Under review as a workshop paper at NeurIPS 2022

A LOW-LEVEL PATH FUNCTION

The low-level path function (see LL_PATH, Algorithm |4) computes a path from the starting state
to the goal state in the environment using low-level actions. However, it is responsible not only
for returning the path but also for checking false positive errors of the verifier. Specifically, the
verifier can accept an unreachable state in Algorithm [3|and then wrongly include it in the solution
path. Thus, LL_PATH has to construct a low-level path and confirm that every step on the way is
achievable.

Algorithm 4 Low-level path

function LL_PATH(s, parents)
> parents is the dictionary of parent nodes in the subgoal tree. (S,C) € parents means that
C is a subgoal for state S

path « [|

while s in parents.KEYS() do
subgoal_path + GET_PATH(parents|s], s) > see Algorithm 2]
if subgoal_path = [| then return False > mistake of the verifier

path < concatenate(subgoal_path, path)
S + parents|s]

return path

13

Under review as a workshop paper at NeurIPS 2022

B TRAINING DETAILS

B.1 ARCHITECTURES

INT and Rubik’s cube. All components of AdaSubS utilize the same architecture. Specifically, we
used mBart, a transformer from the HuggingFace library (see Liu et al.| (2020b))). To make training
of the model and the inference faster we reduced the number of parameters: we used 45M learned
parameters instead of 680M in the original implementation. We used 6 layers of encoder and 6 layers
of decoder. The dimension of the model was set to 512 and the number of attention heads to 8. We
adjusted the size of the inner layer of position-wise fully connected to 2048. During the inference,
we used beam search with width 16 for INT and width 32 for Rubik’s Cube. Our implementation of
the model follows (Czechowski et al.,|2021, Appendix B.1)

Sokoban. We used four convolutional neural networks: the subgoal generator, conditional low-
level policy, value, and the verifier. They all share the same architecture with a different last layer,
depending on the type of output. Each model had 7 convolutional layers with kernel size (3,3)
and 64 channels. Conditional low-level policy and verifier need two Sokoban boards as an input,
so for these networks we concatenate them (across the last, depth dimension) and we treat two
boards as one tensor. For the value function on top of a stack of convolutional layers there is a fully
connected layer with 150 outputs representing 150 distances to the goal or. CLLP has analogous
final layers with the one exception that there are only two classes: determining if a subgoal is
possible to reach by CLLP or not. Network used for generation of subgoals returns two outputs:
distribution over possible modifications of a given state, and prediction whether a modified state is
a good subgoal. First output is obtained with a fully connected layer, second with global average
pooling followed by fully connected layer. Generation of a single subgoal is realised as a sequence
of calls to this network. We start from a given state and iteratively apply modifications with high
probability assigned by the first head of the network, until the second head predict that no more
iterations are needed. (see also Appendix |[G.I)

B.2 TRAINING PIPELINE

To ensure fair comparison with |Czechowski et al.| (2021) we followed their settings of training
pipeline.

INT and Rubik’s Cube. To train the models we used the training pipeline from the HuggingFace
library [Liu et al.|(2020b). We trained our models from scratch without using any pretrained check-
points. The size of the training batch was 32, the dropout was set to 0.1, and there was no label
smoothing. We used the Adam optimizer with the following parameters: 5; = 0.9, 83 = 0.999,
€ = 10~%. We applied warm-up learning schedule with 4000 warm-up steps and a peak learning rate
of 3 - 10~%. For inference in INT, we used temperature 1 and for Rubik’s Cube to 0.5 (the optimal
value was chosen experimentally).

Sokoban. For the training of all networks we used a supervised setting with the learning rate 10~*
and trained for 200 epochs. We used Adam optimizer with 8; = 0.9, 82 = 0.999 and e = 107,

B.3 DATASETS

For dataset used to train all the network see Appendix

14

Under review as a workshop paper at NeurIPS 2022

C COMPUTATIONAL BUDGET ANALYSIS

The default metric of the graph size that we use for comparisons counts all the states visited during
the search, both high-level subgoals and intermediate states passed by the CLLP. It is a good estimate
of the number of steps the algorithm takes to solve the given problem. For completeness, in this
section, we analyze the total number of calls to every learned component of the pipeline for AdaSubS
and the baseline kSubS.

Since all of the main components are deep neural networks, their evaluation time dominates the
computational budget. Tables and [present the number of calls to each component per 1000
episodes. That indicates which component consumes the largest part of the computational budget.
The results are presented for different numbers of beams (see Appendix [G.T) used for sampling
predictions from the subgoal generators — the only component that outputs a set of predictions. The
default number of beams was 16 for Sokoban and INT, and 32 for the Rubik’s Cube (see Appendix
[F| for the complete list of the parameters).

As the tables show, AdaSubS not only solves more problems within smaller search graphs but also
calls each component fewer times, which results in faster inference.

In the Rubik’s Cube, the calls to the generators dominate the computations. However, when using
smaller beams, this number can be significantly reduced while preserving the high success rate. In
all the environments, AdaSubS is less sensitive to reducing the number of beams than kSubS in
terms of performance. This is the case since in AdaSubS every single generator creates less subgoal
candidates (see Tables[7}9), thus it does not require wide beam search. Therefore, by reducing the
number of beams, AdaSubS can provide strong results within a much shorter time.

In the Rubik’s Cube and Sokoban, using the verifier in AdaSubS significantly reduces the number of
calls to the low-level policy. However, in INT it is not the case. In most cases when kSubS fails to
find a solution, at some point it cannot create any valid subgoal, thus the search ends early. AdaSubS
does not suffer from this issue, since it uses more generators. Thus, it counts the calls even from
hard instances that require much larger graphs.

As shown in Table[3] if we count the calls only for the tasks solved by both methods, AdaSubS offers
an advantage. Therefore, AdaSubS indeed provides better results within a smaller computational
budget compared to kSubS.

Environment | Rubik’s Cube
Variant kSubS kSubS AdaSubS AdaSubS AdaSubS AdaSubS
(32 beams) (4 beams) | (32 beams) (8 beams) (4 beams) (2 beams)
Success rate 98.8 97.1 99.2 99.2 99 98.5
Generator calls | 6 085 504 852424 | 8872512 2205296 1244344 680702
Verifier calls 0 0 277266 275662 311086 340 351
Policy calls 1330328 1526116| 352883 350877 395804 446 320
Value calls 259381 285899 | 163566 162859 181828 197 567
Total calls 7675213 26644399 666227 2994694 2133062 1664 940
Wall-time 24h 13h38m | 26h39m 13h43m 13h9m 10h 9m

Table 2: Comparison of the number of calls to generator, verifier, policy, and value networks for different
number of beams (width of beam search in subgoal generation)) for Rubik’s Cube environment.

15

Under review as a workshop paper at NeurIPS 2022

Environment | Sokoban
Variant kSubS kSubS kSubS AdaSubS AdaSubS AdaSubS
(16 beams) (8 beams) (4 beams) | (16 beams) (8 beams) (4 beams)
Success rate 84.4 84.6 82.3 94 94 94.1
Generator calls | 2 500 192 1281368 746812 |3389456 1692096 848 764
Verifier calls 0 0 0 211841 211512 212191
Policy calls 4576 807 4693216 5554468 | 248 120 247785 247 993
Value calls 183056 187337 216409 81 829 81716 81929
Total calls 7260055 6161921 6301280|3931246 2233109 1390877
Wall-time 13h33m 10h 50m 9h 20m 15Sh6m 10h56m 8h31m

Table 3: Comparison of the number of calls to generator, verifier, policy, and value networks for different
number of beams (width of beam search in subgoal generation) for Sokoban environment.

Environment | INT
Variant kSubS kSubS AdaSubS AdaSubS AdaSubS
(16 beams) (4 beams) | (16 beams) (8 beams) (4 beams)
Success rate 90.7 89.7 96 96 95.3
Generator calls | 107472 26008 | 362560 166032 76356
Verifier calls 0 0 67 980 62262 57267
Policy calls 378 125 366 805 | 801345 738000 659 545
Value calls 6906 6 682 14 053 13012 11928
Total calls 492 503 399495 | 1245938 979 306 805 096
Wall-time 4h 15m 3h22m | 12h 10m 8h5Im 86 38m

Table 4: Comparison of the number of calls to generator, verifier, policy, and value networks for different
number of beams (width of beam search in subgoal generation) for INT environment.

Environment | INT
Variant | kSubS ~AdaSubS
Generator calls| 93472 102112
Verifier calls 0 19 146
Policy calls 328 485 300 120
Value calls 6206 5597

Total calls | 428 163 426975

Table 5: Comparison of the number of calls to generator, verifier, policy, and value networks for problems
solved by both methods for INT environment.

16

Under review as a workshop paper at NeurIPS 2022

D DATASETS AND DATA PROCESSING

Sokoban. To collect offline data for Sokoban we used an MCTS-based RL agent from Mitos et al.
(2019). Namely, the dataset consisted of all successful trajectories obtained by the agent: 154000
trajectories for 12x12 boards with four boxes. We use 15% of states from each trajectory to create
the training dataset D. We performed the split of dataset D into two parts of equal size: D7 and
Ds. The former was used to train the subgoal generators and conditional low-level policy, while
the latter was used to train the verifier network. This split mitigates the possibility of the verifier’s
over-optimism concerning the probability of achieving subgoals by CLLP.

INT. We represent both states and actions as strings. For states, we used an internal INT tool for such
representation. For actions, we concatenate one token representing the axiom and the arguments for
this axiom (tokenized mathematical expressions) following (Czechowski et al.|(2021)).

To generate the dataset of successful trajectories we used the configurable generator of inequalities
from the INT benchmark (see Wu et al.[(2020)). We adjusted it to construct trajectories of length 15
with all available axioms. The dataset used for our experiments consisted of 2 - 10° trajectories.

Rubik’s Cube. To construct a single successful trajectory we performed 20 random permutations
on an initially solved Rubik’s Cube and took the reverse of this sequence. Using this procedure we
collected 107 trajectories.

D.1 DATASET FOR VERIFIER

The verifier answers the question of whether a given subgoal is reachable by the CLLP. Thus, the
dataset for training this component cannot be simply extracted from the offline trajectories.

To get the training samples for the Rubik’s Cube and INT, we run AdaSubS without the verifier.
That is, we set t,; = 1 and t1, = 0, which essentially means that the reachability of all the
subgoal candidates is checked solely by CLLP. During the searching, the generators create subgoal
candidates, which are then verified by CLLP. Therefore, after working on some problem instances,
we obtain a reach dataset of valid and not valid subgoals, marked by CLLP.

For the experiments in Sokoban, the limitation of the size of the offline dataset is an important factor
for the final performance. Therefore, to ensure a fair comparison of AdaSubS with baselines, we do
not generate additional solutions. Instead, we split the dataset as described above into Dy and D,
and used only D, to generate data for the verifier. From every trajectory in Dy, we sample some
root states. For every such state, we use the subgoal generators to predict subgoal candidates. Then,
CLLP checks the validity of each of them and we include them in the verifier training dataset.

After collection, it is essential to balance the dataset. Easy instances with short solutions provide
fewer datapoints than hard tasks that require a deep search. Thus, it may happen that a substantial
fraction of data collected this way comes from a single instance, reducing the diversity of the dataset.
We observed such issues, particularly in the INT environment. To prevent this, during the collection
of the data for INT, we limit the datapoints that can be collected from a single problem instance to
at most 100. This way, we collected about 5 - 10® training samples for the verifier for each domain.

17

Under review as a workshop paper at NeurIPS 2022

E BASELINES

As baselines, we use BestFS and BF-kSubS.

BestFS is a well-known class of search algorithms (including A*), which, among others, performs
strongly on problems with high combinatorial complexity [Pearl (1984)), achieves state-of-the-art
results in theorem proving |Polu & Sutskever| (2009), and strong results on Rubik’s Cube |Agostinelli
et al.| (2019); |Czechowski et al.[(2021)).

Similarly to AdaSubS, BestFS iteratively expands the graph of visited states by choosing nodes with
the highest value and adding its children to the priority queue. However, instead of using children
from the subgoal tree, it uses direct neighbors in the environment space. In other words, we use a
single policy network to generate neighbor subgoals in the distance of 1 action from a given node
and treat it as a new subgoal. One can implement BestFS by replacing the call to a subgoal generator
pr. in Algorithm [T|with ppps.

pprs works in the following way. First, it uses a trained policy network to generate actions to
investigate. Specifically, for INT we use beam search to generate high probability actions (it is
necessary as for INT we represent actions as sequences, following |Czechowski et al.|(2021))). Then,
it uses these actions to get a state that follows a given action (note that all our environments are
deterministic). Finally, we treat returned states as our new subgoals, which are easily found in one
step by the low-level policy.

BF-kSubS is the first general learned hierarchical planning algorithm shown to work on complex
reasoning domains |Czechowski et al.|(2021), attaining strong results on Sokoban and Rubik’s Cube
and state-of-the-art results on INT. BF-kSubS is a special case of AdaSubS with the following hy-
perparameters choice: a single subgoal generator and inactive verifier (with t;, = 0 and ty; = 1)
in Algorithm 3)).

18

Under review as a workshop paper at NeurIPS 2022

F HYPERPARAMETERS

Environment | Sokoban | Rubik’s Cube | INT
learning rate 1074 3-107% 3-1074
learning rate warmup steps - 4000 4000
batch size 32 32 32
kernel size (3, 3] - -
weight decay 10~* - -
dropout - 0.1 0.1

Table 6: Hyperparameters used for training.

Environment \ Sokoban

Method ‘ kSubS MixSubS AdaSubS (ours)
number of subgoals 4 1 1
number of beams 16 16 16
beam search temperature 1 1 1
k-generators 8 [8, 4, 2] [8, 4, 2]
number of steps to check (C5) 10 [10, 6, 4] [10, 6, 4]
max steps in solution check - 18 18
max nodes in search tree (C) 5000 5000 5000
acceptance threshold of verifier (¢3;) - 0.99 0.99
rejection threshold of verifier (¢;,) - 0.1 0.1

Table 7: Hyperparameters used for evaluation in the Sokoban environment.

Environment \ the Rubik’s Cube
Method ‘ kSubS MixSubS AdaSubsS (ours)
number of subgoals 3 1 1
number of beams 32 32 32
beam search temperature 0.5 0.5 0.5
k-generators 4 [4, 3] [4, 3, 2]
number of steps to check (C5) 4 [4, 3] [4, 3, 2]
max steps in solution check - 4 4
max nodes in search tree (C1) 5000 5000 5000
acceptance threshold of verifier (¢5;) - 0.995 0.995
rejection threshold of verifier (¢;,) - 0.0005 0.0005

Table 8: Hyperparameters used for evaluation in the Rubik’s Cube environment.

Most of the hyperparameters, both for training and evaluation, follow from|Czechowski et al.|(2021).

The most important parameter of AdaSubS is the set of k-generators to use and the number of
subgoals each of them generate. Based on experimental results, we have chosen generators of 8, 4,
and 2 steps for Sokoban, 4, 3, and 2 steps for the Rubik’s Cube, and 4, 3, 2, and 1 step for INT. In
the first two domains, the longest generator match the one used for kSubS. In INT, AdaSubS allows
using even longer subgoals than kSubS.

For kSubS, we used k equal to 8, 4, and 4 for Sokoban, Rubik’s Cube, and INT, respectively. The
last two were chosen from [Czechowski et al.[(2021)), as they performed the best. For Sokoban, our

experiments showed that 8-generator performs better than the 4-generator proposed in |(Czechowski
et al.[|(2021)).

19

Under review as a workshop paper at NeurIPS 2022

Environment \ INT

Method | kSubS MixSubS AdaSub$ (ours)
number of subgoals 4 2 3
number of beams 16 16 16
beam search temperature 1 1 1
k-generators 3 [3,2,1] [3,2,1]
number of steps to check (C5) 3 [3,2,1] [3,2,1]
max steps in solution check - 5 5
max nodes in search tree (C1) 400 400 400
acceptance threshold of verifier (¢,;) - 1 1
rejection threshold of verifier (¢;,) - 0.1 0.1

Table 9: Hyperparameters used for evaluation in the INT environment.

The hyperparameters for training the verifier network remain the same as for other components. The
thresholds t5; and ¢;, were chosen with a grid-search for every domain. Though some of the chosen
values may seem tight, they efficiently reduce the amount of required computations (see Appendix
@. For instance, the rejection threshold for the Rubik’s Cube of t1, = 0.0005 seems to be very low,
but it is enough to reject more than 85% of non-valid subgoals.

The parameter C (see Algorithm [I)) controls the number of high-level nodes in the search tree. It is
lower than the actual graph size that we use for comparisons since it counts neither the intermediate
states visited by CLLP nor the subgoals that turned out to be invalid. That hyperparameter was cho-
sen so that it allows all the evaluated algorithms to reach the graph size values used for comparison
in Figure [2]and others in Section 4]

20

Under review as a workshop paper at NeurIPS 2022

G COMPONENTS OF THE ADASUBS

G.1 SUBGOAL GENERATORS

The main purpose of the subgoal generator is to propose subgoal candidates in every iteration of the
planner loop. That is, given the current state s of the environment it should output other states that
are a few steps closer to the goal g.

We train a k-generator by extracting training data from successful trajectories. Let sg, s1, . .., S, be
a trajectory that leads to the goal s,,. For every state s; we train the k-generator network to output
the state s;, 1, exactly k steps ahead. Provided with a dataset of trajectories, this is a supervised
objective. Clearly, a state that is k steps ahead does not need to be exactly k steps closer to the
solution, especially if the trajectories include noise or exploration. However, it is guaranteed to be
at most k steps closer, which allows setting reliable limits for the reachability checking.

In a simple approach, k is a hyperparameter that needs to be fixed, as proposed by |Czechowski et al.
(2021). However, this is a strong limitation if the environment exhibits the variable complexity prob-
lem. Therefore, AdaSubS instead uses a set of generators, trained for different values of k. This way,
the planner can adjust the expansion to match the local complexity of the problem. Additionally,
training a set of generators can be easily parallelized.

For our generators, we use the transformer architecture. The input state is encoded as a sequence
of tokens, as described in (Czechowski et al.| 2021, Appendix C). The network produces another
sequence of tokens on the output, which is then decoded to a subgoal state. The output sequence is
optimized for the highest joint probability with beam search — the consecutive tokens are sampled
iteratively and a fixed number of locally best sequences passes to the next iteration. This way, the
generator allows sampling of a diverse set of subgoals by adjusting the beam width and sampling
temperature. The exact number of the subgoals that the generators output are given in Appendix [F}

As noted in Section for the Sokoban environment instead of transformers we use simple con-
volutional networks. In this domain, the subgoal is created by a sequence of changes to the input
state. The generator network is trained to predict the probability of changing for every pixel. Then,
the subgoals are obtained as a sequence of modifications that maximize the joint probability. For
simplicity, in AdaSubS we use beam search for all the domains, including Sokoban.

G.2 CONDITIONAL LOW-LEVEL POLICY (CLLP)

When we want to add a subgoal candidate to our search tree, we need to check whether it is reachable
from the current state. This can be done using CLLP — a mapping that given a state and a subgoal
produces a sequence of actions that connects those configurations, or claim there is no. Specifically,
the policy network, given the state and subgoal, iteratively selects the best action and executes it
until the subgoal is reached or a threshold number of steps is exceeded, as shown in Algorithm 2]

CLLP is trained to imitate the policy that collected the training data. For every pair of states s;, s;
that are located at most d steps from each other, it is trained to predict the action a;, taken in the
state s;. Such action may not be optimal but usually it leads closer to s;. The threshold d controls
the range of the policy, as it is trained to connect states that are at most d steps away. Thus, it is
essential to set the hyperparameter d to a value that is greater than the distances of all the generators
used.

G.3 VERIFIER

To check whether a k-subgoal is reachable with the conditional policy, we need to call it up to k
times. If we decide to use generators with long horizons, it becomes a significant computational
cost. To mitigate this issue, we use the verifier that estimates the validity of a subgoal candidate
in a single call. During the search, the generated subgoal candidates are evaluated by the verifier.
For each of them, it estimates whether they are valid and outputs its confidence. If the returned
confidence exceeds a fixed threshold, we do not run the costly check with the conditional policy. We
perform such a check only in case the verifier is uncertain (see Algorithm [3).

21

Under review as a workshop paper at NeurIPS 2022

At the end of the search, when a solving trajectory is found, we need to find the paths between all
the pairs of consecutive subgoals that were omitted due to the verifier (see Algorithm). Since the
length of the final trajectory is usually much smaller than the search tree, that final check requires
much less computations.

It should be noted that the verifier estimates validity with respect to the conditional policy that is
used. In case a valid subgoal is generated but the policy cannot reach it for some reason, it cannot be
used to build the search tree anyway, for no solution that uses it can be generated in the final phase.
Thus, the verifier should be trained to predict whether the CLLP that is used can reach the subgoal,
rather than whether it is reachable by an optimal policy.

To train the verifier, we run our pipeline on some problem instances. All the subgoals created by
the generators are validated with CLLP. This way, eventually we obtain a dataset of reachable and
unreachable subgoal candidates. We train the verifier network to fit that data. Unlike for the other
components, training the verifier does not require access to any trajectories, only to a number of
problem instances.

G.4 VALUE FUNCTION.

The value function V' : & — R estimates the negative distance between the current state s and
the goal state g. During the search, this information is used to select the most promising nodes to
expand. For every trajectory sy, . .., S, in the dataset it is trained to output : — n given s;. We opted
for a simple training objective but any value function can be used in the algorithm.

22

Under review as a workshop paper at NeurIPS 2022

H DEVELOPING ADAPTIVE SEARCH METHODS

There are many natural ways to incorporate adaptivity to the subgoal search pipeline. We experi-
mented with several designs to find one that gives strong results in any domain. Here we provide
detailed description of all the tested variants and the numerical results of their evaluation in our
environments. Their implementations can be found in Section [H.2}

An adaptive algorithm should adjust the complexity of the proposed subgoals to the local complexity
of the environment in the neighbourhood of the processed state. This can be realized with the
following two approaches:

» Use adaptive planner that provided a list of k-generators, in every step selects the most
promising node and a generator to expand it.

» Use adaptive subgoal generator that instead of proposing fixed-distance subgoals learns to
automatically adjust the distance.

H.1 ADAPTIVE PLANNERS

When implementing the adaptivity with the planner, we need to specify a list of k-generators
Pkos- - -5 Pk,,- 1IN every iteration, the algorithm will select a node to expand and generators from
the list that will create the new subgoals. This way, it can directly control the complexity of the
subgoals and adapt to the current state and progress of the search.

MixSubS. Given a list of trained k-generators, a simple approach is to call all of them each time a
node is expanded. In every iteration, we choose the node with the highest value in the tree and add
subgoals proposed by each generator py, to py,, . See Algorithm [5|for the implementation.

Observe that in the easy areas of the environment the search will progress fast, since the furthest
subgoal will most likely have the highest value, so it will be chosen as the next node to expand.
On the other hand, in the hard parts the shortest generators are more likely to provide subgoals that
advance towards the target at least a step.

This method already achieve superior results compared to single generators, both on small and large
budget. In the Rubik environment, it even reaches 100% solved cubes. MixSubS offer the advantage
of planning with different horizons, but at the same time, it produces many unnecessary nodes in the
easy areas, where taking only long steps suffices to solve the task. Additionally, one may want to
prioritize the generators that perform better, which cannot be done with this method.

Iterative mixing. In this approach, we specify a number of iterations /; for each generator py,. We
use py, to expand the highest-valued nodes in the first [y iterations. Then, we use pj, to expand
the best nodes in the following /; iterations and the procedure follows for the consecutive genera-
tors. After finishing with the last one, we start again from the beginning. See Algorithm [6] for the
implementation.

This algorithm offers the flexibility of specifying the exact number of iterations for each genera-
tor, which forms an explicit prioritization. It can resemble some of the listed algorithms for care-
fully chosen ;. However, tuning the number of iterations requires much more effort than the other
parameter-free algorithms do. Therefore, we experimented with another two mixing approaches that
in every iteration select the generator automatically.

Strongest-first. Another natural implementation of the planner is to choose the node with the high-
est value and expand it with the longest generator that was not used there yet. See Algorithm [7)for
the implementation. While this greedy approach maintain clear advantage over single generators, it
is outperformed by most of the mixing methods, even the simple mixes. We hypothesize that this
method is more sensitive to the errors of the value function — if the search enters an area that the
value function estimates too optimistically, it spends too much time trying to exploit it.

Longest-first (used by AdaSubS). This method in every iteration selects the longest generator that
has at least one node to expand and highest-valued node for that generator in the queue. This way,
it explicitly prioritizes using the longest generators and turns to the shorter only when the search
is stuck. See Algorithm B] for the implementation. As shown in the tables below, this method
outperforms all other designs, in all the environments and within all budget constraints. It prioritizes

23

Under review as a workshop paper at NeurIPS 2022

the better generators, but does not require specifying any additional hyperparameters. Therefore, we
consider it the best mixing algorithm and use in AdaSubS as the default planner.

H.2 ADAPTIVE PLANNERS IMPLEMENTATIONS

In this section we provide the implementations of the planners. The lines highlighted in blue indicate
the differences with the AdaSubS code. All the methods require specifying the list of generators
Pkos - - - » Pk, - The Iterative mixing planner additionally requires a list of iterations lg, . . ., .

Algorithm 5 MixSubS

Algorithm 6 Iterative mixing

function SOLVE(s)

T« 0 > priority queue

parents « {}
T.PUSH((‘/(So)7 So))
seen.ADD(so)
while 0 < LEN(T) and LEN(seen) < C do
_,s < T.EXTRACT_MAX()
Subgoals <« {pi, (5);. - i, (5)}
for s’ in subgoals do
if s’ in seen then continue
if not 1S_VALID(s, s’) then
continue
seen.ADD(s')
parents(s’] < s
T.pUsH((V (s'),s"))
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

function SOLVE(s)

Ty, < 0 >m + 1 priority queues
parents « {}
for k in ko, ...,k do
Tk.PUSH((V(SO), So))
seen.ADD(so)
cnt <0 > Iterations counter
id« 0 > Current generator id
while 0 < LEN(T) and LEN(seen) < C do
if cnt = l34 or LEN(T%,,) = O then
id < (id+ 1)%(m + 1), cnt < 0
cnt <—cnt 41
_,8 ¢ Tk, .EXTRACT_MAX()
subgoals < pg,,(s)
for s’ in subgoals do
if s’ in seen then continue
if not 1IS_VALID(s, s’) then
continue
seen.ADD(s')
parents[s’] < s
for k in ko, ..., km do
Tx.PUSH((V (8'),8"))
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

Algorithm 7 Strongest-first Algorithm 8 Longest-first

function SOLVE(s) function SOLVE(s)

T+« (0 b priority queue with lexicographic order
parents « {}
for kin ko, ..., ky, do
T.PUSH(((V (s0), k), s0))
seen.ADD(so)
while 0 < LEN(T) and LEN(seen) < C; do
(_,k),s < T.EXTRACT_MAX()
subgoals <+ px(s)
for s’ in subgoals do
if s’ in seen then continue
if not 1IS_VALID(s, s") then
continue
seen.ADD(s’)
parents(s’] < s
for kin ko, ..., km do
TrusH(((V ('), k),)
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

T+« (0 b priority queue with lexicographic order
parents « {}
for kin ko, ..., km do
T.PUSH(((k, V (s0)), 80))
seen.ADD(so)
while 0 < LEN(T) and LEN(seen) < C; do
(k,_),s < T.EXTRACT_MAX()
subgoals < pi(s)
for s’ in subgoals do
if s’ in seen then continue
if not 1S_VALID(s, s") then
continue
seen.ADD(s’)
parents(s’] < s
for kin ko, ..., km do
Tpusi(((k, V(')),)
if SOLVED(s’) then
return LL_PATH(s', parents)

return False

24

Under review as a workshop paper at NeurIPS 2022

H.3 ADAPTIVE GENERATORS

A k-generator is trained to propose subgoals that should be exactly k steps ahead. However, instead
of matching a fixed distance, it can opt for long subgoals when the next steps are clear and short
when difficulties appear, or both if it is not certain.

Implementing this idea requires changing the training of the generator. Given a training trajectory,
for each state s; we need to select the target state s,(;) that should be the output of the generator. We
tested a few methods that select this target.

Longest-reachable We use the low-level conditional policy to estimate the local complexity around
si. Specifically, we choose s,(;) to be the furthest state on the trajectory such that it is reachable from
s; with the CLLP and so do all its predecessors. In other words, we check whether CLLP starting
in s; can reach s;11, s;42, etc. When we find the first state s; that is not reachable, we set t(i) to be
j—1

Intuitively, this approach makes the generator learn to output subgoals as distant as possible, but
still reachable for CLLP. However, this way the targets are selected on the borderline of reachability,
which may lead to too hard subgoals in some cases.

Sampling-reachable To make the target state selection more robust, we modify the reachability
verification. Instead of greedily following the best action determined by CLLP probabilities, in
every step we sample the action. This way, we are more likely to take suboptimal actions, so the
selected target should be reachable with higher confidence.

Secondary-reachable Another method of making more robust selection is to follow the action with
the lowest probability that exceeds a fixed threshold, e.g. 25%. Intuitively, we follow the action that
CLLP consider as good, but is less certain than in case of the highest-ranked. Therefore, a subgoal
reached in this way should be reachable with even higher confidence when following the greedy
actions.

Our experiments show that the adaptive generators trained according to those designs perform well
in the environments we consider. For instance, all the methods reach nearly 90% solve rate on
Sokoban. However, none of them provide better results than the kSubS baseline. Therefore in this
work we focus on planner-based adaptivity and leave tuning the adaptive generators pipeline for
future work.

H.4 BENCHMARKING RESULTS

Tables show the numerical results achived by the adaptive planners described in section [H.T]
compared to baselines: BestFS and kSubS. For some of the methods a few variants are provided.
In each table, the longest-first, strongest-first and iterative mixing methods use the same set of
generators: [3,2,1] for INT, [4,3,2] for Rubik, and [8,4, 2] for Sokoban. Our main algorithm,
Adaptive Subgoal Search, uses the longest-first planner and the verifier network.

25

Under review as a workshop paper at NeurIPS 2022

INT
Small budget (50 nodes) Large budget (1000 nodes)

with verifier without with verifier without

BestFS - 1.7% - 36.7%
=4 2.2% 0.1% 82.4% 83.0%

KSubS k=3 4.0% 0.2% 89.6% 90.7%
=2 2.1% 0.5% 89.8% 91.7%

=1 0.0% 0.0% 34.7% 46.0%

k=[4,3,2] 0.0% 0.0% 94.6% 95.0%

MixSubS k=[3,2,1] 0.0% 0.0% 92.2% 92.9%
k=[3,2] 17.0% 14.8% 92.2% 93.5%
iterations=[1,1,1] 32.0% 30.1% 87.0% 88.6%

Iterative mixing iterations=[10,1,1] 43.0% 44.8% 95.1% 96.0%
iterations=[4,2,1] 54.0% 52.1% 93.6% 95.5%

Strongest-first 39.5% 40.8% 88.5% 89.8%
Longest-first 59.0% 51.5% 95.7% 95.5%

Table 10: INT benchmark

Rubik

Small budget (400 nodes) Large budget (6000 nodes)

with verifier without with verifier without
BestFS - 0.0% - 1.8%

k=4 28.8% 24.5% 98.6% 98.8%
KSubS k=3 19.3% 18.6% 95.6% 95.4%
b k=2 8.2% 4.5% 99.0% 95.8%
k=1 0.5% 0.5% 76.5% 76.5%
MixSubS k=[4,3,2] 29.1% 20.9% 99.1% 100.0%
ot k=[4,3] 49.1% 45.1% 99.2% 100.0%
iterations=[1,1,1] 33.5% 23.0% 99.2% 100.0%
Iterative mixing iterations=[10,1,1] 50.6% 43.6% 99.1% 99.9%
iterations=[4,2,1] 48.4% 41.2% 99.2% 100.0%
Strongest-first 33.4% 27.1% 99.0% 99.9%
Longest-first 58.0% 52.4% 99.2% 100.0%

Table 11: Rubik benchmark

26

Under review as a workshop paper at NeurIPS 2022

Sokoban

Small budget (100 nodes) Large budget (5000 nodes)
with verifier without with verifier without
BestFS - 45.9% - 82.6%
k=16 13.7% 5.1% 60.5% 63.5%
KSubS k=8 26.0% 4.7% 85.6% 84.4%
u k=4 8.2% 2.6% 68.1% 65.5%
k=2 1.4% 0.7% 40.0% 38.3%
MixSubS k=[8,4,2] 52.7% 37.7% 91.7% 90.2%
k=[16,8,4] 55.6% 44.9% 89.1% 89.0%
iterations=[1,1,1] 52.7% 37.7% 91.7% 90.2%
Iterative mixing iterations=[10,1,1] 68.3% 58.6% 92.5% 92.1%
iterations=[4,2,1] 64.5% 52.6% 93.5% 93.2%
Strongest-first 54.6% 41.9% 92.0% 90.8%
Longest-first 72.2% 63.4% 93.4% 93.6%

Table 12: Sokoban benchmark

27

Under review as a workshop paper at NeurIPS 2022

I INFRASTRUCTURE USED

We performed experiments using two types of hardware: with and without access to GPUs. In
the former, we used nodes equipped with a single Nvidia V100 32GB card or Nvidia RTX 2080Ti
11GB. Each such node had 4 CPU cores and 168GB of RAM. In the latter, we used nodes equipped
with Intel Xeon E5-2697 2.60GHz CPU with 28 cores and 128GB RAM.

Each transformer model was trained on a single GPU node for 3 days. Sokoban models were trained
on CPU nodes (due to the small size of the models).

28

