mAKU5w
https://tensorboard.dev/experiment/jB4Q7RK8RSmOyIAK2bIPUg

Under review as a conference paper at ICLR 2022

Range Scaling
Tlpeak 4.118 _
T)decay factor 8.144 x 1075 —
Ldecay 2250 _
L—p 0.02397 _

A {{0.5x10%,10%, ...} Discrete

Vo€ {=3,..0}} +{1.0,}

T 0.07786 _

Table 17: X refers to weight decay, which is not applied to the bias and batch normalization variables.
Trained for 2,815 steps. Virtual batch size 64. Using the best hyperparameters from Table we
swept over the weight decay in a discrete set of twenty values per order of magnitude, to test how
high the regularization has to be in this region of hyperparameter space. Tensorboard.

Range Scaling
Tpeak 4.118 —
Tdecay.factor 8.144 x 10~° -
Tdecay 2250 -
1—u 0.02397 -
A 0.009992 -
T 0.07786 -

P {0.0,0.1,0.3,0.5,0.6,0.7, Discrete

0.8,0.9,0.95,0.995,0.999}
€ {1077,107%,1072, 107, Discrete
1073,1072,1071}

Table 18: X refers to weight decay, which is not applied to the bias and batch normalization variables.
Trained for 2,815 steps. Virtual batch size 64. Using the best hyperparameters from Table [I5] we
swept over batch normalization hyperparameters. Tensorboard.

Range Scaling
Tpeak [2.0,8.0] Log

Ndecay factor | |4 X 107°,1.6 x 107*] | Linear

Laecay [2100, 2400) Linear
1—puw [0.012,0.04] Log
A [7x1073,7 x 1072 Log

T [0.04,0.1] Linear

P [0.45,0.55] Linear

€ [5x107% 5 x 107°] | Linear

Table 19: X refers to weight decay, which is not applied to the bias and batch normalization variables.
50 trials. Trained for 2,815 steps. Linear warmup for 500 steps followed by a quadratic decay, which
decays until step ?gecay, and then is constant at the final learning rate 19 X Ndecay_factor- Virtual batch
size 64. Peak learning rate range was consolidated based off the results of Table [T6] The weight
decay range was consolidated based off the results of Table Tensorboard.

26

https://tensorboard.dev/experiment/J1DTLSgIQ5OBvK84ju7NWQ
https://tensorboard.dev/experiment/p6L7RgXfQx2r6OoRxXP3KA
https://tensorboard.dev/experiment/jVBdpSL6TX6Wd2N1BDcrwQ

Under review as a conference paper at ICLR 2022

Range Scaling
Lwarmup [300, 800] Linear
Pwarmup [0.7,2.0] Linear
Pdecay 1.8 _
"o [0.1,1.0] Log
Tpeak [5.0,9.0] Log
Nnal | [1075,5x 107°] | Log
1—p 0.02397 —
A 5x107° -
T 0.15 -
Yo [0.0,0.6] Linear
P 0.94 -
€ 4 %106 -

Table 20: Here we switched A to refer to L2 regularization. We also began training for 2,512 steps,
which is the final “64 epochs” used in the Nesterov results reported in the main text. Because of this
more stringent step budget, we focused on the learning rate schedule. tgecay Was set to all remaining
steps after the warmup was finished. Tuned for 229 trials. Virtual batch size 64. Tensorboard.

Range Scaling
bwarmup 638 -
Dwarmup [1.5,3.0] Linear

Pdecay [1.5,2.5] Linear
"o 0.12 -
Npeak 7.05 -
Nfinal [1076,5 x 1074 Log
1—p 0.02397 -
A [5x107°1x 1073 | Log
T 0.15 -
Y0 [0.4,1.0] Linear
p 0.94 -
€ 4x1076 -

Table 21: Here we began focusing more on the shape of the learning rate schedule, as well as retuning
the L2 regularization. A refers to L2. Several values were picked from the best trial of Table
Trained for 2,512 steps steps. Tuned for 15 trials. Virtual batch size 64. Tensorboard.

27

https://tensorboard.dev/experiment/mpYo1GNNSdGBzoKAUmQsrw
https://tensorboard.dev/experiment/JKzoa3ZzQzuKLCdcVDoVkQ

Under review as a conference paper at ICLR 2022

Range Scaling
bwarmup 638 -
Pwarmup [1.5,3.0] Linear

Ddecay [1.5,2.5] Linear
"o 0.12 -
Npeak 7.05 -
Nfinal [1079,5 x 107%] Log
1—p 0.02397 -
A [1x107°,1x107%] | Log
T 0.15 -
Y0 [0.4,1.0] Linear
P 0.94 -
€ 4x10°° -

Table 22: Here we focus in more on tuning the L2 regularization. A refers to L2. Trained for 2,512
steps steps. Tuned for 37 trials. Virtual batch size 64. Tensorboard.

Range Scaling

Lwarmup 638 -
Dwarmup [1.5,3.0] Linear
Pdecay [1.5,2.5] Linear

1o 0.12 -

Npeak 7.05 -

T)final [1076,5 x 1074 Log

1—u 0.02397 _
A [5x 1075,6 x 1075] | Linear

T 0.15 -
Yo [0.4,1.0] Linear

p 0.94 -

€ 4 %1076 -

Table 23: Again we dial in more on a tighter tuning range for the L2 regularization. A refers to L2.
Trained for 2,512 steps steps. Tuned for 37 trials. Virtual batch size 64. Tensorboard.

28

https://tensorboard.dev/experiment/Sj7TY4oeQFe77Jl8n80YjA
https://tensorboard.dev/experiment/xIEODzXGRriMh3iKoc5dOQ

