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ABSTRACT

There is growing interest in understanding how real brains may approximate
gradients and how gradients can be used to train neuromorphic chips. However,
neither real brains nor neuromorphic chips can perfectly follow the loss gradient,
so parameter updates would necessarily use gradient estimators that have some
variance and/or bias. Therefore, there is a need to understand better how variance
and bias in gradient estimators impact learning dependent on network and task
properties. Here, we show that variance and bias can impair learning on the training
data, but some degree of variance and bias in a gradient estimator can be beneficial
for generalization. We find that the ideal amount of variance and bias in a gradient
estimator are dependent on several properties of the network and task: the size
and activity sparsity of the network, the norm of the gradient, and the curvature of
the loss landscape. As such, whether considering biologically-plausible learning
algorithms or algorithms for training neuromorphic chips, researchers can analyze
these properties to determine whether their approximation to gradient descent will
be effective for learning given their network and task properties.

1 INTRODUCTION

Artificial neural networks (ANNs) typically use gradient descent and its variants to update their
parameters in order to optimize a loss function (LeCun et al., [2015; |Rumelhart et al., |1986)). Impor-
tantly, gradient descent works well, in part, because when making small updates to the parameters,
the loss function’s gradient is along the direction of greatest reduction Motivated by these facts, a
longstanding question in computational neuroscience is, does the brain approximate gradient descent
(Lillicrap et al.} 2020; Whittington & Bogacz,[2019)? Over the last few years, many papers show
that, in principle, the brain could approximate gradients of some loss function (Murray, [2019; [Liu
et al.l 2021} |Payeur et al.,|2021} [Lillicrap et al.| 2016j Scellier & Bengio, [2017). Also inspired by the
brain, neuromorphic computing has engineered unique materials and circuits that emulate biological
networks in order to improve efficiency of computation (Roy et al.| 2019;|Li et al., 2018b)). But, unlike
ANNSs, both real neural circuits and neuromorphic chips must rely on approximations to the true
gradient. This is due to noise in biological synapses and memristors, non-differentiable operations
such as spiking, and the requirement for weight updates that do not use non-local information (which
can lead to bias) (Cramer Benjamin et al., [2022; M. Payvand et al.,|2020b}; |Laborieux et al., 2021}
Shimizu et al., 2021} [Neftci et al.,[2017; |N. R. Shanbhag et al., | 2019). Thus, both areas of research
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could benefit from a principled analysis of how learning is impacted by loss gradient variance and
bias.

In this work, we ask how different amounts of noise and/or bias in estimates of the loss gradient
affect learning performance. As shown in a simple example in Fig.[9] learning performance can be
insensitive to some degree of variance and bias in the gradient estimate, and even benefit from it,
but excessive amounts of variance and/or bias clearly hinder learning performance. Results from
optimization theory shed light on why imperfectly following the gradient—e.g. via stochastic gradient
descent (SGD) or other noisy GD settings—can improve generalization in ANNs
[Chaudhari et al, 2019} [Yao et al}, 2018}, [Ghorbani et al., 2019). However, most of these results treat
unbiased gradient estimators. In contrast, in this work, we are concerned with the specific case of
weight updates with intrinsic but known variance and bias, as is often the case in computational
neuroscience and neuromorphic engineering. Moreover, we also examine how variance and bias can
hinder training, because the amount of variance and bias in biologically-plausible and neuromorphic

learning algorithms is often at levels that impair, rather than improve, learning (Laborieux et al.,
2021)), and sits in a different regime than that typically considered in optimization theory.

A Train B 2 Test 103
2
10 10 AEtiﬁtter -~
an
g 10 & 1.0 °l3
5 5 worse 3|8
orse
> 102 > 102 ithan é,:’ a
GD o
0.0 10° 10* 10? 0.0 10% 10* 10?
Bias Bias

Figure 1: Train and test accuracy of a VGG-16 network trained for 50 epochs (to convergence) on
CIFAR-10 using full-batch gradient descent (with no learning rate schedule) with varying amount of
variance and bias (as a fraction of the gradient norm) added to the gradient estimates. These results
(avg of 20 seeds) indicate that excessive noise and bias harms learning, but a small amount can aid it.

The observations in Fig.[9]give rise to an important question for computational neuroscientists and
neuromorphic chip designers alike: what amount of variance and bias in a loss gradient estimate
is tolerable, or even desirable? To answer this question, we first observe how variance and bias in
gradient approximations impact the loss function in a single parameter update step on the training
data. (We also extend this to multiple updates in Appendix A.) We utilize an analytical and empirical
framework that is agnostic to the actual learning rule, and derive the factors that affect performance
in an imperfect gradient setting. Specifically, we assume that each update is comprised of the
contribution of the true gradient of the loss function with respect to the parameter, a fixed amount of
bias, and some noise. Similar to[Raman et al.| (2019), we derive an expression for the change in the
loss function after a discrete update step in parameter space: w(t + At) = w(t) + Aw(t) At, where
At is akin to learning rate in standard gradient descent algorithms. We then characterize the impact
on learning using the decrease in loss function under an approximate gradient setting as compared to
the decrease in loss function when following the true gradient.

Our analysis demonstrates that the impact of variance and bias are independent of each other.
Furthermore, we empirically validate our inferences in ANNs, both toy networks, and various VGG
configurations (Vedaldi & Zisserman, [2016) trained on CIFAR-10 (Krizhevsky & Hintonl [2009). Our
findings can be summarized as follows:

1. The impact of variance is second order in nature. It is lower for networks with a threshold
non-linearity, as compared to parameter matched linear networks. Under specific conditions,
variance matters lesser for wider and deeper networks.

2. The impact of bias increases linearly with the norm of the gradient of the loss function, and
depends on the direction of the gradient as well as the eigenvectors of the loss Hessian.

3. Both variance and bias can help to prevent the system from converging to sharp minima,
which may improve generalization performance.
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Altogether, our results provide guidelines for what network and task properties computational
neuroscientists and neuromorphic engineers need to consider when designing and using noisy and/or
biased gradient estimators for learning.

2  ESTIMATING THE IMPACT OF VARIANCE AND BIAS ON TRAINING

Our analysis focuses on situations where the synaptic weights of a network, w, are trained to optimize
aloss, L[w)]. We use an auxiliary variable, ¢, to denote different points in this optimization trajectory
and At to denote a single step in this trajectory. (We extend to the multi-step case in Corollary A.2 of
the Appendix.) Compared to standard optimization protocols in the ANN literature, At is akin to the
learning rate. Therefore, the loss as measured at one particular point in the trajectory is denoted as
L[w(t)], and the loss at the next point in the trajectory, i.e., after a weight update step, is denoted by
L[w(t + At)]. In the rest of this work, we characterize L]w(t + At)] — L[w(t)] as a function of the
variance and bias in the weight update.

We assume that £ is twice differentiable and At is small enough such that Lw(t + At)] can be
effectively approximated around L[w(t)] using a second order Taylor series, i.e., higher order terms
beyond the second order can be ignored. Furthermore, we define a weight update equation that
consists of the gradient, a fixed bias, and some noise. We denote the bias vector as b 3, where 3 is a
norm v/ IV vector that indicates the direction of bias in the N-dimensional parameter space. A special

— . . .
case of H would be H = 1 when all parameters have the same bias. Similarly, we assume white
noise in the gradient estimates. With these assumptions, we define the weight update equation to be:

Aw(t) = — Vo Llw(t)] + b8 +or/f(N)i (1)

where V., L[w(t)] denotes the first derivative of the gradient of £ evaluated at w(¢) and 7 is a unit
vector in the N-dimensional parameter space whose elements are zero-mean i.i.d. (see Appendix
A for generality of this assumption), such that the total variance of Aw(t) is o2 f(N), where f(N)
denotes the dependence of variance on the total number of network parameters, N. Finally, we
define AL;(b,0?) as the change in £[w(¢)] when performing the aforementioned weight update as
compared to the change in £[w(t)] when the weight update step follows the true gradient, i.e.,

AL(b,0?) = [Clw(t + At)] = Llw(D)]) o2y — [Llw(t + At)] = L{w(t)]] .0, 2)

where [Lw(t + At)] — Llw(t)]] 3, 52y is the change in loss with bias b and variance 2. For brevity,
we drop the ¢ is the subscript in the rest of the paper. Formally, we present the following Lemma:

Lemma 2.1. Second order Taylor series expansion. Assuming a small learning rate, the bias, b, and
variance, o2, in gradient estimates can be linked to changes in L upon one weight update step as
compared to the change in L under a true gradient descent weight update step:

Es [AL(D,0%)] = Ea [[Llw(t + At)] = Lw(t)]], 52y — [Llw(t + At)] = Liw(t)]] g o)]
= b(VuLlw(t)], B At + %iﬁ <B V',,-’,,L‘,[Mﬁ/)jﬁj; At

- o2 f(N)

1 / 1 =2 /N1 2 n T \ 9 1 ‘ ‘
—5b (Va Llw(t)], (Vi Llw(t)] + V2, Llw(t)]! )B/\ A/‘Jr; N Tr[VZ, Llw(t)]At?

3)

\ w

where (-, -) denotes the dot product, Tr denotes the Trace operator of a square matrix, orange terms
indicate the impact of bias, and the green term indicates the impact of variance.

In the next section, we present an in-depth analysis of the impact of variance when f(N) is sublinear,
as is the case for some learning algorithms, e.g. Equilibrium Propagation (Laborieux et al.|[2021)).
We present a more general analysis along with the proofs of all lemmas and theorems in Appendix A.
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2.1 ANALYSIS OF THE IMPACT OF VARIANCE AND BIAS ON TRAINING LOSS

One of the corollaries that follow from Lemma is that the impact of variance and bias on the
expected AL (b, 0%) are independent of each other. Moreover, it is clear that the impact of variance
is directly proportional to the trace of V2, L[w(t)], i.e., the loss Hessian, and inversely proportional
to N, i.e., the number of trainable parameters in the network.

Previous work investigating the object categorization loss landscape for feedforward ANNs demon-
strated a pronounced effect of width, i.e., increasing width leads to smoother loss landscapes (L1 et al.}
2018a), thereby leading to lower trace of Hessian (Hochreiter & Schmidhuber, [1994). This empirical
observation in deep ANNs implies that increasing the width both lowers the trace of the Hessian
in addition to its obviously increasing the number of trainable network parameters. Therefore, we
can say directly from Lemma [2.1]that the impact of variance is lower for wider networks. However,
the role of depth is more complicated. Notably, increasing depth (with no skip connections) could
theoretically make the loss landscape less smooth (L1 et al.,2018a). Thus, we begin by analyzing
the case of increasing depth in linear feedforward networks. We prove that, in fact, increasing depth

leads to lower values for NVT?”L], thereby implying a lower impact of variance.

Theorem 2.2. Increasing depth lowers impact of variance For linear feedforward ANNs, the impact

of variance on AL(0,02) for a (L + 1) layer network is less than that of a L layer network, i.e.,
A’C’t(oﬂ U2)(L+1)—layer < AL(Ovaz)Lflayer (4)

where each layer has d units and weights initialized by the Xavier initialization strategy and the
total variance in gradient estimates does not grow with the size of the network, i.e., f(N) is some
constan

Although these assumptions on layer weights may not strictly hold over the course of training,
empirical experience suggests that there exists a loose correspondence among these quantities if the
conditions hold true during initialization. Taken together, overparameterization in either width or
depth leads to a lower impact of variance in gradient estimates on the network’s training.

Besides the network architecture, the non-linearity used in the network also impacts the function
implemented by the network, and therefore affects the trace of the loss Hessian. Specifically, we
demonstrate that the trace of the loss Hessian is lower for networks with a threshold non-linearity with
gain less than or equal to 1, such as a ReLU operation, as compared to a linear network. Formally,

Theorem 2.3. ReLU lowers impact of variance Let ¢(.) denote a threshold non-linearity function.
The impact of variance on AL4(0, 02) for a network with such non-linearities is less than that of an
equivalent linear network, i.e.,

Aﬁt(oy U2)¢ S A‘Cf (Oa UQ)Linem’ (5)
where the gain of ¢(.) is less than or equal to 1 (e.g. ReLU).

Summarily, the standard practices in deep neural networks, like overparameterized networks or the use
of ReLU as a non-linearity, lead to a lower impact of variance on the network’s training. Interestingly,
brains are also arguably overparameterized and characterized by threshold non-linearities that lead to
sparse activations. These properties could offer a potential solution to countering any negative impact
of variance in gradient estimates in the brain and allow biological agents to reliably train complex
tasks despite not being able to actually conduct true gradient descent (Lillicrap et al., [2020). It also
suggests neuromorphic chips could tolerate more noise in gradient estimators if they are made larger.

In contrast to the impact of variance, the impact of bias is more nuanced and depends on the norm and
direction of gradient, the direction of the bias vector, as well as the eigenvectors of the loss Hessian.
Using a few algebraic manipulations, Lemma[2.T| can be extended to show that:

Theorem 2.4. The impact of bias on AL(b,0) grows linearly with the norm of the gradient.
1
AL (b,0) = §b2QAt2 + b|| Vo Llw(t)]|| PAE (6)

where P, Q) are terms that are independent of the norm of the gradient,

Vi Llw(t)]]

?Check Appendix A for an extension to the general case where variance changes with number of parameters.
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This result implies that initialization and architectural considerations could play important roles in
mitigating the impact of bias on training by limiting the norm of the gradient. In the next section, we
will empirically validate these results in linear and shallow networks trained on toy datasets as well
as in VGG networks trained on CIFAR-10.

2.2  EMPIRICAL VERIFICATION OF THE VARIANCE AND BIAS RESULTS

Our experimental setup (illustrated in Fig. [2) is motivated by Raman et al.|(2019), and follows the
standard student-teacher framework. A “teacher” ANN is initialized with fixed parameters. The
task is for a randomly initialized “student” network to learn the input-output mapping defined by the
teacher. We defer the reader to the Appendix B for experimental details.

A Teacher Network B
Fixed weights - _/st;;rzfagdr;ii:ent
Teacher
Output g
Error A
L 3 ALy(b,0?)
:‘:C Student
e Output /
AW . | 1 update e
Student Network Learning Rule

Figure 2: Experimental setup for empirical validation of our results, focusing on AL (b, 0?) to
understand how gradient approximations impact learning in one update step. (A) The student-teacher
framework motivated by Raman et al.|(2019). (B) Illustration of AL; (b, 0?) (defined in Eq. )

First, we validate our analytical results pertaining to the impact of variance, i.e., Theorems[2.2]and 2.3
in relatively shallow (1-8 hidden layers) fully connected ANNs. We fix the teacher network archi-
tecture and use a ReLU non-linearity to threshold the intermediate layer activations. Subsequently,
we vary the depth and width of the student network with no non-linearity and observe AL;(0, o)
at different points in the loss landscape. For each such setting, we add a ReLLU non-linearity to the
student network to validate the effect of a threshold non-linearity on AL;(0, o?). We plot the mean
AL;(0,02) across different points in the loss landscape in Fig.[3l Note that in order to use a sample
accurately reflecting the loss landscape that would be encountered during a learning trajectory, we
train a control network with the same architecture and non-linearity as the student network using the
true gradient and evaluate AL, (0, o2) for each update step along the learning trajectory. In doing so,
we are able to observe the desired quantities across a wide range of gradient norm values.
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Figure 3: Impact of variance is lower for wider, deeper, and ReLU networks. Solid lines indicate
linear networks, dashed lines indicate networks with ReLLU non-linearity, and dotted line indicate
the teacher network architecture. (A) Varying hidden layer width in one hidden layer linear ANNSs,
keeping input/output dimensions same. (B) Linear and ReLU networks with varying width and depth
plotted with number of parameters in x-axis. (C) Same as B but plotted with network width in x-axis.
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Furthermore, we validate Theorems 2.2]and 2.3]on VGG networks trained on the CIFAR-10 dataset.
Specifically, we maintain the student-teacher framework and fix the teacher network to be a VGG-19
network trained on CIFAR-10 to 92.6% test accuracy, and we use different networks from the VGG
family as student networks (with variance set to 2 = 20). For each network, we use both random
weight initialization and Imagenet-pretrained weights to determine whether initialization has an effect
on the impact of variance. Fig. [5|demonstrates that our results pertaining to depth and width hold for
deep convolutional neural networks (CNNs).

Similarly, we validate Theorem [2.4] first in shallow fully connected ANNs and subsequently in deep
CNNs trained on CIFAR-10. Specifically, we demonstrate in Fig. [ that the impact of bias (with
b = 0.02) on performance of a linear shallow network grows with the norm of the gradient. Note
that the sign duality of AL;(b,0) in this figure follows from Theorem where the quantities P
and () depend on the direction of the bias vector with respect to the direction of gradient and the
eigenvectors of the loss Hessian (see proof in Appendix A for more details). Therefore, bias can
help or hinder learning depending on its direction. This behaviour is in contrast to variance, which
always hinders learning for a convex loss (Lemma[2.T). Nonetheless, it is worth noting that when the
gradient norm is small as bias increases it always hinders training (see Fig. @B).
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Figure 4: Impact of bias grows linearly with gradient norm and has a quadratic relationship with
the amount of bias when the gradient norm tends to 0, i.e., validating expression from Theorem 2.4}
AL (b,0) = 3b2QAL* +b|| Vo Lw(t)]|| PAt. (A) Impact of bias grows linearly with gradient norm,
with the slope being the amount of bias (see second term in equation). (B) Impact of bias grows
quadratically with amount of bias when gradient norm is small (see first term in equation).

Following this, we measure the absolute value of AL;(b,0) and plot its mean across multiple
update steps in VGG networks trained on CIFAR-10. In Fig.[6] we show that the relation stated
in Theorem [2:4] holds across different VGG architectures, irrespective of the weight initialization.
Furthermore, deeper VGG networks have a lower impact of bias owing to a lower gradient norm.
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Figure 5: Impact of variance is lower for deeper and wider VGG networks when training on
CIFAR-10. (A) Deeper VGG configurations, both Imagenet-pretrained or untrained, exhibit lower
impact of variance. (B) Wider VGG-19 configuration networks exhibit lower impact of variance.
Factor of downsampling indicates the reduction in the number of filters in convolutional layers and
dimensionality of intermediate fully connected layers compared to the original VGG-19 configuration.
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Figure 6: Impact of bias is lower for (A) deeper VGG networks when training on CIFAR-10. (B)
Deeper VGG networks exhibit lower gradient norm, thereby mitigating the impact of bias in training.

3 ESTIMATING THE IMPACT OF VARIANCE AND BIAS ON GENERALIZATION

In the previous section, we studied how variance and bias in gradient estimates impacts training.
However, from a machine learning perspective, an important question is to understand the impact on
the system’s generalization. Specifically, we ask the question: under what conditions could variance
and bias in gradient estimates aid generalization performance? Interestingly, current deep learning
practices rely on not following the exact gradient of the loss function to train models, which have
been demonstrated to help generalization performance. Some common examples of such practices
include stochastic gradient descent (SGD) and dropouﬂ

In this section, we use our framework to understand how variance and bias in gradient estimates
could alter the learning trajectory, thereby impacting generalization. Specifically, we investigate the
conditions under which a parameter update would necessarily lead to descent on the loss landscape.
This matters for understanding generalization because the flatness of the loss landscape is a good
proxy for generalization (Baldassi et al.,[2020; Jiang et al.,[2019; |Sankar et al.| [2021; Tsuzuku et al.,
2020; Petzka et al., 2021): flatter minima tend to have better generalization performance than sharper
ones. We leverage this viewpoint to understand the impact of variance and bias on generalization.
Specifically, we investigate the conditions under which gradient approximations could help to avoid
sharp minima, thereby promoting convergence to wide flat minima.

3.1 ANALYSIS OF THE IMPACT OF VARIANCE AND BIAS DESCENT OF NARROW MINIMA

To quantify the flatness of loss landscape, we use eigenvalues of the loss Hessian. Without loss of
generality, we assume that the loss Hessian is a normal square matrix, i.e., its eigenvectors form an
orthogonal basis of the N-dimensional parameter space. In order to understand the properties of loss
minima that the network could potentially converge to, we derive the sufficiency conditions under
which a parameter update ascends (or descends) the loss landscape. This strategy indicates that noise
in gradient estimates would lead to the system not descending the loss landscape when the minima is
too sharp, which can aid generalization.

Theorem 3.1. Noise helps avoid sharp minima The sufficient condition under which noise prevents
the system from descending the loss landscape, i.e., Llw(t + At)] > Llw(t)], is

2 1
M>Ay > ——— (7

T Ay ()

where A1 > Aa... > AN denote the eigenvalues of Vfuﬁ around the minima.

Interestingly, the condition presented in Theorem presents a lower bound for the smallest
eigenvalue, i.e., the eigenvalue associated with the direction of least curvature, and connects it to the
variance to gradient norm ratio. This ratio can be thought of as the inverse noise ratio when there is

3Discussion on the relationship between our analysis and SGD and dropout in the Appendix C.2
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no bias in the approximation. Furthermore, we also show in Appendix A that the sufficient condition
for descending the loss landscape is similar to the one presented in Theorem [3.1] but provides an
upper bound for the largest eigenvalue, i.e., \; < A%H—(ilf’f Note that as we get closer to
Vwl

the minimum, the gradient norm would decrease (property E)f srr!ooth L), and therefore, the inverse
noise ratio would increase. Thus, the upper bound on curvature of loss minima that the system can
potentially converge to decreases. Taken together, this shows that variance helps the system avoid
converging to sharp minima and instead promotes converging to wide flat minima.

Bias, on the other hand, has a more nuanced effect on the learning trajectory. This complexity is
unsurprising given the dependence of the impact of bias on direction of the bias vector, the direction
of the gradient, and the eigenvectors of the loss Hessian. Once again, we derive the sufficiency
condition for when a parameter update step would produce a decrease in the loss function. It turns
out this condition depends on both minima flatness and amount of bias relative to the gradient norm.
Theorem 3.2. Bias prevents descent into local minima dependent on Hessian spectrum. Bias in
gradient estimates could prevent converging to a minima. Specifically, the sufficient condition for the
weight updates to produce a decrease in L when using a biased estimate of the gradient is:

b 1 2 1 1

PR —— ~ -

VLl = VN 1+ At + /1 + 4pAt + 2A12 VN (1+ 39At)

where 1/)2 = ZZ )\12, i.e., the Frobenius norm of the loss Hessian, and A1 > Aa... > Ay denote the
eigenvalues of V2, L around the minima and V2, L is a normal matrix.

®)

The condition in Theorem [3.2]indicates that a system that follows a biased gradient approximation
will descend the loss landscape until some neighbourhood around a minimum (characterized by the
minima flatness and relative bias). Inside this neighbourhood, the system may not descend the loss
landscape and therefore not converge to the minimum. The condition depends on minima flatness
due to the ¢ term (Eq. (8)): sharper (higher curvature) minima should have higher v, which makes
it less likely to satisfy the condition. The condition also depends on the amount of bias relative
to gradient norm, i.e.,, higher relative bias makes it less likely to satisfy the condition for descent,
which we also support through simulation (see Fig. [7C). Taken together, variance and bias in gradient
estimates promote gradient descent dynamics that converge to wide flat minima, which can aid
generalization. This effect is empirically demonstrated by our first example of VGG-16 networks
trained on CIFAR-10 (Fig.[9).

3.2 EMPIRICAL VERIFICATION OF THE IMPACT OF VARIANCE AND BIAS ON GENERALIZATION

true gradient descent % =1 biased approximation
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Figure 7: Empirical verification of Theorems and in linear ANNs. Dashed lines indicate the
theoretical limit and colours indicate the empirical probability of descent. (A) True gradient descent.

(B) Noise in gradient estimates, 0 = ||V, £L||. (C) Bias in gradient estimates, ratio To.zT 18 varied.

We follow the same experimental setting as described in Section 2.2 for verifying Theorems [3.1]
and 3.2] Owing to computational bottlenecks in loss Hessian estimation for high-dimensional
nonlinear settings, we restrict our empirical validation to training linear networks for optimizing
MSE loss. In doing so, we gain full control over the loss Hessian via the input covariance statistic

Fig.[TA & B demonstrate that our inferences from Theorem 3.1 hold empirically. When the leading

*for MSE loss at minima, the Hessian is equal to the input covariance matrix barring a constant factor
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eigenvalue is less than the theoretical limit, a weight update step always leads to a decrease in L;
when the trailing eigenvalue is greater than the theoretical limit, a weight update step always leads to
an increase in £. Furthermore, the theoretical limit is higher for the case when there is no variance
than with variance. These observations demonstrate that following a noisy version of the gradient
helps the network avoid sharp local minima. Similarly, Fig. demonstrates that our inferences
from Theorem 3.2] hold empirically. Specifically, when the ratio of bias to gradient norm is below the
theoretical threshold, a weight update step always leads to a decrease in L.

4  DISCUSSION

In both computational neuroscience and neuromorphic computing, gradient estimators are known
to have variance and bias due to both algorithmic and hardware constraints (Laborieux et al., 2021}
M. Payvand et al.| 2020a; [Lillicrap et al., 20205 Pozz1 et al.| 2018} [Sacramento et al., 2018}; |Rubin
et al.,2021; Roelfsema & Holtmaat, 2018} Bellec et al.| 2020; |[Neftci et al., 2019} [Huh & Sejnowski,
2018; Zenke & Neftci, 2021). Using mathematical analysis and empirical verification, we found that
the impact of variance and bias on learning is determined by the network size, activation function,
gradient norm, and loss Hessian, such that the amount of variance and bias that are permissible
or even desirable depends on these properties. Though our empirical verification was done using
feedforward ANNs, our mathematical analysis was formulated to be as general as possible, and
we believe that our assumptions are reasonable for most cases that computational neuroscientists
and neuromorphic chip engineers face. Furthermore, we add a corollary to Lemma 2.1 and discuss
extensions of our analysis to multi-step optimization settings in Appendix A (see Corollary A.2).
Thus, our work can inform research in these areas by providing a guide for how much variance and
bias relative to the gradient norm is reasonable for a given network.

4.1 RELATED WORK

Our analysis was inspired in part by recent work by Raman et al.| (2019) characterizing bounds on
learning performance in neural circuits. They demonstrated that in the absence of noise in the gradient
estimator, larger networks are always better at training, but with noise added, there is a size limit
beyond which training is impaired. Our work was also informed by research into generalization in
deep ANNSs, which provided the rationale for our analyses examining the potential for a learning
algorithm to descend into sharp minima or not (Foret et al., [2020; |Chaudhari et al.| 2019} |Yao et al.,
2018}; |Ghorbani et al.,|2019; Smith et al., [2021). As well, our work has some clear relationship to
other work examining the variance of gradient estimators (e.g. Werfel et al.|(2003)), but here, we are
asking a novel question, namely, how does a given amount of variance and bias impact performance
for different network parameters?

More broadly, our work relates to the deep learning literature because modern ANNS rarely use the
true loss gradient over the entire dataset to make weight updates. Instead, it is common practice to
add noise in different forms, e.g. SGD (Bottou, [2012)), dropout (Srivastava et al., 2014}, dropconnect
(Wan et al., [2013)) and label noise (Blanc et al., 2020; [HaoChen et al., 2021} [Damian et al., [2021)).
But, the noise structure in these scenarios may differ from assumptions in our work. For example,
SGD does not exhibit white noise structure (Xie et al., 2021;|Zhu et al., [2019). E] Likewise, dropout
can be thought of as adding noise, but for a truly unbiased estimate of the gradient, one would have
to consider all possible configurations of dropped neurons, something quite uncommon in practice.

4.2 LIMITATIONS AND FUTURE WORK

This work focused on characterizing the impact of variance and bias in gradient estimates, but it lacks
any in-depth analysis of specific bio-plausible or neuromorphic learning algorithms. Similarly, our
work only characterizes learning performance, but does not provide a concrete proposal to mitigate
excessive noise or bias in gradient approximations. As such, our analyses can be used by other
researchers to assess their learning algorithms but they do not directly speak to any specific learning
algorithm nor provide mechanisms for improving existing algorithms. Nonetheless, we believe that
our work provides a framework to help develop such strategies, and we leave it to future work.

SThough several analytical studies have used white noise to model SGD dynamics, and concluded that the
SGD noise acts as a regularizer against converging to sharp minima (L1 et al.l|2021), similar to our analyses.
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A PROOFS

Lemma A.1. Second order Taylor series expansion. Let us assume for a small learning rate,
Llw(t + At)] can be approximated using the Taylor series expansion about the point w(t) and
dropping the third and higher order terms. The resulting expression linking bias, b, and variance,
o?f(N), in gradient estimates to changes in L upon one weight update step as compared to the
change in L under a true gradient descent weight update step is:

En [ALoss(b,0%)] = E, [[ﬁ[w(t + At)] = Llw(t)]] 52y — [L[w(t + AL)] - E[w(t)]](O,O)}
= b (VaLlw(t)], B) &t + 157 (B, V3 Llw(®] B) AP

- L (Tutlulo). (V)] + T L)) B) ar

10°f(N)
TN

where N denotes the dimensionality of w(t), f(N) indicates how the total noise in gradient estimates
changes with the number of parameters in the model, 1 denotes a random unit vector (entries drawn

Tr[VZ, Llw(t)]]At? 9)

i.i.d.) in the N-dimensional parameter space and bﬁ denotes the bias vector, where (3 is a norm
V' N vector (i.e. a vector with 2-norm equal to /N ) that indicates the direction of bias in the

N-dimensional parameter space. A special case of 3 would be H = 1 when all parameters have
the same bias level. Also, Tr denotes the Trace operator of a square matrix.

Proof. In order to understand how the task error changes as system parameters evolve, we rely on the
second order Taylor series expansion of the task error. We denote the system parameters at time ¢ as
w(t) and the corresponding task error as L]{w(t)]. We assume the parameter update rule to be a noisy
version of the gradient descent update:

Aw(t) = — Ve Llw(t)] + b8 + o/f(N)A (10)

Writing out the Taylor series expansion for a small step At in the above direction,
Llw(t+ At)] = Llw(t)] + (VwLlw(t)], Aw(t)) At + = <Aw ), VE,Lw(t) Aw(t)) At* (11)

We compare the reduction in task error while following the above parameter update rule to the
reduction in task error while following the uncorrupted or true gradient descent updates. Specifically,
we observe the following quantity:

A‘Ct(blas = ba var = 02) = [‘c[w(t + At)} - ‘C[w(t)]](bias:b,var:UQ)
— [Llw(t + At)] = LIw(B)]] hias—0,var—0) (12)

For sake of brevity, we drop the ¢ from the subscript in the rest of the derivations. Plugging in
Equations [T0]and [TT]in Equation

AL(b,0%) = [b (VuLlw(®)], B) + 0/ F(N) (VwLlw(t)], )| At
+; [—b<vw£[ (01, V2 Lw(t)] B) = or/F(N) (Ve Llw(B)], V2, Llw(t)]i)
—b<§ V2 Lw(t)]V e L[w ()}>—a\/ (n) (7, V2, /.Z[w(t)]Vw/J[w(t)])

+baF<B V2, Ll + bo/f(n) (2, V2, Llw(t)] B)
L]

0 <B’v’2"qw(t)]ﬁ>+02f(m (i, V2, Llw(t))7) ] At2 (13)

We can further simplify the above expression by taking the expectation over different samples to
evaluate the task error and multiple weight update steps to understand the average impact of bias
and variance in parameter update estimates. Under the aforementioned expectation, dot product of a
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deterministic vector with the noise vector 7 is assumed to be 0. Therefore, the expression for AL
simplifies to:

Eq[AL(b,0%)] = b (Vo Llw(t)], B) At + % [0 (VuLlw(®)], V3, Llw(t)] B)
— b (B, V2 LIw(t)] Vo Llw(t)]) + 5 (B, V2 Llw(t)] B)
+02 f(N)Ea[(, Vi, Llw(t)]R)]] At? (14)

Furthermore, we assume the following properties for elements of the N-dimensional isotropic noise
vector f:

Ex[n?] = — And Ei[nn]=0 V i#j€l..N
Therefore, Ej; [(7, V2 Llw( )]A)] Zn,njv Llw(t)):;

= ZEn 17 Ve, Llw(t)]i + Y > Eq [fif;] Vo, Llw(t)];;

i#jJ

= % ZViﬁ[w(t)]u- = %Tr[Vi,E[w(t)]] (15)

Note that Eq. (I3) is similar to Hutchinson’s trace estimator. We can also leverage the following
relationship:

(VuLlw(t)], V24 Llw(t)] B) + (B, V2 Llw(t)]Va c[ ®)])

Vo Llw(?)] Tv2 (0] B + BTV Liw (1) V. Llw(t)]
[Since (a,b) = aTb]
= Vo Llw(®)]TV2 Lw(®)] B + Ve Llw()] T V2 Llw(®)” B

[Since each term is a scalar, transpose of a term is equal to itself]
= VaLlw(®)] (V3 Lhw(t)] + V5, Lhw()]") B
= (VwLlw(®)), (V,Llw()] + V2 Llw(0)]) B) (16)

Now, incorporating Equations [T3]and [T6]in order to simplify Equation
Eq [AL(b,0%)] = b{(VuLlw(t)], B) At
+ %zﬂ (B, V2Ll B) A
— S (Vulhw(t)], (V3 Ll 0)] + V3 Llu(0)] ) B) A2

102f( )
tT3TN

Tr[V3, Llw(t)]| At (17)

O

Note on i.i.d. noise assumption: Our assumption of i.i.d. noise allows us to derive a closed form
for AL(b, 0?) and investigate the impact of noise in gradient estimates in detail (below). However,
it should be noted that there may be learning algorithms that do not adhere to these assumptions,
which does mean we cannot state that our analysis is completely learning rule agnostic. Nonetheless,
these assumptions (zero in expectation and iid) are sufficiently general that they apply to a number of
existing algorithms (e.g. noise perturbation, AGREL, and EQ-prop with the beta parameters selected
to have expectation of zero (Murray & Edwards), |1992} |Scellier & Bengio,|[2017)), and we suspect
they can apply to many more.
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Corollary A.2. Extending Taylor series expansion result to multiple sequential update steps. With
the same assumptions as Lemma let wy, be the weights of the network after k sequential noisy
updates and wy, be the weights of the network after k steps of gradient descent, given both networks
start from the same initial weights, w. Let us denote the bias and variance vectors at each update
step as b; and o;n;. Then,

k k
VwL[Wy] = Vo L[wy] + At <va£[wk](z bi) + Vo, Llwi] (O aim)> + O(A?)
i=1 i=1
(13)
k 1 k
vy .o [C[08]] = Llwy] + ALY (b, Vo Llw; 1) + §At2 > (i, V2, L[wi_1]b;)
i=1 i=1
k
1
— QAI‘,Q ; <b“ (Vi,ﬁ[’wl_ﬂ + Vfuﬁ[wl_l]T) lel['wi_l]>
R
+ §At2ﬁ ;Uz?f(N) TV, Llwi1]]
k i—1
+ AtZ Z Vfuﬁ[wz_l] Z bj 7bi — 2Vw£[wi_1] (19)
i=1 j=1

Proof. We will prove the corollary by induction. First, we will use the Taylor series expansion of the
gradient to show that Eq. holds for k = 1:

Vwﬁ[’lbl] = Vwﬁ[wo — Vwﬁ[wo]At + (bl + Ulﬁl)At]
= Vu,ﬁ[wl + (bl + Jl’fll)At]
= Vwﬁ[wl] + Vfuﬁ[wl](bl + Ul’fll)At —+ O(At2) (20)

Assuming Eq. holds for for the first k steps, we will now prove it holds for (k + 1)*" step. Given
that any change in the loss Hessian, i.e. V2L, will only result in third order effects, we will ignore
these changes although we will use a different subscript to denote the step at which the Hessian is
computed. This approximation is akin to assuming that the step sizes are small enough such that the
loss landscape is roughly quadratic in nature. Similar to the proof for £ = 1, we use the Taylor series
expansion:

Vwﬁ[@k+1] = Vwﬁ[’(l}k — Vwﬁ[’d'}k}At + (bk+1 + Uk+1ﬁk+1)At}
= VwLwy + W — wi, — Vo L[Wg])AL + (bgt1 + Opp17k41) AL
= VwLl[wy + Wy — wi — Ve L[wi] At + O(AL?) + (b1 + Oy 17y 1) Al
= VLl[wii1 + Wy — wp, + (b1 + opr1ins1)At] + O(A?) Q1

Now, we can simplify the expression for wj, — wy, as:

k k
ﬁ)k — Wp = wo + At Z(—Vwﬁ[ﬁ;i_l] + bi + Ui’fli) — wo + Atz Vw/j[wi_l]

=1 i=1

k k
= =AY (VoL 1] — Ve Llwi 1)) + AL (b + i)

=1 =1
k
= At Y (b; + o) + O(A?)  [Using Eq. (T8)] (22)
=1
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Plugging Eq. (22) in Eq. 1)), we can show the desired result:

k+1
VwLllbii1] = Ve Llwkir + At > (b + 0ii;) + O(A#)] + O(AL?)
=1
k+1 k+1
= VwL[wyi1] + At <Vi£[wk+1}(z bi) + Vo, Llwia] (D ami)> + O(A?)

i=1 i=1

(23)

Now, we know that Eq. is true for £ = 1 from Lemma[A.T} Assuming that it holds for the first &
steps, we will show that it holds for the (k + 1)** step too. Using Eq. , we can write:

- . S . 1, - 1~ -
LW 41] = L[Wk] + (Vo L[W], Wit1 — W) + 3 (Wpy1 — W, Vo L[] (Why1 — Wr))

= L[wy] + O(At?)
k
<Vw£[wk] + Vfuﬁ[wk] (Z (bz + Jﬂ%)) At, 7vw£[’lf)k] + bk+1 + Jk+1ﬁk+1> At

=1
1 _ R - «
+ 3 (=VuL[Wk] + b1 + o1, Vi Llwi] (= Ve L[Wg] + b1 + Opp1fur1)) At?

Imposing the independence of the noise statistics and ignoring higher order terms, i.e. O(At3), we
get to our desired result:

Efl17ﬁ2--<flk+1 [‘C[’lbk-‘rl]] = Eﬁ17ﬁ2-<~ﬁk [E[wk“ - Hv’w[’[wk]”ZAt

+ % (Ve L[wy], V2, L[wy,] Vo Llwy] ) At?
1
+ <bk+1, Vwﬁ[wkb At + 5 <bk+1, Viﬁ[wk]bk+1> At2
1
~3 (brt1, (Vi Llwy] + V?uﬁ[wk]T)Vwﬁ[ka At?

102 N
108, f(N)

2 2
SR (V2 Llwy]] At
k
+ ( VeLlwi] [ D by | brp1 — 2V Llwy] ) At? (24)
j=1

Now, using Eq. (19) for the £*" step and using the relation that L[wy, 1] = L[wy]— ||V Lwy]||2At+
1 (VwL[wy], VZ Llwi| Ve Llwg] ) At?, we get the desired relation for the (k -+ 1) step. O

A qualitative description of the effect of bias: The impact of bias across iterative optimization can
be thought of in three key scenarios: (1) the network converges to the same loss basin as gradient
descent but the bias alters the specific steady state; (2) bias alters the network training trajectory
to the extent that it converges in a loss basin that is different from what gradient descent would
converge to; (3) the overall effect of bias hinders network training to the extent it becomes unstable
and performance collapses.

In the first case, we can suppose that either the bias is relatively small, or, generally speaking, there is
not a strong correlation in the degree of misalignment between the bias vectors and the gradient and
Hessian over K steps. In this case, the bias will have an impact that is similar to that of the isotropic
noise, and the ultimate result can be understood from a steady state perspective. Notably, at the
steady state, the bias would balance the gradient, thereby causing the expected weight change to be 0.
Assuming a second order approximation of the loss basin, the bias in the gradients would imply an
excess loss of %b?H b; as compared to the minima of the loss basin, which is where gradient descent
would have converged to. This would result in minor degradation in performance, as shown in Fig. 1
for lower bias values.

The second case is complicated and ultimately requires further learning rule specific assumptions.
Given that our goal in this paper is to remain learning rule agnostic, we can only say that this case
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would occur when the bias vectors have a semi-structured relationship to the gradient and the Hessian
that pushes the weight updates in very different trajectories compared to gradient descent.

The third case would result from either excessive bias or a very strong relationship between the K
bias vectors and their product with the gradient or the Hessian. Thus, we can say that learning rules
with very strong or highly systematic bias may not converge.

Additional assumption on loss function in Theorems A.3 - A.5: Below, we prove the relationship
between network width, depth or non-linearity and the impact of noise on learning for the mean
squared error loss. Although we do not prove the result for general loss functions, we believe that our
proofs present an outline that other researchers can leverage in future work to extend our results to
other loss functions, based on their specific application, and thereby extend our results to guide their
network design choices.

Theorem A.3. [f(N) = O(1) case] Increasing depth lowers impact of variance For linear
feedforward ANNs, the impact of variance on AL(0, 0?), for a (L + 1) layer network is less than
that of a L layer network, i.e.

AE(Oa 02)(L+1)7layer S A£(07 UQ)LflayeT (25)

where each layer has d units and weights initialized by the Xavier initialization strategy and the total
variance in gradient estimates does not grow with the size of the network, i.e. f(N) is some constant

Proof. We will first show the theorem holds for L = 1, i.e. the impact of variance on a single layer
neural network is more than that of a two layer neural network For the sake of simplicity, we assume

L to be the standard mean squared error loss, i.e. £ = \DI Zn 1(yn )2, where §,, denotes the

output of the neural network and D = {(z1,y1), (€2, ¥y2) - .. (€n, Yn)} denotes the training dataset.
Note that for mean squared error, V;n L= %. We assume that there is no bias term in determining

the unit activations.

Let us denote the weight matrix of a single layer network as W € R such that ¢, = Witn;.
Thus, we can use the chain rule of differentiation to infer:

Vwkﬁ = Z Vﬁnﬁ Tnk
w L= Z

Hence, Tr[VZL Z Vi |D| Z Tk (26)

Let us assume that z is i.i.d. and normalized to have zero mean and unit variance in all dimensions, i.e.
ﬁ >, x2; = 1. Therefore, fora L = 1 network: Tr[V2 £] = 2d. Let us denote the weight matrices

of a two layer network as W (1) € R%*4 and W(?) e R such that §j,, = i W, )W(l)xn] Again,
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using the chain rule:

Vi £ = 2V, L)W 0
W,£2>£ = Z n ZWkJ ;)
VWIS),C = Z(V@nﬁ k xnl

Vi £ =3 (V5 O )

Hence, TI'[V,%U;C] = Z V (2>/:, + Z V2 (1)£
k

=SV 0) |30 wh )+ S (WP ew)?
n k 7

k.l

_ % SIS W 2,07 + S22 S (@)’
n k 7 k

l

don k(Zj ng;)mm ? (2) 2
. \D|Z “HZW "2 (o)

(p+ Z ) Tr[VZ L)1 _tayer  [From Eq. @8)] 27)
W(l) N2
Zn,k(Zj kj Tnj)
where, p= 5
Zn,l Ll

Now, we assume that all weights are initialized according to the standard Xavier initialization strategy,
. 1 2 1 2 2
ie. Ew W] = Ew[W, Y] = 0and Ew [(W)2] = Ew[(W )% = L. Thus, ¥, (W,*))? =

1 where the approximation is stronger for larger values of d. Similarly, i k(Wj(;))2 ~ d. Now, we
can use the dot product inequality to simplify p:

1 1
S (5 Wiy i) S s, (W5 5 ()
> Ty B Do oy

= p< Z(ngl) 2 ~
7,k

= p+ Y W) <d+1
k

Therefore, from Eq. Tr[V2, L2 tayer = (p + Z(Wéz))z) Tr[V2, L)1 - tayer
k

(1 + d) [V ‘C}l layer (28)

Also, note that by applying the above relations, we can write for a L = 2 network: Tr[VZ L] =
2d(p + 1) < 2d(d + 1). Now, the impact of variance, AL(0, 02), on a 2-layer network depends on
the term + Tr[V Ll2—iayer, where N = d + d? is the total number of parameters in the network.

Slmllarly, the impact of variance on a 1-layer network depends on the term =- Tr[V Ll1_iayers
where N = d. Therefore, extending inequality 28}
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1 14+d
AK(O, 0—2)27layer = m ’I‘r[v?uﬁhflayer < d+ 2 T\r[vgu‘c]lflayer
1
- A‘C(()? 02)2—layer < g Tr[vgvﬁ]l—layer = AE(Oa UQ)l—layer
Hence,  AL(0,0%)2 1ayer < AL(0,0%)1_jayer (29)

We can extend this result to compare L layer networks to (L + 1) layer networks. Notably, a L layer
network can be thought of as a single-layer network operating on a (L — 1) layer network and a
(L+1) layer network as a two-layer network operating on an equivalent (L — 1) layer network. Using
the above result, we can therefore conclude that AL(0,02) (1 41)—tayer < AL(0,0%)Ltayer. O

Theorem A4. [f(N) = O(N) case] Increasing width over depth lowers impact of variance For
linear feedforward ANNs, the impact of variance on AL(0,02), for a (L + 1) layer network with d'
units in each hidden layer is more than that of a L layer network with same number of parameters, N
when f(N) grows linearly with number of parameters if d' < d?, where d is the input dimensionality.

Proof. When f(N) = O(N), the impact of variance of AL(0, o2) can be written as:
1
AL(0,0%) = 502’I‘r[Vi,£]At2

and therefore, only depends on the trace. Similar to the proof for Theorem we will first show the
result holds for L = 2 and extend it for any L. As before, we assume that x is i.i.d. and normalized to
have zero mean and unit variance in all dimensions, i.e. ﬁ Zn a:fn = 1. Furthermore, we assume

that the weights in all layers are initialized to maintain this zero-mean and unit-variance property

n n
constraints on the weight matrices as show below:

in each hidden unit, i.e. ﬁ > A" = 0 and |D| >on <h(l ) = 1. This property imposes certain

2

1 1 _ _
B 1= s (St ) - S

2
== 1= Z (Wl(]l)) [i.i.d. assumption on h(lfl)] (30)
J
2
Therefore, 3, (WZ(JI)) =Y, 1=d®, where d¥) is the output dimensionality of layer .

Using these relations and the results from the proof of Theorem we can write the Trace for

a 2-layer network with input dimensionality as d, hidden layer dimensionality as d and output
dimensionality 1 as:

T3 Lot = g | (1F) + Z (W) s

n %

Sz o [ (hse)

=d+d €2

Similarly, the Trace of a 3-layer network with input dimensionality as d, hidden layer dimensionality
as d’, with weights of each layer being i.i.d. with respect to other layers, and output dimensionality
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as 1 as:

2
n ij % 7

i %

=d +d +

Z(Wi@))Z] S ”) bD'ank] [i.i.d. weights]

7 %7 nk

=2d +dd (32)

Now, number of parameters in the 2-layer network are: (d x d) 4 (d x 1) = d(d + 1); and number of
parameters in the 3-layer network are: (d x d') + (d’ x d') + (d' x 1) = dd’ + (d’)? + d'. For equal

number of parameters in both networks, d=d + %. Therefore, the trace of the 2-layer network

can be equivalently written as: Tr[V?D Llo—iayer = d + (d +)1 + d. Solving for the condition when

the wider 2-layer network has a lower trace than the 3-layer trace, we get to the desired conditions,
i.e. d’ < d%. Moreover, if the networks are extremely wide, i.e. in the regime where the hidden layer
dimensionality d’ is greater than d?, then the trace of the deeper network will be lower. O

Theorem A.5. ReLU lowers impact of variance Let ¢(.) denote a threshold non-linearity function.
The impact of variance on AL for a network with such non-linearities is less than that of an equivalent
linear network, i.e.

A[:(O, 0'2)45 < A['(07 U2)Linea7‘ (33)
where the gain of ¢(.) is less than or equal to I (e.g. ReLU).

Proof. We will show this result for a two layer neural network but the result holds for other cases too.
Let W) € R4 and W2 € R? denote the weight matrices for the first and second layer respec-

tively. As above, we assume for sake of simplicity that there is no bias term in determining the network

activations. Therefore, the output of the network can be expressed as: g, = >, g W(Q)WZ(j )xn]

for a linear network; and ¢, = >, Wi(z)gb (Z W(l)zm) for a network with the aforementioned

threshold non-linearity. We used the chain rule to derive an expression for the trace of the hessian for
a two-layer linear network in Eq. (27). Similarly, using the chain rule we can compute the trace of
Hessian for the non-linear networks:

Vel = (VLo Y W@
n J
1
Vil = STVE L [ S Wi,
, - ;
_ (2) 4/ (1)
VgL = > (Ve LW, e ZW’” Tnj | Tnl
n J
2

Vivlglm/: = Z(V;ﬂ/ﬁ) VV(2 Z W,gjl Tnj | T [Assuming ¢”(.) ~ 0]

Tr[V2, L]y = va<2>£+2v oL
2

2
Z 20 >0 Y widan | + W [ S W | 2 (34)
k

J k.l J
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For a threshold non-linearity with gain < 1, ¢(z) < z and ¢'(2) < 1Vz € R. Using these two
relations, we can further simplify Eq. (34):

2
V5Ll < 3V3,0) S0 W an |+ 30 (W)
n k j k,l

Plugging in the expression of Trace from Eq. (27):
Tr[VZ, L]y < Tr[VZ L] Linecar
= AL(0,0%)y < AL(0,07) Linear (35)
The above relation can be easily extended to other network architectures to complete the proof. [
Note on commonly used non-linear activation functions: By construction, ReLU fits the definition
of ¢ and therefore, the above theorem holds. However, the conditions that ¢(z) < z and ¢'(2) < 1

are not satisfied by Sigmoid non-linearity. Due to its non-zero offset, i.e. for zero input the activation
function returns 0.5, the first condition (¢(2) < 2) is not satisfied by the standard Sigmoid function.

Theorem A.6. The impact of bias on AL grows linearly with the norm of the gradient.
1
AL(D,0) = §b2QAt2 + b||Va Llw(t)]|| PAt (36)

where P, Q) are terms that are independent of the norm of the gradient,

Vi Llw(#)]]|

Proof. Since the impact of bias and variance are decoupled, we can study each of their impacts
independently. Therefore, we look at the expression in Lemmal[A.T|for some bias value b and variance,
o=0.

Bx [AL(,0)] = b (Vulluw(t). B) At + 30 (B, Vi Lw(0)] ) A
— 5 (VuLlw®)], (Vs Lhw(t)] + V2,Llw(t)] ) B) AP

_ %bQ (B, V2 Llw(®) B) A + bV LLuw (1) PAL (37)
(38)

where, P = <Vw£, H> -3 <Vw£, (VZ,Llw(t)] + vaﬁ[w(t)]T)H> At and V,, L denotes the
unit vector along the gradient. It is clear that P is independent of the norm of the gradient and only
depends on the direction of the bias vector, the gradient of the loss function and the eigenvectors of
the loss Hessian. O

Theorem A.7. Noise helps avoid sharp minima The sufficient condition under which noise prevents
the system from descending the loss landscape, i.e. Llw(t + At)] > Llw(t)], is

2 1
AlZANEK
by

(%)

where A1 > Aa... > AN denote the eigenvalues of Vfuﬁ around the minima.

(39)

Proof. For sake of brevity, we assume that the bias in gradient estimates is 0 and focus only on the
effect of variance. We start the proof by recalling the Taylor series expansion from Eq. (TT). It is
clear that while following the true gradient:

1
[Llw(t + A1) = LIwB)]] gias=0 var=0) = ~ | VwLI?At + 5 (VaL, V4, LV L) At? - (40)

Using Lemma[A;Iland Eq. @0), we can write the expected decrease in £ in one weight update step
(with 0 bias and o~ variance) as:

2
(Lot + A1)~ Lfao(t)] g, p2) =~ VuLI?At 4+ (<vwc, VALVuL) + % mv,%,q) A2
@1
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We note the following inequalities from linear algebra which will be useful in proving the result:

ANV Ll]* <(Vwl, VoLV wL) < M|V L]
Ay < %mvm <\ (42)

Using the relations in ineq. [42] we can lower bound the change in £ from Eq. (41):
1
Llw(t + At)] — Llw(t)] > —|| VW L||?At + 3 (AN[IVwL|® + 0°An) A (43)

In order to understand the conditions under which a weight update step causes an increase in £, we
focus on the conditions when L[w(t + At)] — L[w(t)] > 0. As such, if the RHS of inequality [43]is
greater than 0, then the weight update step necessarily implies L[w(t + At)] > L[w(t)]. Therefore,

1
[V LIPAt + 5 (Al VuLl? + 0%Aw) At > 0

2 1
Ay > — - (44)

T A ()

Similarly, we can upper bound L{w(t + At)] — L[w(t)] and set the upper bound to be less than or
equal to 0 in order to study the sufficient conditions under which the weight update step leads to
decrease in the loss function.

Llw(t+ At)] — Llw(t)]

IN

1
_“Vw£WAt+§(Mﬂvwﬁw4ﬂgAQzu2SO
2 1

i )\1 —_—_——
At (o)

IN

(45)
O

Theorem A.8. Bias prevents descent into local minima dependent on Hessian spectrum. Bias in
gradient estimates could prevent converging to a minima. Specifically, the sufficient condition for the
weight updates to produce a decrease in L when using a biased estimate of the gradient is:

b 1 2 1 1
L - ORI S 46)
IVll = VN 1+ oAt + I+ 40At+ 02AL VN (1+ ZuAt) (

where wg = ZZ )\%, i.e. the Frobenius norm of the loss Hessian, and \1 > \a... > Ay denote the
eigenvalues of V2, L around the minima and V2, L is a normal matrix.

Proof. For sake of brevity, we assume that the noise in gradient estimates is 0 and focus only on the
effect of bias. We start the proof by combining Lemma[A.T|and Eq. to get the expected weight
decrease in £ in one weight update step (with bias=b and no variance):

1
Llo(t+ A1) = Lw(t)] = ~|VwLPAt + 5 (VL V4LV WL) A +b (VoL 8) A
1 1
+ 50 (B.V2LB) ar - 50 (VL (V5L + V2L B) AP (47)
Furthermore, we denote the eigenvalues of the Loss Hessian, i.e. V%,E, around the minima as

A1 > Ag... > Ay and the corresponding eigenvectors as vy, Vo...Vy. Assuming Vfuﬁ is normal,
we can express V., £ and [ in the basis space of {vi,vs..un}, ie. V£ = >, a;v; and
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B = >, Biv;. Using standard results from linear algebra, we can write the following expressions:
(Vwl, VLLVWL) =Y N}
<Vw£7 ﬁ> = Zazﬂi
(8.v3,L8) = > A6
(VL (V2L + V2LV B) = (Vo l, V2L B) + (Vo l, V2,7 B)
= (VWL VALB) + VLTV 8
= (VWL V2LB) + (V2L B)
=23 Naif; (48)
Plugging in the relations from Eq. into Eq. {@7), we get:

_ 2 1 2 2
Llw(t + At)] - Lw(1)] = ~ | VWL At + 5 Zmi At? + bZalﬂiAt

1 2 2 A 42 2

3

(49)
We can factorize the quadratic in the second summation term as follows:

Niaf At + 2b0; Bi(1 — N At) + N2 AtBE = af (MAL + 2v;(1 — N At) + N Aty7)

where, ~; = b
Qg
—(1 = NAY) £/1—2NAt

The roots of the quadratic are:

At
Assuming small Ir, i.e. A\;At << 1 and using the relation: (1 +z)" ~ 1+ nx when |z| << 1

—(1 = NA) £ (1 - 12)3At
The roots are: ~ ( ) £ ( 247 )

N At
11— NAt
Therefore, th t 0, 22—
ereirore € roots are AlAt
2 2 2 2 1 - NAt
So, )\Z‘Oéi At + QszﬂZ(l — )\,At) + \;b Atﬂz = aj AzAt’Yz ¥i + QW

(50)
We can further impose the dot product inequality to bound the summation term in Eq. (@9):

D NaFAL+ 260 Bi(1 = NAL) + NDPALET = (bBi(bBNAL + 205(1 — N AL)))

< \/ZbQﬂf\/Z(b,Bi/\iAt+2ai(1—/\iAt))Q

Using the norm relation: ||B||2 = Z 53 =N,

D Xief At + 2b0iBi(1 — \At) + \ib2 At < bV N|[ALC) + 20, — 2A1C|| (51)
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where gl = [)\151 )\2ﬁ2 Alﬁ’b ...}T, CQ = [Oll Qg ... Oy }T and <3 =
Ao Ao o Aoy ]T We can bound the norms of each of these vectors to further bound
the RHS of inequality [ST}

Il = \/Z B2 < \/Z Af\/z 82 = pV/N

IGll =\ [37 a2 = IVt

I¢sll = \/Zkfa? < \/ZAf\/Za% = ¥V L]l (52)

where ¢ = />, A2 = || V2 L| g, i.e. ¢ is the Frobenius norm of the loss Hessian. Applying the
triangle inequality and ineq. [52] we can upper bound the expression in inequality 51}

|bALC + 20 — 2AtG || < DAL + 2||C2 | + 2At |G|
< DALYVN + 2|V £|| + 2410 || Vo £||
D (N At + 2ba; (1 — NAL) + NP AtB7) < bV N(WALYN + 2| Vo L] + 20At| Vo £])

K2

D (Ao At + 2ba;Bi(1 — NAL) + N2 A7) < BYAIN + 20V N[V L[| (1 + AL (53)

i

Plugging inequality [53]into Eq. (#9), we can upper bound the change in L.

Llw(t + At)] — Llw(t)] < —|| VW L|?At + %(b%AtN + 20V N ||V £]|(1 + 9 AL))

o Lhwlt 1 AD] — Liw(0)] < — [VWLPAl+ [V LlbWEALL +par) + CNVAL

(54)

To derive the conditions when £ will necessarily decrease upon one step of weight update, we can
set the above upper limit to be < 0, implying that L[w(t + At] < L]w(¢)]. Therefore,

2 2
||V LI At + [| Vo £][bV N AL + $AL) + % <0
= b2 NP AL
Q(IVwL) = IVwl|?At — |V L[|V NAL(L 4 1 At) — + >0 (55)

It can be clearly seen that Q(0) < 0 and @ is an upward facing parabola. Therefore, one of the roots
are negative and the other positive. Since ||V, £|| cannot be negative, the above condition can only
be satisfied iff:

bW NAL(L + PAL) + /DENALZ(1 + ) At)2 + 202N A3
2A¢
1+ AL+ /1 4+ At + Y2 At?
V] > oy N YA VTR
Again, using the relation: (1 +z)" ~1+nx when |z| << 1

VWLl >

1
V1 + ApAt+ P2AE2 ~ 1+ 5 (At + VIAL?) ~ 1+ 20AL

Therefore, ||V, L] > bVN(1+ %wAt)
b 1 1
= = < = (56)
IVwL| = VN (14 39At)
O

Tightness of Bound: One of the key inequalities used for proving Theorem is the dot product
inequality. It is well known that the dot product inequality is weaker for high dimensions, specifically
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because two random vectors in high-dimensional space are more likely to be orthogonal, i.e. their
dot product is /= 0. This is also reflected in Fig. 8| where as the number of dimensions increases, the
bound in Theorembecomes a weaker. Therefore, even though we have a sufficient condition
that produces a decrease in £, it may not accurately reflect the conditions under which £ can
decrease almost always. To derive these conditions and derive a more stronger bound, we turn to
the probably approximately correct framework and concentration inequalities. The concentration
inequality for dot product in high dimensions states that for unit vectors X,V in N-dimensional

space, <X , Y> concentrates around ﬁ Therefore, we can assume that with very high probability,

<X , Y> < é/—g = %\/ﬁ Incorporating this into inequality

< JN\/XT: b2ﬁl2\/zz:(bﬁl/\lAt + 20;(1 — N AL))?

(57)
Following the rest of the proof as above, we can add a correction factor of v/ in the final inequality.
Therefore,
VN
IVwL| > bV N (1 + <1 + {) wm) (58)
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Figure 8: Empiricial verification of Theoremfor increasing dimensionality of parameter space.
Black dashed line indicates the bound in Theorem and Gray dashed dotted line indicates the
probably approximately correct bound that offers a stronger condition for higher dimensions. (A) 1
dimensional parameter space; (B) 5-dimensional parameter space where the probably approximate
bound satisfies the loss decrease condition with & 95% probability; (C) 25 dimensional parameter
space where the black line is a weak bound; (D) 100 dimensional parameter space where the gray
line is a stronger bound for decrease in L.
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B EXPERIMENTAL DETAILS

All experiments were implemented using PyTorch 1.10.2 (license: https://github.com/
pytorch/pytorch/blob/master/LICENSE). For all experiments, the direction of bias was

chosen to be along the direction of vector 1 for simplicity. However, this choice is not a necessity
for our experimental results and merely a design choice. Note that our theoretical results are generic
enough for any bias direction. Furthermore, for Figures 3-7, torch DoubleTensor was used, which
allowed for float64 level of precision (resolution ~ 2.22e-16). Implementation details pertaining to
each figure are presented below

B.1 FIGURE 1

A VGG-16 (initialized with ImageNet-pretrained weights) was trained to perform object recognition
on the CIFAR-10 dataset using the Negative Log Likelihood loss function. Each update entailed
computing the gradient over the entire dataset, instead of using the more commonly used stochastic
gradient descent. This procedure is more commonly known as the full-batch gradient descent. Some
amount of bias and variance was added artificially to the computed gradient before making updates.
The amount of variance and bias were chosen to be a function of the gradient norm, such that at
each step the ratio of the net variance and/or bias to the gradient norm was constant. We plot the
performance degradation/improvement corresponding to this fixed variance and bias ratio in the
colorplot. Note that we performed a sweep over different variance and bias ratios in order to generate
the 2d colorplot. The standard SGD optimizer from PyTorch was used and the optimizer step was
called at the end of each epoch to use the full-batch gradient for updates. Hyperparameter values
for training are as follows: epochs = 50, learning rate = 0.02, weight decay = 0.0, momentum =
0.9, batch size = 5000. Each bias and variance configuration was run for 3 seeds and accuracy
values were averaged over these 3 seeds for plotting. The training was run on an RTX8000 gpu
and accelerated using the ffcv library (Github repo: https://github.com/libffcv/ffcv,
License: https://github.com/libffcv/ffcv/blob/main/LICENSE) and each run (1
seed) took approximately 10 minutes.
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Figure 9: Figure 1 from main text plotted in Spectral colormap. Train and test accuracy of a VGG-16
network trained for 50 epochs (to convergence) on CIFAR-10 using full-batch gradient descent (with
no learning rate schedule) with varying amount of variance and bias (as a fraction of the gradient
norm) added to the gradient estimates. These results (avg of 20 seeds) indicate that excessive noise
and bias harms learning, but a small amount can aid it.

B.2 FIGURE 3

We ran multiple repeats to sample different noise vectors, typically 20. However, to ensure that the
mean of the sampled noise vectors was 0, we artificially sampled an additional noise vector such that
the sum of all sampled vectors was 0. This procedure ensured that the bias in gradient estimates was
0 and we could observe the impact of variance, independent of the bias. We observed that this is a
feature of finite sampling and if we increase the number of noise vector samples, the sample mean
reduces. However, in line with time and compute budget we added this artificial sampling technique.

(A) The teacher network was set to be a single linear layer mapping the input to output. For the
student networks with varying width in the hidden layer, the first layer projecting the input to the
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latent space is kept fixed and initialized such that the variance of the input is preserved. The weights
from the hidden units to output are learned using gradient descent. Decreasing the width below the
input dimension also proportionally reduces the variance and therefore trace of the hessian reduces.
This results in no change in the AL when width is less than the teacher width.

(B,C) The teacher network was set to have 4 hidden layers with ReLU non-linearity. The student
networks were allowed to have varying depth and width in each layer. The width of all layers was set
to the same value. For each configuration, a linear and a ReLU student network was run.

All these experiments were ran on CPU and took a couple of hours. For each configuration, 20
different teacher initializations and 20 different student initializations were used, thereby indicating
results averaged over different datasets and ANN initialzations.

B.3 FIGURE 4

Similar to Figure 3A, these experiments were ran on a linear teacher and student network to validate
the relationship between AL and bias. For each experiment some bias value was set and the bias
vector was artificially added to the gradient vector. Each experiment entailed setting the teacher
weights to a random configuration and using different such configurations, typically 20. For each
teacher configuration, we ran multiple seeds, typically 20, to simulate multiple student network
initializations. For each seed, we trained a control network for 10 epochs in order to efficiently
sample parameter configurations exhibiting wide range of gradient norm. All these experiments were
ran on CPU and took around an hour.

B.4 FIGURE 5

The teacher network was a VGG-19 configuration trained on the CIFAR-10 dataset to achieve 92.6%
accuracy.

(A) For each student network configuration, ImageNet-pretrained and random initialization weights
were used. The last layer was re-initialized to have 10 output units as opposed to the typical 1000
units. Each experiment entailed training the student network to match the teacher outputs for 10
different seeds, i.e. student initializations. For each seed, the student was trained for 5 epochs to
sample a wide range of gradient norm. For each update step, 20 random vectors were sampled to add
noise to gradient. The norm of the vectors was chosen such that the variance in gradient estimates is
20. Similar to Figure 3, the artificial sampling correction was used to ensure an unbiased gradient
estimate.

(B) Downsampling indicates reducing the width of network by the downsampling factor. The number
of channels in the convolutional layers was reduced by the downsampling factor and the number
of units in the linear layers (except the final output layer) were reduced by the downsampling
factor. Since these are alterations to the VGG configurations, no ImageNet pretrained weights were
available. Hence, only random initializations were used. Same procedure as above was used for each
experiment.

Each experiment was run on an RTX8000 GPU and required 10 GB RAM. One experiment took
around an hour and multiple experiments were run in parallel on the institute cluster. Note that there
was no observed relationship in AL and gradient norm in any of the experiments.

B.5 FIGURE 6

Same procedure as above but did not require random sampling of noise vectors. Instead, a constant

vector along 1 was added to the gradient such that the amount of bias in gradient estimates is
b=0.02.

B.6 FIGURE7
All experiments were run on a linear network setting. For each experiment, the Hessian of the

(MSE) loss function was changed by altering the covariance matrix of the input. To compute the
empirical likelihood of descent, we sampled different student network initializations (here 100) and a
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weight update step was performed with respective variance or bias values. For each such update, we
counted the number of updates that led to a decrease in the loss and finally divided this number by
the total number of updates performed in the experiment, thereby yielding the empirical likelihood of
descending the loss landscape. We also ran this process over multiple teacher network initializations
(here 10). It is worth noting that for the case of noisy gradients, we followed similar suit as described
in experimental procedure for Fig. 3 to ensure that the amount of noise added was zero-mean and the
mean decrease in loss was measured.

(A,B) Similar noise vector sampling procedure was employed and the amount of noise to gradient
norm ratio was fixed for all experiments. These experiments followed similar suit as Figure 3.

(C) Similar procedure as Figure 4. Although, here the bias to gradient norm ratio was fixed for all
experiments.

These experiments were performed on CPU and took less than an hour.

C DETAILED DISCUSSION ON RELATED WORKS

C.1 RELATION TO METHODS AND FINDINGS FROM RAMAN et al.

Our study is significantly motivated and influenced by the setup used by Raman et al.|(2019). Despite
these strong links, there are certain distinctions in our approach that we elaborate on in this section.
In their setup, Raman et al. assume the weight update step can be decomposed into a term aligned
with the gradient, a term orthogonal to the gradient, and synapse-intrinsic noise. They proceed to
derive the optimal network size, specifically width, beyond which learning on the training set is
impeded. Instead, in our work, we analyze the role of different architectural choices, like depth,
width, and nonlinearity, in mitigating the impact of variance and bias in gradient approximations on
both training and generalization performance. Notably, our setting can be used to understand both the
impact of intrinsic noise (see extensions to Theorem 2.2) as well as gradient approximation noise on
the network performance.

C.2 RELATIONSHIP TO STOCHASTIC GRADIENT DESCENT AND DROPOUT

Deep learning pipelines rarely use the true gradient of the loss function over the entire dataset to
make weight updates. Instead, it is common practice to add noise in different forms, e.g. mini-batch
stochasticity (Bottou,|2012), dropout (Srivastava et al.,[2014), dropconnect (Wan et al.,[2013) and label
noise (Blanc et al.,[2020; HaoChen et al., 2021} |Damian et al., 2021). Although the noise structure
may differ from assumptions in our work, our analytical results can be extended to incorporate the
specifics in each case and understanding its impact on learning dynamics.

For stochastic gradient descent (SGD), the noise in gradient (under small learning rate) is unbiased.
Although SGD does not exhibit white noise structure, several analytical and empirical studies have
used white noise structure to model SGD dynamics, and concluded that the SGD noise acts as a
regularizer against converging to sharp minima (Foret et al.l 2020; |(Chaudhari et al.} 2019} Yao et al.}
2018 |Ghorbani et al., [2019; [Smith et al.| 2021)). Furthermore, it has been shown that anti-correlated
noise injection improves generalization (Orvieto et al., 2022)). Moreover, some studies have leveraged
Langevin dynamics to understand the learning trajectory under noisy weight updates (Murray &
Edwards| [1992} Rognvaldsson, |1994). Taken together, these results are in agreement with our analysis
of variance in gradient estimates and therefore indicate that our work has far reaching consequences
in understanding gradient-based learning. Similarly, dropout can be thought of as adding noise to
the credit assignment pathway. However, dropout involves turning off a random subset of units
in the network and each such configuration yields an approximation to the gradient, characterized
by some variance and bias with respect to the true gradient. For a truly unbiased estimate of the
gradient, one must compute an estimate of the gradient across all configurations, something quite
uncommon. Empirical results in the deep neural networks have demonstrated that dropout leads to
better generalization, albeit at the cost of slightly worse training performance. This result indicates
that our analysis of bias in gradient estimates is also relevant to understanding how different training
strategies affect gradient-based learning dynamics.
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C.3 A NOTE ON PRACTICAL APPLICATIONS

We believe that our work is an initial step towards understanding the impact of gradient approxima-
tions on learning and generalization and the role of network architecture choice in mitigating such
impacts. Notably, we believe that our work could provide guidelines for neuromorphic chip design by
suggesting possible network architecture choices as well as choice of nonlinearity when the properties
of approximation, i.e. variance and bias in gradient estimates, are characterized. Furthermore,
we believe that our work scopes out the knowledge landscape in computational neuroscience for
biologically-plausible learning rules and future work could aim to characterize popular learning rules
using this framework. Similar characterizations could be carried out in biological agents while they
learn to perform a task and therefore understand what regime of variance and bias exists in biological
circuits. In doing so, we believe we can better formulate learning rules as well as make testable
predictions about learning in the brain.
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