A Proof of Lemma(ll

The e-sensitivity of distributions is defined below.
Definition A1 (¢-Sensitivity). A distribution D(-) is called e-sensitive if for any 6,0’ € © there
exists a constant € > 0 such that
Wi (D(6), () < < 6 - &/,
where Wy (D, D') denotes the Wasserstein-1 distance.

Next, we provide the following lemma.
Lemma Al. Suppose that the distribution map D(0) forms a location family (7). Then, we have

Wi (D(6).D(6')) < [|A (6 - 6)],-

Proof. By definition, W1 (D(O), D (0’)) = infl‘(p(g)ﬁp(gl)) E(ZQ,ZQ,)N(D(G),D(G/)) HZQ - Zg/ H2’
where I' (D(8),D (8')) is the set of all couplings of the distributions D(8) and D (8"). One way
to couple D(6) and D (8') is to set Zg ~ D(@) and Zg: ~ D (6'). Under this setting, with the
definition of D(8) (7), we have E(z, z,,)~(0),0(0") | Z0 — Zo'|l, = HA (0 - 0’) ,» and hence
W, (D(6).D(6)) < A (6 - 0) =

l>-

Define omax(A) := maxg|,—1 [|A0)||2, we have |A (6 — 0’)”2 < Omax(A) |6 — 0’”2. By
Lemma Wh (D(O), D (0’)) < Omax(A) HH — 0’H2. By Deﬁnition the sensitivity parameter
£ < Omax(A), which proves Lemma

B Proof of Lemma

Proof of the L-Lipschitz continuity of PR(0). To show the L-Lipschitz continuity of PR(8), it suf-
fices to show that there exists a positive constant L such that, for any 6,0" € ©, ||[PR(6) —
PR(6")||l2 < L||@ — 0'||2. By Assumption the loss function £(0; Z) is Lg-Lipschitz continous in
0 and L z-Lipschitz continous in Z, i.e.,
|e6;2)—t(6':2")|,< Lol|l6—6

Then, we have

+Lz|Z-27),,70,0 € ©,7,7" € RF.

I I

. _ /. /
LE ((0:20+A0)~ E (6772 + A0

. _ . ’
< L E [[08: 20+ A6) (6 2y + AF)

2

<Le|6—0,+Ls|A(6—0)
< (Lo + Lzomax(A)) ||9 - 0,”2 )

Thus, there exists a constant L < Lg + Lz0max(A) such that ||PR(6) — PR(&S")H2 <L|6-6 .
V0,6’ € ©, which proves the L-Lipschitz continuity of PR(8). O

I

Proof of the ~-strongly convexity of PR(6). By Assumption[l] £ (; Z) is y-strongly convex in Z.
Then, we have

LB 022, B e+ g0 Ao o)

+(1—a) (VZZND(QQIEG_Q)G/)E (0; Z)) : A(6-9), (bl)
S B 62)> B 06:2)+ O“?Z [PNCEA]E

Ca (szw(aema)qu (6; Z)) A (6-0). (b2)



Combining «(bI) + (1 — «)(b2), we obtain
a E ((8;2)+(1—a) E ((6;2)
Z~D(0) Z~D(6)
o(l —a)yz (12
S RN CR R sl L CEO ] (b3)
In (b3), fixing the first augment of ¢(0;Z) at 0y, V6, € O, and substracting
2z HA (a8 + (1 —)8) H; on both sides, we obtain

. _ 0z _ 12
Z~D(a0+(lfa)0')€(00’z) 2 1A (a8 + (1 — )8,

: _ gy ol =)z PN
<a, B (002)+(1-a), B ((0:2) 12 Ao -0

-2 A (@0 +(1-a)8)|;
_ .oy 1z 2 _ Loy 2 2
=a (ZNIZEj(G)E(OO,Z) 5 ||A0||2> +(1—a) (ngw/)e(ao,Z) 5 |A6 ||2). (b4)

Eq. (b4) demonstrates that the function E; p )l (60; Z) — 22 ||A0||§ is convex in 0 for any given
6y € ©. By the equivalent first-order characterization, we have

Yz iy 4 2
E /((0g;72)>—||A0O E ¢(00;2)— —||A@O
ZN'D(O’) ( 05 ) - 92 || H2 + ZND(Q) ( 05 ) 9 H ||2

.
-
+ (ZN]%(G)ATVZK (60; Z)> (0'—6) —vz (ATAG) (6 —0)

.
_ . T . o ’Vl AN
=, E,t00:2)+ (ZNIE(B)A vze(00,2)> (0"—0)+ A (6-0)]-

Setting 8y = @ gives

( E ATVZ€(0;Z)>T(0’—0)

Z~D(0)
A AR _o|?
gZN%(O,)Z(B,Z) ZNI%(O)E(G,Z) 5 A6 —0)]. (b5)

Further, since £(0; Z) is yg-strongly convex in 6, we have

.
. AR : "_9)_ 199 _9l>
ZNg(s/)z(o, Z)gZNg(G,)z (0';2) ( E )V9£(9,2)> (6'—0) 5 |6 —0'||,. ®6)

Z~D(6'
Plugging (b6) into (b3) yields
T T
T . r_ . o
(ZNIiE?(G)A V2L (6; Z)) (6'—6) + (ngw/)wf (6; Z)) (6’ —0)

< E 1(6:2) -

. _ E _ /! 2 _ 779 _ 7112
~ Z~D(0) (O’Z) 2 HA (0 9)”2 2 HO o ||2

E /¢
Z~D(0)
Rearranging the terms in the above inequality gives

PR(6') =PR(6) + VoPR(0) (6/ — 0) + 2 ||A (0 - 8') [+ 5 [0 — &'

T
E 0(0;2)— E 0(0;Z 0 —0). b7
+ (ZND(G’)VG ( ? ) ZND(O)VG ( ? )) ( ) ( )

By the 8-smoothness of PR(0), we have

.
( E VQE(G;Z)—ZNI%(H)VQZ(H;Z)) (6 — 6)

Z~D(6')
>-plla(6-8)],e—-e],
ol B
> ao- )i ool o)



Plugging (b8) into yields

PR(6') >PR(0) + VgPR(0) (6’ — 6) + ; (79 - f) |6 —6 |;2

Therefore, the convexity parameter of PR(6) satisfies v > g — f—; In addition, by the e-sensitivity
of PR(8), we have

.
. r - _g?
(ZNgw/ Vol (0;Z) — . E (B)VQE(O,Z)> (6'—86) > —cp|0—0|,. (b9)

Plugging into yields
1
PR(0') PR(0) + VePR(0) (6~ 0) + 1 (30 — 258 + 1202, (A)) [0~ 0'[ .

where omin (A) := minjg,—1 || A8||2. Thus, we also have y > 79 —2e3+ 7202, (A). Combining
the above results, we obtain v > max {y9 — 32/vz,70 — 2¢8 + v7z02;,(A) }, which proves the
~-strongly convexity of PR(8). O

C Proof of Lemma

The proof of Lemma 3] utilizes the following two supporting lemmas.

Lemma C1. Consider the update steps (3) and (0). UnderAssumptlons 3| forany 6 € ©, A € R,
and t € [T, the Lagrangian () satisfies:

3 LI s
> (L(0nX) = L(O.A)) < 7 5 2 IV + |]ve£t0t,xt>H
t=1 —
T
+> (61 0,V0L (01, M) — VoL (61, At)> : (D)
t=1

where R represents the set of non-negative real numbers.

Lemma establishes a relationship between the Lagrangian and the primal and dual vari-
ables in the robust primal-dual framework. In particular, in , the last term is introduced due

to the gradient approximation. If the approximate gradient ngt (¢, A¢) is unbiased, we have
E |:V9£ (0, Ar) — ngt (64, At)} = 0. Then, the last term in is eliminated by taking expecta-
tion. This is often the case in stochastic optimization without performativity [Tan et al.l 2018}, [Yan
et al.}2019; (Cao and Basar, 2022]. However, in performative prediction, it is difficult to construct an

unbiased gradient approximation because the unknown performative effect of decisions changes data
distributions. Therefore, we must carry out the worst-case analysis on this term. In next lemma, we

. 2
bound the {5 norms of the gradients ||V, L(6, )\t)||§ and HVgEt(Bt, ) , in (cI).

Lemma C2. Foranyt € [T, the gradients VxL(0:, \t) and vgft(et, A¢) respectively satisfy:

L [VAL(O, M) |5 < 2C2 + 26202 | Aol

27

. 2 _ 2
2. vact(at, MH2 <AL AL A2 + 2 HVgPRt(Ot) . VgPR(Gt)HQ.
. 2 _ 2
Note that the bound of HVg,Ct(Ot, }\t)Hz involves the term HVgPRt(Bt) — VoPR(6;) X which

is the gradient approximation error at the tth iteration. Proofs of Lemma [CI]and Lemma [C2] are
respectively given in § [C.T]and §[C.1] With these two Lemmas, we are ready to prove Lemma




Proof of Lemma[3] By Lemmal|CI] we have

t=1

2R ||A||2 A 0y
36,0 - 0.0 <2 ; +3 2 VL@ + 5 3 |VoLu(@r )

2
, (€2)
2

a 2 1 —=
+2 ; 16: - 6113 + 5 ; |VaPRi(6:) — VoPR(6))
where a > 0 is a constant. Note that in (c2)), we utilize the follwing inequality:
<0t —0,VoL (01, ) — VoL (6, )\t)> - <ot —0,VPR(6,) — vgﬁit(et)>

a 1 . 2
< 2160013+ 5 | VaPR(6,) — VoPRi(6)||

Taking expectation over (c2)) and plugging into the results in Lemma|C2] we have

T
onT ]
> (E[PR(6:)] — PR (p0)) +ZEAget ZE A, 8(0p0)) — ” I3 + "ZEHAtllz
t=1 t=1 t=1
R? H/\II§ 2 2 2,2 2 - 2
_T+W+ T(C +2L)+77(577 +2Lg)Z]E”AtH2
t=1

2

; (c3)
2

+ 2 ZEHOﬁOHQ ( +77>ZIEHV9PRt(0f) VoPR(6))

where we set 6 to Opo since any 6 € © satisfies (€2). In (c3), the term 3", A g(6po) on the left
side is non-positive and can be omitted, because we always have A; > 0 and g(0po) < 0, Vt € [T7.
Then, rearranging the term in gives

T
1 /1
t:zl [PR(6,)] PR(epo))+t:211E<>\,g(gt)>,5 <77+577T> A2
- 2R
< g (252172 *5+4L2)ZE”)‘1‘/”§+T+7}T (02+2L2)
t=1
+2 ZlEllet 0ll5 + ( +77>ZEHV9PRt(0t) VGPR(gt)H . )

In (c4), the first term can be removed by properly choosing the stepsize 1 and the parameter §, so that
the coefficient ¥ (262 — 6 +4L2) < 0. Since 26*? — 6 + 4LZ is quadratic in  and 1) > 0, the
following range of § meets the desired inequality:

—/1=32n2L2 1+ ,/1-32n2L2
4n? ’ 4n?

We setn = % To guarantee that the value of § within the above interval is a real number, we
require 1 — 32n°L2 > 0, i.e., the time horizon T' > 32L2.

Next, we deal with the term § Zt LE6; — 0||2 in (c4). By the y-convexity of the performative
risk PR(8) give in Lemmal[2] for any 6, € ©, we have

PR(6,) > PR (8r0) + (VoPR (850) , 6: — Op0) + g 16 — 002

From the optimality conditions, (VgPR (8p0),0; — Opo) > 0, V¢ € [T]. Then, we have

-~ ZIEHHt Oro|; < Z E[PR(6,)] — PR (8p0)) .



[E[Z7, e0)]]"

Further, since any A € R satisfies Eq. (c4), we set A = T

. With the above results,

we obtain
2

(1_>2_: [PR(6)] PR<0P0)>+{E[2Z£$)($;H 2

2 2 2 i L d PP o 2
< VT (2R? + C? +2I%) + <2a+ﬁ>;EHv9PRt(0t) VgPR(Ot)HQ. (c5)

Choosing a € (0, ) and omitting the second term (non-negative) on the left side of (c3)), we obtain

Z [PR(6:)] — PR (6r0)) j\f
=1

(2R* 4+ C* +2L7)

)

5 1 1 T /\ 2
5 (3 ) S -

which proves the regret bound in Lemma Similarly, with a € (0, ), the first term on the left side
of is also non-negative. Omitting it gives

s (B[] )

201+ 06)VT

<VT (2R® + C? 4217

n (2a n f) ZE HVgPRt 9,) — VBPR(Ot)H . (c6)

2
+
For each <[E [Zthl Ji (00” ) ,© € [m], the above inequality also holds. Then, taking the square

root on both sides of and using the inequality va + b+ ¢ < v/a + Vb + Ve, Ya,b,e > 0, we
obtain

T +
E [Zgi (et)H S\/1+6(2R+\/§C+2L) VT
t=1

1
9 2
2)
+
AsE {Zle gi (0,5)} < {IE {23:1 gi (Ot)” , the constraint violation result in Lemmais derived.
O

1 T
+VIts (3& + \/§> (Z]E vaﬁﬁt(ot) — VoPR(6;)

C.1 Proof of LemmalCIl

The proof of Lemma [CT] utilizes the following fact about a property of the projection operator.
Fact C1. Suppose that set A C R% is closed and convex. Then, for any'y € R% and x € A, we have

Ix = Ta(y)lly < [Ix = yll2;
where 11 4(y) denotes the projection of y onto the set A.

With Fact[CT] the proof of Lemma|[Cl]is given below.

From Lemma 2]and Assumption[3] we know that £ (6, \;) is convex in 6. Then, we have

L(O,N) > L(O )+ (VoL (0,,A),0—0,).



Similarly, since £ (x, A) is concave in A, we have
L0 A) S L(OHA) + (VAL(Op ), A= Ay).
Combining the above two inequalities yields
L0 A) — L(O,A) < AVAL(Of, Ar) , A= As) — (VoL (0, A:),0 —6;). (c7)
From the update rule of A given in (@), we have
2 +[]2
1A= Acsals = A= P+ n9aL00 )|
(a)
< A= Mllz + 1P [VALOn Al = 20 (A= X, VAL A)) - (c8)
where (a) is based on Fact Rearranging the terms in (c8)) gives
1 2 2\ , " 2
(A=A, VaL(0, Ar)) < % (||)\ = Ay —IA— )\t+1||2) 5 IVALOL A5 (©9)

Similarly, from the update rule of 8 given in (3], we have

10 0cal3 = 0~ Tio (00 —noZit0. 2)
<6 - 9t||§ + 7 HV"Zf(Ht’At)Hz +2n <9 —0,,VoL(6y, )\t)> . (c10)

Rearranging the terms in (c10)) gives

<9t 0 vgct(et,)\t)> 2i (||9 — 05— 16— 0t+1H§> + g HVgEAt(Ht,)\t) z

Then, we have
(00— 6,VoL (00 M) <5 (10— 6.l ~ 16 ~ 61 ]) + 5 [votuo. 2]
<9t —0,VoL (0:,Ar) — ngt(et,At)>. (1)
Plugging and into yields
£(002) = £0.7) <50 (1A= MIE= 1A= A ) +  IVAL(6 M)
+ o (16 =013~ 16— 61 12) + 1 [VoLutor )|
+ <0t —0,VeL (8, \) — VoLi(6,, ,\t)> . (c12)

Summing over t € [T yields

T T
1 1
> (L(8,N) —L(6,\)) < <2 (||>\ o D >\T+1||§) 5 E IVAL(6:, M)]3

t=1

T
1 2 2\ , 1
+ 35 (10 =811 =10 = 6r.a13) + 33 [VoLu(or. )

T
+ (00~ 0, V0L (81, M) ~ VoLi(81, X)) (c13)
t=1

Since A1 =0, ||6 — 0, ||§ < 4R? Lemmais proved by omitting the non-positive terms in (c13).




C.2 Proof of Lemmal[C2]
From the definition of VxL(0, A), for any ¢ € [T], we have

(a)
IVALO: A5 = 18(8:) — dnXills < 2g(0:)5 + 26°0% [ A3 < 2C% + 28202 | Adf3

where (a) is based on the boundedness of the constraint g(0) given in Assumption |3} Similarly, from
the definition of Vo £(0,, A¢), for any ¢ € [T'], we have

IV6L(8:,A)|2 = || VoPR(B:) + Vog(8:) " Adl|2

< 2[|VePR(6,) Hz +2 HVgg (0:) T/\tH2

(a) 2
< 207+ 2Lg [INll3 .

where (a) is based on the Lipschitz continuity of both the performative risk and the constraint. Then,
we have

[VoZu00 2| = [ Vo0 x) + VoPR(6,) ~ VoPR(O,)
< 2 (VoL (B, A2 +2 vaﬁf{t(et) - VGPR(Ot)Hz

o~ 2
< ALZ + AL2 M3 + 2 | VoPRi(8:) — VoPR(9)) 2

By now, Lemma[C2]is proved.

D Proof of Lemma/d

The proof of Lemmanill involve the accumulated parameter estimation error Z;‘F: 1 Hf&t —

which is bounded by the follwing lemma.
Lemma D1 (Parameter Estimation Error). Let (; = m
the accumulated parameter estimation error is upper bounded by:

Yt € [T). UnderAssumption

T - 2
SE HAt - AHF <al(T),
t=1

w7

2
_ ~ ks tr (S
where @ := max{%ff‘ Ay — AH "W()}

See § [E for the proof. Next, we proceed to prove Lemma ]

Proof of Lemmad] To facilitate our analysis, we introduce a finite-sample approximation for the
gradient VgPR(0), defined as
_ 1 n T
VoPR(0) := - > [Vol(0; 2o+ AO) + ATV 2L(6, Zo,; + AB)] .
i=1
Then, we have the following inequality:

HV@P/’\Rt(G’t) - VBPR(Ot)Hz

—~ o~ 2 — 2
<2 HVQPRt(Ot) ~ VoPR(6))|| +2 HVQPR(Gt) ~ VoPR(6)| 1)
From Assumption 4] we have
—~ 2
E HV(;PR(Gt) ~ VoPR(6:)|
1 & o?
< > Ezy 0 |[Vol (865 Zoi + A8:) + ATV 2L (6, Zo,i + AB,) — VoPR(6,)|[; < ?

i=1



The first term in (dI)) is handled as follows. Plugging into the expression of ng/’f{t(et) and
VePR(6;), we have

|voPR.(0.) - vgﬁ\R(et)Hz

<> i Vot (605 20, + Ai6,) = Vot (61 Zo; + A8)) z

(d2)

2 % ~ 2
+ > ||ATV e (815 Zos + A6y) — ATV 2615 Zo + AG)||
i=1
With the 5-smoothness of the loss function given in Assumption[I} we have

2 262~ 2
<A — Al
2 n F

2 ~
oz Z Hvef (0t§ Zo,i + Atet) — Vol (04 Zo,; + ABy)
i=1
Moreover, the last term in (d2)) is bounded by

% zn: ATV 20 (603 20+ Aiby) ~ ATV 20 (813 Zoi + Aet)Hz
i=1

‘ 2
2

Z |V 26 (863 Z0. + Aub2) — V2L (613 Zoi + AB)

S S s

40—1’118,)( 2

2

( 4L2 4620 max
L2 A -+ 75 |& A 10.02,

where (a) is because the loss function is ﬂ—smooth and Lz Lipachitz continuous in Z. Plugging the
above results into (dI]) and taking expectation yields

E vaﬁﬁt(et) ~ VoPR(6:)|) (A (2L2 + B2R2 (1 + 20max(A))) E HAt - AH? :

where we utilize the boundedness of the avallable set that [|0]2 < R, VO € ©. Summing the above
inequality over T iterations yields

T
o~ 2
> E|[VoPRi(6:) - VoPR(6)|
t=1

2o 4, 5 oo AT 2
< 2 (2L R (1 + 20max (A ]EHA—AH
<S4 - (25 45 (+ad())); (= Al
Plugging into the result in Lemma [DI] proves Lemma 4] O

E Proof of Lemma

The proof of Lemma [DT]utilizes the following two supporting lemmas.
Lemma E1 (One-Step Improvement). Suppose that Assumption[:’i]holds. For any t € [T), choose

stepsize (; € (0, %) Then, the parameter estimates satisfy:

~ 2
2[|& -4
F

AH} < (1= R1G (2 = Gika)) H&,_l . AHi 202k tr(X), ¥t € [T].

Lemma E2 (Sequence Result). Consider a sequence {S;}}_, satisfying

2 «a
<ll—————— _ — =Vt e [T
St_< t_1+t0>st 1+(t—1+t0)27ve[]’

where ty > 0 and o« > 0 are two constants. Then, we have

max{tpSp, a} vt e [T]

Sy <
t+ 1o



Proofs of Lemma [ET] and Lemma [E2] are respectively given in § [E-T]and § [E2] With these two
Lemmas, the proof of Lemma[D1]is given below.

Proof of Lemma([D1] For any t € [T, set {; = ﬁ Then, we have 2 — (4k3 = 2 —
K1 - T

m > 1. Plugging this inequality into Lemma|E1| we have
- 2] 2 ~ 2 8k tr(X
e[| -4 \A} < <1 g ) A D

Define & := max {

8)—@2 tr(Z) } By Lemma ., we have
K7

[

]EHAf fAH <

Summing the above inequality yields

ZEHAt AH S-S <@ (m (T+ 2“3) I (2’“» <@n(T),
t+ ”3 K K1

1

which proves Lemma [DI] O
E.1 Proof of Lemma [ET]|
Denote by b, := Z] — Z;. We have E[b;|u;] = Au;. Then,

E [||Aut - bt||§‘ ut} = tr (E (Au, — by)(Au; — b)) 7| uy) = 21r(3). el)

Recall that 3 is the variance of the base distribution Dy. In Algorithm [T} the update rule of the
parameter estimate is fAt = -&-1 —(; (Kt_lut — bt) utT . Thus, we have

—~ 2 —~ —~
oAl [ -4 (AL bl

P AL A (R ) 5 (B )

Given At_l and uy, taking conditional expectation on the above equation gives

2| <
E At—AHF A, w

—

_ ’ A, — A’ i — 2, <11t_1 _A, (At_lut _ E[bt|ut]) uj> TR [H (fxt_lut - bt) ujHi‘ Kt_l,ut}

=& -] -2

(Xt,l - A) u;

2 9 9 ~ 2| o
2+Ct a5 E HAt,lut—bt ,| A=

ut:| . (32)

~ 2| ~
The term E {HAt_lut — th
2

ut] in (e2) satisfies

~ 2] ~
E |:HAt_1ut — bt
2

.

~ 2 ~
= HAt_lut — AUtHQ +E |:||A11t — th;’ ut:| +2 <At_1llt — Aut,Aut — ]E[bt|ut}>

(a) 2
= T 2tr(X). (e3)

(Kt_l — A) w




where (a) is from (eI) and E[b;|u;] = Au,. Plugging into gives

x[a.-

2

~ 2
o <Al

(.&t,l — A) u;

2
212l (A& RTINS
+ el || (R - A) | + 2wl @

Taking conditional expectation over the random noise u; gives
—~ 2| ~ ~ T —~
E [Hut”; H(At_l —A) U ) — :| = <(At—1 —A) (At—l —A) ,E {ut|§utu:|At_1}>

< k3K M (KH — A) 1, z KH} . (€5)

Plugging into yields
~ 2|
E {HAt . AH]
P

<[ - e [ - )

2| ~
2’ Atl} + 2 ko tr(Z).

Further, we have

S[[CRR,

Then, choosing (; € ( , : ) we obtain

Kt1:| =tr ((‘Ktl _ A)T (;A;til _ A) E [utu;r’ ;&tl}) > K1 H:&t,l — AHi

~ PAIN ~ 2
E [HA - AHF‘ AH] < (L= mG 2= Gm)) |[Rems = A+ 26 (D),
which proves Lemma [ET]

E.2 Proof of LemmalE2]

We prove Lemmaby induction. First, for t = 0, Sy < %osoa} automatically holds. Define

@ := max{tpSo, a}. Suppose that S;_; < -—2—holds. Then, we have

o
t—1+to

2 o
Si<({l—-—m S+ ———
t—( t1+t0) t+(t—1+to)2

<(1_ 2 ) a N o

- t—1+ty) t—14+1 (t—1+t0)2

< a _ 2a n a

Sto14ty (t—1+t0)?  (t—1+t)?
a a a

< ~ < ,
St—141ty (t—1+1t9)2 ~ t+to
where the last mequalltyls based on the fact that (t+to)(t—2+41t0) = (t—1—19)?> =1 < (t—1—tg)2.

1 _t—2+t
Thus, it = 1+to) = G=icio)? < t+t . By now, wehaveprovedLemma

F Experiment Details
In this section, we elaborate on the simulation details of the numerical experiments in Section E}

F.1 Multi-Task Linear Regression

The multi-task linear regression is conducted over a randomly generated Erdos-Renyi graph with
n = 10 nodes. The probability of an edge between any pair of nodes in the Erdos-Renyi graph

10



is 0.5. The decision dimension of each task is set to be 3. The decision of task ¢ is initialized as
0; = 0,Vi € V. The injected noises {u;}7_, are independently drawn from N (0, I). The number
of iterations is 7" = 10°. The number of initial samples is n = 103. The stepsize of the alternating
gradient update is 7 = 5 x 10~3. The control parameter is § = 1. The stepsize of the online parameter

estimation at the tth iteration is {; = ﬁ, vt e [T).

Data Generation Process: For any i € V), given a parameter vector 8; € R¢, the feature-label pair
(x4, ;) is generated as follows:

x; ~ N (0, Y, ), where 3y, is a random symmetric positive-definite matrix with nuclear
norm d.

2. yi = B xi + p] 8; + w;, where 8; ~ N (0,I) and w; ~ N (0,07) with o7 = 1.

This distribution map is a location family with sensitivity parameter € = >, ,, ||;||2. To generate
all the vectors {p,; };cy, we first independently draw |V| samples from N (0, I) and then projected
their concatenation onto the sphere of radius €.

In constraint-free case, given the squared-loss ¢; (6;; (x;,y:)) = 3(y; — 6, x;)? and the linearity of
the performative effect, the performative optimum of each task ¢, denoted by 6; po, can be computed
in closed-form as

-1 .
0;,r0 = Cmicxiyi,w ev,

where Cy,z, = B, + pipt; and Cp,y, = Xx,8;, Vi € V. Correspondingly, the minimum
performative risk is given by

OPO E Cy7y7 C%LC;L TiYis

i€V

where 8po is the concatenation of 8; po forall i € V, Cy,y, == B Z,8; + 02, Cyw, = Col

TiYi®

The constraint associated with each neighboring node pair (4, j) € £ is set to be

2
16; — 9j||§ <|0iro — 0j,PoH§ + (bi;)"

wélere){ bl Zc; }i.j)ee are uniformly drawn from the region [0, 0.02] in a symmetry manner, i.e., b}; = b,
v(i,j) € €.

Let 0 be the concatenation of 8; for all ¢ € V. The approximate performative gradient of APDA is
computed by

VgPRt 6,) = Z Z Kym i th J) (ﬁzt - Xi,j)] Vit € [T).
zEV j=1
The approximate performative gradient of PD-PS is computed by
V@PRt 6,) = 7722 [(yw tx”) Xm} Vit € [T).
i€y j=1
The approximate performative gradient of the “baseline” is computed by
VePR:(0,) = Z Z [(y” th ]) (p; — xi’j)} Vit e [T).
zEV j=1
The performative risk is computed by
PR(et) = Cyzyz - Cyzfzof - o;l—CTqu eTC 1 etavt € [ ]

All results are averaged over 100 realizations.
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F.2 Multi-Asset Portfolio

In the implementation of the multi-asset portfolio, we add a regularizer £]|@||2 to the original loss
function to make it strongly convex. This gives the optimization problem:

in — E z'6@ 0|2
min o) +£101)3

l

=1
0<0=<¢-1,
sTe <8,
0T wo < p.

In the simulation, we set the number of assets [ = 10. The initial investment decision 8, is randomly
chosen within the feasible set. The injected noises {u; }7_; are independently drawn from N (0, I).
The parameter ¢ in the regularizer is set to be . The maximum amount of investment to one asset
is € = 0.3. The entries of the bid-ask spread vector s are independently and uniformly drawn from
the region [2, 4]. The maximum allowable bid-ask spread is S = 2. The risk tolerance threshold is
p = 0.01. The number of iterations is 7' = 10°. The number of initial samples is n = 10%. The
stepsize of the alternating gradient update is 7 = 5 x 1073, The control parameter is = 1. The

stepsize of the online parameter estimation at the ¢th iteration is ¢; = +10 ,Vt € [T7.

Data Generation Process: The rate of reture follows z = Z + A0 + u,, where Z is a constant vector,
u, ~ N (0,3%,), and 3, is a random symmetric positive-definite matrix with nuclear norm 1/I. To
generate z, we first uniformly draw a sample within the region [10¢, 1 + 10¢] and then project it onto
the sphere of radius 2.

This distribution map is a location family with sensitivity parameter € = oax (A ). Optimization of
the multi-asset portfolio problem requires the covariance matrix of z, which is unknown. Note that
the randomness of z lies in the term u,. Then, we have ¥ = 3.,. The covariance matrix X, can be
approximated based on the initial samples drawn from D(0). The optimal investment is computed by
CVX tools [|Grant and Boyd, [2014].

The approximate performative gradient of APDA is given by

VoPR,(8;) = —— Zzz] (25 . - At) 0,vt € [T).
=1 j=1
The approximate performative gradient of PD-PS is given by
l n
1
PR (6) — i+ 260,V € [T).
VPR, (6:) nz::z::ZJ+§a € [T]

The approximate performative of the “baseline” is given by

VePR,(6,) —ffzzzj (26 -1—A)6,vt e [T).

=1 5=1
The performative risk is given by
PR(0:) =26, + 6, A6, + £[6:]3.

All results are averaged over 100 realizations.
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