Under review as a conference paper at ICLR 2022

A EXAMPLE OF A SELF-ATTENTION MECHANISM FOR SUPERVISED
LEARNING

Self-attention in its rudimentary form can implement a cosine-similarity-based sample weighting,
which can also be viewed as a simple 1-step MAML-like learning algorithm. This can be seen by
considering a simple classification model

f(@;0) = s(W - e(x;0) + b)

with 6 = (W, b, ¢), where e(z;¢) is the embedding and s(-) is a softmax function. MAML
algorithm identifies such initial weights 6 that given any task 7 just a few gradient descent steps
with respect to the loss L starting at 6 bring the model towards a task-specific local optimum of
Lr.

Notice that if any label assignment in the training tasks is equally likely, it is natural for f(z;6)
to not prefer any particular label over the others. Guided by this, let us choose Wy and by that are
label-independent. Substituting 6 = 6y + 6 into f(x;6), we obtain

fe(x;0) = fo(x;00) + 85(-) (OWe - (x5 ¢0) + 5be + Wo o - € (25 60)3¢) + O(56%),

where £ is the label index and 660 = (6W,db,0¢). We see that the lowest-order label-dependent
correction to fy(x; 6p) is given simply by s;(-) (6 W, - e(x; ¢¢) + 0by). In other words, in the lowest-
order, the model only adjusts the final logits layer to adapt the pretrained embedding e(z; ¢g) to a
new task. It is easy to calculate then that for a simple softmax cross-entropy loss, a single step of
the gradient descent results in the following logits weight and bias updates:

-7 - (m G0N 7 -

Here 7 is the learning rate, n is the total number of support-set samples, \C’ | is the number of classes
and y(") is the one-hot label corresponding to (™).

Now consider a self-attention module generating the last logits layer and acting on a sequence
of processed input samplesE] Tt = {(&(ci), hg,(€i))}iz,...n and weight placeholders WE :=
{(u(k), 0)}r=1,..c|» where |C]| is the number of classes and also the number of weight slices of
W if each slice corresponds to an output layer channel. The output of a simple self-attention module
for the weight slice with index ¢ is then given by:

-1 Z e)-Ki(m)‘/[(IL) + 7= 1 Z eQ(WL) KW(WL)Vw(WL) (3)
m=1
where Z := Y7 _ €@V Ei(Zy) 4 5™ Nw QW) Kw Vi) s easy to see that with a proper

choice of query and key matrices attendlng only to prepended f and p tokens, the second term in
equation can be made negligible, while Q(WZ) - K;(Z%) can make the softmax function only
attend to those components of V7 that correspond to samples with label 4. Choosing V;(Z%) to be
proportional to e,,, we can then recover the first term in W in equation [2| The second term in
dW can be produced, for example, with the help of a second head that generates identical attention

weights for all samples, thus summing up their embeddings.

B MODEL PARAMETERS
Here we provide additional detail of the model parameters used in our experiments.

Feature extractor parameters. For OMNIGLOT dataset, we used the same image augmentations
that were originally proposed in MAML. For MINIIMAGENET and TIEREDIMAGENET datasets,
however, we used ImageNet-style image augmentations including horizontal image flipping, random
color augmentations and random image cropping. This helped us to avoid model overfitting on the
MINIIMAGENET dataset and possibly on TIEREDIMAGENET.

>here we use only local features he, (e:) of the sample embedding vectors e;

13

Under review as a conference paper at ICLR 2022

The dimensionality d of the label encoding £ and weight slice encoding p was typically set to 32.
Increasing d up to the maximum number of weight slices plus the number of per-episode labels,
would allow the model to fully disentangle examples for different labels and different weight slices,
but can also make the model train slower.

Transformer parameters. Since the weight tensors of each layer are generally different, our per-
layer transformers were also different. The key, query and value dimensions of the transformer were
chosen to be equal to a pre-defined fraction v of the input embedding size, which in turn was a
function of the label embedding and feature dimensionality as well as the size of the weight slices.
The inner dimension of the final fully-connected layer in the transformer was also chosen using the
same approach. In our MINIIMAGENET and TIEREDIMAGENET experiments, v was chosen to be
0.5 and in OMNIGLOT experiments, we used v = 1. Each transformer typically contained 2 or 3
Encoder layers and used 2 or 8 heads for OMNIGLOT and MINIIMAGENET, TIEREDIMAGENET,
correspondingly.

Learning schedule. In all our experiments, we used gradient descent optimizer with a learning
rate in the 0.01 to 0.02 range. Our early experiments with more advanced optimizers were unstable.
We used a learning rate decay schedule, in which we reduced the learning rate by a factor of 0.95
every 10° learning steps.

C ADDITIONAL SUPERVISED EXPERIMENTS

While the advantage of decoupling parameters of the weight generator and the generated CNN
model is expected to vanish with the growing CNN model size, we compared our approach to two
other methods, LGM-Net (Li et al.,|2019b) and LEO (Rusu et al., 2019), to verify that our approach
can match their performance on sufficiently large models.

For our comparison with the LGM-Net method, we used the same image augmentation technique
that was used in|Li et al|(2019b)) where it was applied both at the training and the evaluation stages
(Ma,2019)). We also used the same CNN architecture with 4 learned 64-channel convolutional layers
followed by two generated convolutional layers and the final logits layer. In our weight generator,
we used 2-layer transformers with local feature extractors that relied on 48-channel convolutional
layers and did not use any global features. We trained our model in the end-to-end fashion on the
MINIIMAGENET 1-shot-5-way task and obtained a test accuracy of 69.3% = 0.3% almost identical
to the 69.1% accuracy reported in|Li et al. (2019b).

We also carried out a comparison with LEO by using our method to generate a fully-connected
layer on top of the TIEREDIMAGENET embeddings pre-computed with a WideResNet-28 model
employed by Rusu et al.| (2019). For our experiments, we used a simpler 1-layer transformer model
with 2 heads that did not have the final fully-connected layer and nonlinearity. We also used Lo
regularization of the generated fully-connected weights setting the regularization weight to 1073,
As a result of training this model, we obtained 66.2% + 0.2% and 81.6% + 0.2% test accuracies
on the 1-shot-5-way and 5-shot-5-way TIEREDIMAGENET tasks correspondingly. These results are
almost identical to 66.3% and 81.4% accuracies reported in Rusu et al.|(2019).

D DEPENDENCE ON PARAMETERS AND ABLATION STUDIES

Most of our parameter explorations were conducted for OMNIGLOT dataset. We chose a 16-channel
model trained on a 1-shot-20-way OMNIGLOT task as an example of a model, for which just the
logits layer generation was sufficient. We also chose a 4-channel model trained on a 5-shot-20-way
OMNIGLOT task for the role of a model, for which generation of all convolutional layers proved to
be beneficial. Figures [5] and [6] show comparison of training and test accuracies on OMNIGLOT for
different parameter values for these two models. Here we only used two independent runs for each
parameter value, which did not allow us to sufficiently reduce the statistical error. Despite of this,
in the following, we try to highlight a few notable parameter dependencies. Note here that in some
experiments with particularly large feature or model sizes, training progressed beyond the target
number of steps and there could also be overfitting for very large models.

14

Under review as a conference paper at ICLR 2022

e e e e e
‘ Encoder Layers Encoder Layers ‘~—{ Decoder Layers ‘
] N T e

Figure 4: Two transformer-based approaches to weight generation studied in our experiments: only
encoder layers (left), encoder and decoder layers on the same input sequence (right).

Number of transformer layers. Increasing the number of transformer layers is seen to be par-
ticularly important in the 4-channel model. The 16-channel model also demonstrates the benefit of
using 1 vs 2 transformer layers, but the performance appears to degrade when we use 3 transformer
layers.

Local feature dimension. Particularly low local feature dimension can be seen to hurt the perfor-
mance in both models, while using higher local feature dimension appears to be advantageous cases
except for the 32-dimensional local feature in the 4-channel model.

Embedding dimension. Particularly low embedding dimension of 16 can be seen to hurt the per-
formance of both models.

Number of transformer heads. Increasing the number of transformer heads leads to performance
degradation in the 16-channel model, but does not have a pronounced effect in the 4-channel model.

Shared feature dimensions. Removing the shared feature, or using an 8-dimensional feature can
be seen to hurt the performance in both cases of the 4- and 16-channel models.

Transformer architecture. While the majority of our experiments were conducted with a se-
quence of transformer encoder layers, we also experimented with an alternative weight generation
approach, where both encoder and decoder transformer layers were employed (see Fig.). Our
experiments with both architectures suggest that the role of the decoder is pronounced, but very
different in two models: in the 16-channel model, the presence of the decoder increases the model
performance, while in the 4-channel model, it leads to accuracy degradation.

Inner transformer embedding sizes. Varying the v parameter for different components of the
transformer model (key/query pair, value and inner fully-connect layer size), we quantify their im-
portance on the model performance. Using very low v for the value dimension hurts performance
of both models. The effect of key/query and inner dimensions can be distinctly seen only in the
4-channel model, where using v = 1 or v = 1.5 appears to produce the best results.

Weight allocation approach. Our experiments with the “spatial” weight allocation in 4- and 16-
channel models showed slightly inferior performance (both accuracies dropping by about 0.2% to
0.4% in both experiments) compared to that obtained with the “output” weight allocation method.

E ATTENTION MAPS OF LEARNED TRANSFORMER MODELS

We visualized the attention maps of several transformer-based models that we used for CNN layer
generation. Figure[7]shows attention maps for a 2-layer 4-channel CNN network generated using a 1-
head 1-layer transformer on MINIIMAGENET(labeled samples are sorted in the order of their episode
labels). Attention map for the final logits layer (“CNN Layer 3”) is seen to exhibit a “stairways”
pattern indicating that a weight slice W, . for episode label c is generated by attending to all samples
except for those with label c¢. This is reminiscent of the supervised learning mechanism outlined
in Sec.[3.2] While the proposed mechanism would attend to all samples with label ¢ and average
their embeddings, another alternative is to average embeddings of samples with other labels and
then invert the result. We hypothesize that the trained transformer performs a similar calculation
with additional learned Transforer parameters, which may be seen to result in mild fluctuations of
the attention to different input samples.

15

Under review as a conference paper at ICLR 2022

3 § 324 64+
—+ 2 S
@ (72}
E]
0 S E e
EYE 2 16 S 32
© =1 [=2]
- T £ T
g g
3 P | —=m
11 S 8- & 161
T T T T T T
0.0 0.5 -1 -0.5 0.0 0.5
Accuracy delta Accuracy delta Accuracy delta
8- & 321
2 T 4
5 yes
P 4 'E 16 g
5 s
s 3 8 a _
®
g no-|
14 & none -+
T T T u T
-1 0 -0.5 0.0 0.5 0.0 0.5
Accuracy delta Accuracy delta Accuracy delta
o 157 o 15 & 154
S S 2
(%] (72} Q
5 —_— | 3 2 S —
21.04 21.04 5 1.0
S T £ z +£
3 —
3> —_— [> _—
S 0.5 A €05 %o.s— .
s 8 =
2 2 é
0.2 0.2 ~ 0.24
T T u T T T T T T
-1.0 -0.5 0.0 0.0 0.5 -0.50 -0.25 0.00 0.25
Accuracy delta Accuracy delta Accuracy delta

Figure 5: Change of the training (blue) and test (orange) accuracies on 1-shot-20-way OM-
NIGLOT task for a 16-channel model relative to the base configuration with 3-layer transformer,
16-dimensional local features, v = 1.0, d = 32, 2 heads and 32-dimensional shared features. Ap-
proximate confidence intervals are shown.

16

Under review as a conference paper at ICLR 2022

3 § 324 64+
(72} o ——
2 S
@ (72}
E]
0 S E —_—
EYE 2 16 S 32
S 2 2 J
] o
(3
14 S 8 5 164
T T T T T T T T
-4 -2 0 -2 0 -2 -1
Accuracy delta Accuracy delta Accuracy delta
8- & 321
g B
5 yes
P 4 'g 16 g
5 s
s 3 8 a —_
®
g no-|
1 & none —
T T T T T T T
-1 0 1 -2 0 -3 -2 -1
Accuracy delta Accuracy delta Accuracy delta
c
o 1.5 o 151 §1.51
S S 2
(%] (72} Q
]] £
21.04 21.04 5 1.0
° ° >
3 5] El
T 0.5 €05 2054
5 s 2
> 2 §
0.2 0.2 =~ 0.2
T T T T T T T T
-2 -1 0 1 -4 -2 0 -2
Accuracy delta Accuracy delta Accuracy delta

Figure 6: Change of the training (blue) and test (orange) accuracies on 5-shot-20-way OM-
NIGLOT task for a 4-channel model relative to the base configuration with 3-layer transformer,
16-dimensional local features, v = 1.0, d = 32, 2 heads and 32-dimensional shared features.
Approximate confidence intervals are shown.

17

Under review as a conference paper at ICLR 2022

CNN Layer 3
00 CNN Layer 1 0.10 00 CNN Layer 2 010 00 Y 0.050
25 I:o 05 L5 |:vo5 25 Fo.oas
] N 2 > © O SN2 > e O N a9 O X
RS & N N & & o o & & & & & > > N N
P S P S F & & £ £ P
RV AN RN N RN RN RN RN RN RN NN N

Figure 7: Learned attention weights for 2-layer 4-channel CNN network generated with 1 head, 1
layer transformer for 5-shot MINIIMAGENET.

Transformer Layer 1 Transformer Layer 2

0.200

4
e,
%

0.175

%
)
70

0.150

6,
S
-,

s/f

0.125

AR
<

"G, 76,
)
Yz

0.100

0.075

Figure 8: Learned attention weights for 4-layer 8-channel CNN network generated with 1-head, 2-
layer transformer for 5-shot TIEREDIMAGENET with additional unsupervised samples (2 per class).
Only the last layer of CNN is generated.

The attention maps for a semi-supervised learning problem with a 2-layer transformer is shown in
Figure 8] One thing to notice is that a mechanism similar to the one described above appears to
be used in the first transformer layer, where weight slices W, . attend to all labeled samples with
labels ¢; # c. At the same time, unlabeled samples can be seen to attend to labeled samples in layer
1 (see “Unlabeled” rows and “Label ...” columns) and the weight slices in layer 2 then attend to
the updated unlabeled sample tokens (see “Weights” rows and “Unlabeled” columns in the second
layer). This additional pathway connecting labeled samples to unlabeled samples and finally to
the logits layer weights is again reminiscent of the simplistic semi-supervised learning mechanism
outlined in Sec.

The exact details of these calculations and the generation of intermediate convolutional layers is
generally much more difficult to interpret just from the attention maps and a much more careful
analysis of the trained model is necessary to draw the final conclusions.

F VISUALIZATION OF THE GENERATED CNN WEIGHTS.

Fig.[9land[T0]show the example of the CNN kernels that are generated by 1-head, 1-layer transformer
for a simple 2-layer CNN model with 9x9 kernel with stride 4. The difference in figures consists in
the way we re-assemble the weights after generation: using output allocation or spatial allocation
(see Section [3.1]in the main text for more information). Notice that spatial weights produce more
homogeneous kernels for the first layer comparing to the output. For both figures we show difference
in final kernels for 3 variants: model with both layers generated, one generated and one trained and
both trained.

Trained layers are always fixed for the inference for all the episodes, but the generated layers vary,
albeit not significantly. In Fig[TT|and [I2] we show the generated kernels for two different episodes
and, on the right, the difference between them. It looks like the values of the kernel change withing
10-15% form episode to episode.

18

Under review as a conference paper at ICLR 2022

Generated/Generated Trained/Generated Trained/Trained

2 2 0.4
1 1 0.2
-1 -1 _0.2
_2)
0.4

4

1
2
0 0
-2

-1
-4

Figure 9: Visualizing convolutional kernels for two layer network with CNN kernel size 9x9 and
stride 4 trained on MINIIMAGENET. Each column shows 1 model with two layers and MLP head
that is always generated by the transformer. Left: both CNN layers are generated, center: first CNN
layer is trained, second is generated, right: both CNN layers are trained. Layer weight allocation:

‘output*

CNN Layer 1

CNN Layer 0

Generated/Generated Trained/Generated Trained/Trained

0.4
2 2
0.2
2 2 -0.2
0.4
1
10
0

Figure 10: Visualizing convolutional kernels for two layer network with CNN kernel size 9x9 and
stride 4 trained on MINIIMAGENET. Each column shows 1 model with two layers and MLP head
that is always generated by the transformer. Left: both CNN layers are generated, center: first CNN
layer is trained, second is generated, right: both CNN layers are trained. Layer weight allocation:

‘spatial*

CNN Layer 1

o

CNN Layer 0

G ADDITIONAL TABLES AND FIGURES

19

Under review as a conference paper at ICLR 2022

Episode 0 Episode 1 Difference

2

0.2
1
0 0.0
-1

-0.2
-2

1.0

m : 4 4

2 2 05
0 0 0.0
-2 -2 -0.5
- -4 -1.0

Figure 11: Visualizing generated convolutional kernels in a two layer model for two different
episodes. Left two plots: kernels for two random episodes of 5 classes, right: the difference in
generated kernels for two episodes. Layer weight allocation: ‘output®.

N

Layer 1

Layer 0

Episode 0 Episode 1 Difference

4 -
2 0.5
0 0.0
2 -2
L -0.5
-4
05
10 10
o 0.0
-10 -10 -05

Figure 12: Visualizing generated convolutional kernels in a two layer model for two different
episodes. Left two plots: kernels for two random episodes of 5 classes, right: the difference in
generated kernels for two episodes. Layer weight allocation: ‘spatial.

N

o

Layer 1

Layer 0

20

Under review as a conference paper at ICLR 2022

Table 4: Average model test and training accuracies (separated by a slash) for the models of dif-
ferent sizes. “Logits” row shows accuracies for the model with only the fully-connected logits layer
generated from the support set. It can be interpreted as a method based on a learned embedding.
“All” row reports accuracies of the models with some or all convolutional layers being generated.
We were not able to see a statistically significant evidence of an advantage of generating more than
one convolutional layers.

| 4-channel | 6-channel | 8-channel

Logits | 77.9/79.2 | 90.0/91.4 | 94.4/95.8
All 82.0/83.4 | 90.7/92.0 | 94.6/96.0
58
564
g 54
@
50
—all
—— logits and conv
48 — logits
6 2 4 6 8 10

Training steps (million)

Figure 13: Test accuracies for the generated 4-channel and 6-channel CNN models on the 5-
shot-5-way TIEREDIMAGENET task. Models with only the last logits layer generated (red) are
characterized by the lower test accuracies compared to the models with some or all convolutional

layers also being generated (blue and green).

21

