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A APPENDIX

In this section, we describe the followings:

• Detailed Discussion on Ray Guidance.
• Details of baseline implementation
• Details of model implementation.
• Additional Results.

A.1 DETAILED DISCUSSION ON RAY GUIDANCE

Most conventional methods in Multi-view Stereo (MVS) utilize cameras to establish geometrical
relationships across the input views. However, the relationship becomes unreliable when given poses
are noisy. We argue that it is important for the image features to have an awareness of camera poses
to mitigate the influence of unreliable relationships during the 3D reconstruction. To this end, we
combine predicted Plücker rays with image features to construct the cost volume, leveraging the
advantages of using a generic camera representation. The intuition behind our design choice is to
inject awareness of camera pose in multi-view space to each image feature.

Specifically, we project features from different viewpoints to compute correlation among input im-
ages by converting rays into camera poses and performing homography warping. While this allows
some pose error, which leads to misalignment in feature space, we rectify the cost volumes by pose-
aware cost aggregation process described in Section 4.2 of the main paper. As shown in Figure 9,
eliminating pose embedding leads to large discrepancies in geometry estimation, leading to blurry
images or introducing artifacts. This highlights the importance of pose embedding in our fusion
process.

w/ pose emb.

wo/ pose emb.

View 1 View 2 View 3Depth 1 Depth 1 Depth 3

w/ pose emb.

wo/ pose emb.

1.17

5.01

Figure 9: Additional Qualitative Ablation Results on Pose Embedding. Estimating geometry
without pose embedding results in significant failures, producing blurry artifacts and misaligned
structures in the 3D reconstruction. With pose embeddings, SHARE demonstrates the importance of
geometric bias, achieving more accurate and sharper reconstructions. This highlights the effective-
ness of pose-aware fusion in handling pose errors during the multi-view reconstruction process.

A.2 DETAILS OF BASELINE IMPLEMENTATION

For the small-scale DTU dataset (Jensen et al., 2014), we compared and validated our method against
the pose-free baseline LEAP (Jiang et al., 2023). The LEAP model was trained on the DTU 3-
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Table 4: Comparison on baselines with different pose prediction methods on DTU dataset.

Method Pose Rot. # Trans. # PSNR " SSIM " LPIPS #

PixelSplat

GT – – 20.96 0.65 0.31
COLMAP 7.10 31.62 13.49 0.34 0.66
MASt3R 2.40 3.52 15.69 0.40 0.50
DUSt3R 1.77 13.66 15.98 0.42 0.47

Ours 2.74 6.28 13.29 0.31 0.66

MVSplat

GT – – 21.00 0.69 0.24
COLMAP 7.10 31.62 14.69 0.44 0.46
MASt3R 2.40 3.52 13.31 0.31 0.58
DUSt3R 1.77 13.66 13.22 0.32 0.58

Ours 2.74 6.28 14.08 0.33 0.51

Ours – 2.74 6.28 19.94 0.63 0.28

10.47

13.34

Input Views MVSplat*Target Views MVSplat**MVSplat

Figure 10: Rendering of MVSplat Trained with Pre-
dicted and Noisy Poses. The row labeled MVSplat
shows the results of training with ground-truth poses,
while MVSplat* and MVSplat** refer to the MVSplat
model trained with predicted poses from DUSt3R and
noisy poses with minor errors, respectively.

Table 5: Quantitative results of
pose estimation performance. We
evaluate the pose estimation perfor-
mance on DTU dataset with small
baselines, given three input views.
The lowest error is marked as bold.

Method Rot. # Trans. #
DUSt3R 1.77 13.66
MASt3R 2.40 3.52
COLMAP 7.10 31.62
Relpose++ 19.56 44.18
RayRegression 3.10 6.57

Ours 2.74 6.28

view dataset for 140K iterations. Since our evaluation on DTU uses three input views, we also
trained pose-dependent state-of-the-art generalizable 3D reconstruction methods, including Pixel-
Splat (Charatan et al., 2024) and MVSplat (Chen et al., 2024b), with a batch size of 1 for 140K
iterations.

For the large-scale RealEstate10K dataset (Zhou et al., 2018), we compared our method against
pose-free baselines CoPoNeRF (Hong et al., 2024) and FlowCam (Smith et al., 2023). Since Co-
PoNeRF and FlowCam use the same train-test split as our method, we directly compared our results
with the reported values. Additionally, PixelSplat and MVSplat were evaluated using their pretrained
checkpoints on the same 2-view train-test split settings.

We evaluated pose-dependent baselines under two conditions: using predicted poses and poses per-
turbed by random noise. For predicted poses, we used one of the state-of-the-art pose estimator,
DUSt3R (Wang et al., 2024), to estimate poses from the input images. To ensure fair comparisons,
we also evaluated the baselines with various pose estimators, including COLMAP (Schonberger &
Frahm, 2016), DUSt3R (Wang et al., 2024), MASt3R (Leroy et al., 2024) and SHARE. For DUSt3R
and MASt3R, we utilized pre-trained model weights provided in their official GitHub repositories.
As shown in Table 4, our method consistently outperformed these combinations. Furthermore, the
results for noisy poses (Table 1 and Table 2) highlight that even minor errors—currently unavoidable
by state-of-the-art pose estimators—can introduce significant instability in reconstruction quality.

We trained the baseline models using ground-truth (GT) poses, as training with noisy poses lacking
specific noise patterns often resulted in instability, divergence, or failure to converge. Figure 10
illustrates a comparison of MVSplat models trained on DTU with GT poses versus those trained
with predicted poses from DUSt3R (Wang et al., 2024) and slightly perturbed poses (� = 0.01,
rotation error 0.95°, translation error 1.05°). These findings demonstrate that even small amounts of
noise during training can destabilize models by introducing subtle misalignments between views,
leading to a decline in reconstruction quality.
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A.3 DETAILS OF MODEL IMPLEMENTATION

In this section, we’ll discuss our framework in more detail. Given sparse-view unposed images, our
goal is to build comprehensive Gaussians in a canonical space. The output of the multi-view feature
extractor is V ⇥ C ⇥H ⇥W , where we set C as 128 in all experiments. Given these features, we
estimate the relative Plücker rays V ⇥ 6⇥H ⇥W with two additional transformer blocks following
the U-Net structure of (Zhang et al., 2024). Then, we embed ray with a lightweight MLP to latent
space and modulate multi-view features using AdaLN (Peebles & Xie, 2023), following LaRa (Chen
et al., 2024a). In the ray-guided multi-view fusion process, we first build the cost volumes from all
input views, where the depth candidates D are all set to 128. We warp all the features to the reference
views with the estimated pose (converted from Plücker rays). Then, we build the geometry volume
Vg as in 3. The geometry volume is used to estimate the anchor points 3⇥ H

4 ⇥ W

4 . Simultaneously,
we build the feature volume Vf in a similar manner, but with the upscaled multi-view features, to
estimate the offset vectors and Gaussian parameters necessary for finer detail reconstruction.

We divide channels of Vf for displacement prediction of anchor points (32), and the remaining
channels (96) encode texture-related Gaussian parameters. The geometry channels of Vf are passed
through the offset prediction MLP head fo, which predicts the offset vectors �pk = fo(Vf ), for the
Gaussian positions. We set K = 3 for all experiments. These offset vectors are then concatenated
with the remaining channels of Vf Another MLP head, fp, processes the concatenated features to
estimate the remaining Gaussian parameters.

A.4 ADDITIONAL RESULTS

Results of pose estimation We evaluated our pose estimation performance in terms of rotation er-
ror (degrees) and translation error (degrees), as detailed in the main paper. Comparisons were made
against state-of-the-art pose estimators, including DUSt3R (Wang et al., 2024), MASt3R (Leroy
et al., 2024), and RayRegression from Cameras-as-Rays (Zhang et al., 2024). Additionally, we com-
pared our method with COLMAP (Schonberger & Frahm, 2016) for primitive pose estimation and
RelPose++ (Lin et al., 2024) as a direct 6D pose estimator. The evaluation used three small-baseline
views from the DTU (Jensen et al., 2014) dataset as input images.

While our primary objective is high-quality novel view synthesis rather than pose estimation,
our method achieves pose estimation performance comparable to state-of-the-art methods, further
demonstrating its robustness and versatility.

Cross-dataset generalization Table 6 and Figure 11 present the cross-dataset generalization re-
sults, comparing our proposed method, SHARE, with baseline approaches. Models trained on the
RealEstate10K (Zhou et al., 2018) dataset were evaluated on the ACID (Liu et al., 2021) dataset,
while those trained on the DTU (Jensen et al., 2014) dataset were tested on BlendedMVS (Yao
et al., 2020). The ACID dataset comprises natural large-scaled scenes captured using aerial drones,
divided into 11,075 scenes for training and 1,972 scenes for testing, with accompanying camera ex-
trinsic and intrinsic parameters. The BlendedMVS dataset consists of 3D models of diverse scenes,
including outdoor and indoor environments. In our experiments, we utilize a subset of BlendedMVS
as a cross-dataset evaluation benchmark to assess the generalization ability of our method.

Notably, under the challenging conditions of pose error � = 0.01, which remains difficult even
for state-of-the-art pose estimators, SHARE consistently outperforms all baseline methods across
all metrics. These findings underscore the robustness of SHARE, particularly in realistic scenarios
where pose estimation inaccuracies are inevitable.

Comparision with the Concurrent Work. We compare SHARE with our concurrent work,
Splatt3R (Smart et al., 2024) which utilizes pretrained MASt3R (Leroy et al., 2024) weights for ge-
ometry estimation. Since Splatt3R requires ground-truth dense depths map during training, it is not
directly applicable to our used datasets (RealEstate10K (Zhou et al., 2018) doesn’t contain gt depths,
and DTU (Jensen et al., 2014) contains masked depths, which we found that it is not directly applica-
ble without method modifications because of Splatt3R’s pixel-aligned dense prediction mechanism).
Instead, we directly compare with the pretrained Splatt3R model trained on ScanNet++ (Yeshwanth
et al., 2023). We note that Splatt3R employs a ”masking loss” (refer to Section 3.4 in their paper) to
render only valid pixels for the target view based on input images. To avoid this issue, we measure
PSNR and other metrics only for the valid pixels produced by Splatt3R (pixels with > 0 values).
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Table 6: Quantitative comparison of cross-dataset generalization. The best-performing values across all
metrics are highlighted in bold.

Method Pose
RealEstate10K ! ACID DTU ! BlendedMVS

PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

pixelSplat
GT 26.84 0.81 0.18 11.64 0.20 0.67

� = 0.01 21.73 0.57 0.28 11.65 0.20 0.68

MVSplat
GT 28.18 0.84 0.15 12.04 0.19 0.56

� = 0.01 21.65 0.57 0.27 11.92 0.20 0.59

Ours - 23.47 0.69 0.26 12.19 0.26 0.61

Table 7: Quantitative Comparison with Concurrent Work. We compare our method with the concurrent
work Splatt3R on the DTU and RealEstate10K datasets, using two input views for both datasets. Splatt3R
results are obtained using pretrained weights trained on the ScanNet++ dataset, while our method is trained on
each respective dataset. The best results are highlighted in bold.

DTU (2-views) RealEstate10K

Method PSNR " SSIM " LPIPS # PSNR " SSIM " LPIPS #
Splatt3R 11.78 0.28 0.57 15.80 0.53 0.30

Ours 17.50 0.34 0.48 21.23 0.71 0.26

Including entire regions would lead to significant drops in PSNR and thus would not reflect the
method’s intended performance.

In Table 7 and Figure 12, we present comparisons both on the DTU and RealEstate10K datasets,
where SHARE outperforms Splatt3R. To ensure fairness, as comparing Splatt3R trained on Scan-
Net++ with SHARE trained on each dataset may introduce biases, we conducted additional eval-
uations in a cross-dataset setting. Specifically, we compared Splatt3R trained on ScanNet++ and
SHARE trained on RealEstate10K in the ACID (Liu et al., 2021) dataset. As illustrated in Table 8
and Figure 13, SHARE demonstrates superior rendering quality compared to Splatt3R. We measure
metrics only for the valid pixels produced by Splatt3R (pixels with > 0 values). Including entire
regions would lead to significant drops in PSNR and thus would not reflect the method’s intended
performance. Splatt3R exhibits scale ambiguity in its predicted scenes, which can lead to a substan-
tial drop in performance when applied to datasets with unseen scale distributions.

Discussion on large baseline inputs We visualized large-baseline camera scenarios (Figure 14).
We compare our method with PixelSplat (Charatan et al., 2024) and MVSplat (Chen et al., 2024b)
using both our predicted poses and perturbed poses with Gaussian noise, which exhibit similar or
lower pose errors compared to predicted poses.

Discussion on Efficiency. We evaluated and compared the inference time (in seconds) and GPU
memory usage (in MB) of our method against baseline approaches on the RealEstate10K dataset,
as detailed in Table 9. Inference time is measured as the end-to-end duration required for novel
view synthesis using two unposed input images, while GPU memory usage includes both static
and dynamic memory allocations during inference. Our method achieves superior efficiency in both
inference time and GPU memory usage compared to the pose-free, generalizable NVS baseline
CoPoNeRF (Hong et al., 2024) and the concurrent method Splatt3R. Furthermore, our approach

Table 8: Quantitative Comparison with Concurrent Work: Cross-Dataset Generalization. We evaluate
and compare the cross-dataset generalization performance of our method and Splatt3R. The best results are
highlighted in bold.

Method Training data
ACID

PSNR " SSIM " LPIPS #
Splatt3R ScanNet++ 17.49 0.63 0.26
Ours RealEstate10K 23.47 0.69 0.26
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GTPixelSplat* MVSplat* Ours
Input 
Views

ACID

GTPixelSplat* MVSplat* Ours
BlendedMVS

2.37Figure 11: Qualitative Results for Novel View Synthesis in Cross-Dataset Generalization. Pix-
elSplat* and MVSplat* denote methods combined with noisy camera settings (� = 0.01). To aid
visibility, we highlight the regions of interest with red boxes and provide close-up visualizations of
these areas for detailed comparison.

delivers the highest rendering quality among the compared methods, underscoring its effectiveness.
All experiments were conducted on an NVIDIA RTX 4080 GPU.

Qualitative results of novel view synthesis We present our additional results on the DTU (Jensen
et al., 2014) dataset (Figure 15) and RealEstate10K (Zhou et al., 2018) dataset (Figure 16).
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Input View 1 Input View 2 Splatt3R Ours GT

8.47

9.51

Figure 12: Qualitative Comparision with the Concurrent Work.

Input View 1 Input View 2 Splatt3R Ours GT

8.47

9.51

Figure 13: Qualitative Comparision with the Concurrent Work: Cross-dataset Generalization.

Input Views GTPixelSplat* MVSplat* Ours

4.45

9.53

Figure 14: Qualitative Results of Novel View Synthesis with Large-Baseline View Sets. PixelSplat and
MVSplat denote methods combined with a noisy camera setup, incorporating Gaussian noise with a standard
deviation of 0.01.

Table 9: Model Efficiency Measurements. Each metric is evaluated across models using the same dataset
configuration and averaged for consistency.

Method Inference time (s) GPU Memory (MB)

CoPoNeRF 3.37 9587.22
MVSplat + MASt3R 0.22 4376.94
Splatt3R 0.26 6198.00

Ours 0.17 5887.18
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Predicted pose Noisy pose (" = 0.03) No pose
LEAP OursPixelSplat MVSplat PixelSplat MVSplat GT

Input 
views

3.23

2.36
Figure 15: Additional Qualitative Results on the DTU Dataset. Rendered target images are shown
based on three input views. The predicted pose indicates poses predicted using DUSt3R (Wang et al.,
2024).
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Predicted pose Noisy pose (" = 0.05) No pose
CoPoNeRF OursPixelSplat MVSplat PixelSplat MVSplat GTInput views

2.94

2.64

Figure 16: Rendering and Depth comparison on RealEstate10K The visualized images are
rendered target images given 2 input views. The predicted pose indicates poses predicted using
DUSt3R (Wang et al., 2024).
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