A Proof of Lemma 1

The ε -sensitivity of distributions is defined below.

Definition A1 (ε -Sensitivity). A distribution $\mathcal{D}(\cdot)$ is called ε -sensitive if for any $\theta, \theta' \in \Theta$ there exists a constant $\varepsilon > 0$ such that

$$W_1\left(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}\left(\boldsymbol{\theta}'\right)\right) \leq \varepsilon \left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|_2$$

where $W_1(\mathcal{D}, \mathcal{D}')$ denotes the Wasserstein-1 distance.

Next, we provide the following lemma.

Lemma A1. Suppose that the distribution map $\mathcal{D}(\theta)$ forms a location family (7). Then, we have

$$\mathcal{W}_{1}\left(\mathcal{D}(\boldsymbol{\theta}),\mathcal{D}\left(\boldsymbol{\theta}^{\prime}
ight)
ight)\leq\left\Vert \mathbf{A}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{\prime}
ight)
ight\Vert _{2}.$$

Proof. By definition, $W_1\left(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}\left(\boldsymbol{\theta}'\right)\right) := \inf_{\Gamma(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}'))} \mathbb{E}_{(Z_{\boldsymbol{\theta}}, Z_{\boldsymbol{\theta}'}) \sim (\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}'))} \|Z_{\boldsymbol{\theta}} - Z_{\boldsymbol{\theta}'}\|_2$, where $\Gamma\left(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}\left(\boldsymbol{\theta}'\right)\right)$ is the set of all couplings of the distributions $\mathcal{D}(\boldsymbol{\theta})$ and $\mathcal{D}\left(\boldsymbol{\theta}'\right)$. One way to couple $\mathcal{D}(\boldsymbol{\theta})$ and $\mathcal{D}\left(\boldsymbol{\theta}'\right)$ is to set $Z_{\boldsymbol{\theta}} \sim \mathcal{D}(\boldsymbol{\theta})$ and $Z_{\boldsymbol{\theta}'} \sim \mathcal{D}\left(\boldsymbol{\theta}'\right)$. Under this setting, with the definition of $\mathcal{D}(\boldsymbol{\theta})$ (7), we have $\mathbb{E}_{(Z_{\boldsymbol{\theta}}, Z_{\boldsymbol{\theta}'}) \sim (\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}'))} \|Z_{\boldsymbol{\theta}} - Z_{\boldsymbol{\theta}'}\|_2 = \|\mathbf{A}\left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right)\|_2$, and hence $W_1\left(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}\left(\boldsymbol{\theta}'\right)\right) \leq \|\mathbf{A}\left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right)\|_2$.

Define $\sigma_{\max}(\mathbf{A}) := \max_{\|\boldsymbol{\theta}\|_2 = 1} \|\mathbf{A}\boldsymbol{\theta}\|_2$, we have $\|\mathbf{A}\left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right)\|_2 \leq \sigma_{\max}(\mathbf{A}) \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|_2$. By Lemma A1, $\mathcal{W}_1\left(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}\left(\boldsymbol{\theta}'\right)\right) \leq \sigma_{\max}(\mathbf{A}) \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|_2$. By Definition A1, the sensitivity parameter $\varepsilon \leq \sigma_{\max}(\mathbf{A})$, which proves Lemma 1.

B Proof of Lemma 2

Proof of the L-Lipschitz continuity of $PR(\theta)$. To show the L-Lipschitz continuity of $PR(\theta)$, it suffices to show that there exists a positive constant L such that, for any $\theta, \theta' \in \Theta$, $\|PR(\theta) - PR(\theta')\|_2 \le L\|\theta - \theta'\|_2$. By Assumption 1, the loss function $\ell(\theta; Z)$ is L_{θ} -Lipschitz continous in θ and L_Z -Lipschitz continous in Z, i.e.,

$$\left\|\ell\left(\boldsymbol{\theta};Z\right)-\ell\left(\boldsymbol{\theta}';Z'\right)\right\|_{2}\leq L_{\boldsymbol{\theta}}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}'\right\|_{2}+L_{Z}\left\|Z-Z'\right\|_{2},\forall\boldsymbol{\theta},\boldsymbol{\theta}'\in\boldsymbol{\Theta},Z,Z'\in\mathbb{R}^{k}.$$

Then, we have

$$\begin{aligned} & \left\| \underset{Z_0 \sim \mathcal{D}_0}{\mathbb{E}} \ell \left(\boldsymbol{\theta}; Z_0 + \mathbf{A} \boldsymbol{\theta} \right) - \underset{Z_0 \sim \mathcal{D}_0}{\mathbb{E}} \ell \left(\boldsymbol{\theta}'; Z_0 + \mathbf{A} \boldsymbol{\theta}' \right) \right\|_2 \\ & \leq \underset{Z_0 \sim \mathcal{D}_0}{\mathbb{E}} \left\| \ell \left(\boldsymbol{\theta}; Z_0 + \mathbf{A} \boldsymbol{\theta} \right) - \ell \left(\boldsymbol{\theta}'; Z_0 + \mathbf{A} \boldsymbol{\theta}' \right) \right\|_2 \\ & \leq L_{\boldsymbol{\theta}} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}' \right\|_2 + L_Z \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}' \right) \right\|_2 \\ & \leq \left(L_{\boldsymbol{\theta}} + L_Z \sigma_{\max}(\mathbf{A}) \right) \left\| \boldsymbol{\theta} - \boldsymbol{\theta}' \right\|_2. \end{aligned}$$

Thus, there exists a constant $L \leq L_{\theta} + L_{Z}\sigma_{\max}(\mathbf{A})$ such that $\|\operatorname{PR}(\theta) - \operatorname{PR}(\theta')\|_{2} \leq L \|\theta - \theta'\|_{2}$, $\forall \theta, \theta' \in \Theta$, which proves the L-Lipschitz continuity of $\operatorname{PR}(\theta)$.

Proof of the γ -strongly convexity of $PR(\theta)$. By Assumption 1, $\ell(\theta; Z)$ is γ_Z -strongly convex in Z. Then, we have

$$\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \ell\left(\boldsymbol{\theta}; Z\right) \geq_{Z \sim \mathcal{D}(\alpha \boldsymbol{\theta} + (1 - \alpha)\boldsymbol{\theta}')} \mathbb{E}_{\left(\boldsymbol{\theta}; Z\right)} + \frac{(1 - \alpha)^{2} \gamma_{Z}}{2} \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2}^{2} + (1 - \alpha) \left(\nabla_{Z} \mathbb{E}_{Z \sim \mathcal{D}(\alpha \boldsymbol{\theta} + (1 - \alpha)\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right), \qquad \text{(b1)}$$

$$\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}; Z\right) \geq_{Z \sim \mathcal{D}(\alpha \boldsymbol{\theta} + (1 - \alpha)\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}; Z\right) + \frac{\alpha^{2} \gamma_{Z}}{2} \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2}^{2} - \alpha \left(\nabla_{Z} \mathbb{E}_{Z \sim \mathcal{D}(\alpha \boldsymbol{\theta} + (1 - \alpha)\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right). \qquad \text{(b2)}$$

Combining $\alpha(b1) + (1 - \alpha)(b2)$, we obtain

$$\alpha \underset{Z \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \ell\left(\boldsymbol{\theta}; Z\right) + (1 - \alpha) \underset{Z \sim \mathcal{D}(\boldsymbol{\theta}')}{\mathbb{E}} \ell\left(\boldsymbol{\theta}; Z\right)$$

$$\geq \underset{Z \sim \mathcal{D}(\alpha\boldsymbol{\theta} + (1 - \alpha)\boldsymbol{\theta}')}{\mathbb{E}} \ell\left(\boldsymbol{\theta}; Z\right) + \frac{\alpha(1 - \alpha)\gamma_{Z}}{2} \left\|\mathbf{A}\left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right)\right\|_{2}^{2}.$$
 (b3)

In (b3), fixing the first augment of $\ell(\theta; Z)$ at θ_0 , $\forall \theta_0 \in \Theta$, and substracting $\frac{\gamma_Z}{2} \|\mathbf{A} (\alpha \theta + (1 - \alpha) \theta')\|_2^2$ on both sides, we obtain

$$\mathbb{E}_{Z \sim \mathcal{D}(\alpha \boldsymbol{\theta} + (1 - \alpha) \boldsymbol{\theta}')} \ell(\boldsymbol{\theta}_{0}; Z) - \frac{\gamma_{Z}}{2} \| \mathbf{A} \left(\alpha \boldsymbol{\theta} + (1 - \alpha) \boldsymbol{\theta}' \right) \|_{2}^{2}$$

$$\leq \alpha \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \ell(\boldsymbol{\theta}_{0}; Z) + (1 - \alpha) \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \ell(\boldsymbol{\theta}_{0}; Z) - \frac{\alpha (1 - \alpha) \gamma_{Z}}{2} \| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}' \right) \|_{2}^{2}$$

$$- \frac{\gamma_{Z}}{2} \| \mathbf{A} \left(\alpha \boldsymbol{\theta} + (1 - \alpha) \boldsymbol{\theta}' \right) \|_{2}^{2}$$

$$= \alpha \left(\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \ell(\boldsymbol{\theta}_{0}; Z) - \frac{\gamma_{Z}}{2} \| \mathbf{A} \boldsymbol{\theta} \|_{2}^{2} \right) + (1 - \alpha) \left(\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \ell(\boldsymbol{\theta}_{0}; Z) - \frac{\gamma_{Z}}{2} \| \mathbf{A} \boldsymbol{\theta}' \|_{2}^{2} \right). \quad (b4)$$

Eq. (b4) demonstrates that the function $\mathbb{E}_{Z\sim\mathcal{D}(\boldsymbol{\theta})}\ell\left(\boldsymbol{\theta}_{0};Z\right)-\frac{\gamma_{Z}}{2}\left\Vert \mathbf{A}\boldsymbol{\theta}\right\Vert _{2}^{2}$ is convex in $\boldsymbol{\theta}$ for any given $\boldsymbol{\theta}_{0}\in\Theta$. By the equivalent first-order characterization, we have

$$\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}_{0}; Z\right) \geq \frac{\gamma_{Z}}{2} \|\mathbf{A}\boldsymbol{\theta}'\|_{2}^{2} + \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \ell\left(\boldsymbol{\theta}_{0}; Z\right) - \frac{\gamma_{Z}}{2} \|\mathbf{A}\boldsymbol{\theta}\|_{2}^{2} \\
+ \left(\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \mathbf{A}^{\top} \nabla_{Z} \ell\left(\boldsymbol{\theta}_{0}; Z\right)\right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) - \gamma_{Z} \left(\mathbf{A}^{\top} \mathbf{A} \boldsymbol{\theta}\right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) \\
= \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \ell\left(\boldsymbol{\theta}_{0}; Z\right) + \left(\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \mathbf{A}^{\top} \nabla_{Z} \ell\left(\boldsymbol{\theta}_{0}; Z\right)\right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) + \frac{\gamma_{Z}}{2} \|\mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right)\|_{2}^{2}$$

Setting $\theta_0 = \theta$ gives

$$\left(\underset{Z \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \mathbf{A}^{\top} \nabla_{Z} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right)
\leq \underset{Z \sim \mathcal{D}(\boldsymbol{\theta}')}{\mathbb{E}} \ell\left(\boldsymbol{\theta}; Z\right) - \underset{Z \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \ell\left(\boldsymbol{\theta}; Z\right) - \frac{\gamma_{Z}}{2} \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2}^{2}.$$
(b5)

Further, since $\ell(\theta; Z)$ is γ_{θ} -strongly convex in θ , we have

$$\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}; Z\right) \leq \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \ell\left(\boldsymbol{\theta}'; Z\right) - \left(\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right)\right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) - \frac{\gamma_{\boldsymbol{\theta}}}{2} \left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|_{2}^{2}.$$
(b6)

Plugging (b6) into (b5) yields

$$\left(\underset{Z \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \mathbf{A}^{\top} \nabla_{Z} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) + \left(\underset{Z \sim \mathcal{D}(\boldsymbol{\theta}')}{\mathbb{E}} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) \\
\leq \underset{Z \sim \mathcal{D}(\boldsymbol{\theta}')}{\mathbb{E}} \ell\left(\boldsymbol{\theta}'; Z\right) - \underset{Z \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \ell\left(\boldsymbol{\theta}; Z\right) - \frac{\gamma_{Z}}{2} \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2}^{2} - \frac{\gamma_{\boldsymbol{\theta}}}{2} \left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|_{2}^{2}.$$

Rearranging the terms in the above inequality gives

$$PR(\boldsymbol{\theta}') \ge PR(\boldsymbol{\theta}) + \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}) \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) + \frac{\gamma_{Z}}{2} \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2}^{2} + \frac{\gamma_{\boldsymbol{\theta}}}{2} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}' \right\|_{2}^{2} + \left(\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}')} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) - \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right).$$
 (b7)

By the β -smoothness of $PR(\theta)$, we have

$$\left(\underset{Z \sim \mathcal{D}(\boldsymbol{\theta}')}{\mathbb{E}} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) - \underset{Z \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) \\
\geq -\beta \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}' \right\|_{2} \\
\geq -\frac{\gamma_{Z}}{2} \left\| \mathbf{A} \left(\boldsymbol{\theta} - \boldsymbol{\theta}'\right) \right\|_{2}^{2} - \frac{\beta^{2}}{2\gamma_{Z}} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}' \right\|_{2}^{2}.$$
(b8)

Plugging (b8) into (b7) yields

$$PR(\boldsymbol{\theta}') \ge PR(\boldsymbol{\theta}) + \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}) \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) + \frac{1}{2} \left(\gamma_{\boldsymbol{\theta}} - \frac{\beta^2}{\gamma_Z}\right) \left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|_2^2.$$

Therefore, the convexity parameter of $PR(\theta)$ satisfies $\gamma \geq \gamma_{\theta} - \frac{\beta^2}{\gamma_Z}$. In addition, by the ε -sensitivity of $PR(\theta)$, we have

$$\left(\underset{Z \sim \mathcal{D}(\boldsymbol{\theta}')}{\mathbb{E}} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) - \underset{Z_0 \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \nabla_{\boldsymbol{\theta}} \ell\left(\boldsymbol{\theta}; Z\right) \right)^{\top} \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) \ge -\varepsilon\beta \left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|_{2}^{2}.$$
 (b9)

Plugging (b9) into (b7) yields

$$PR(\boldsymbol{\theta}') \ge PR(\boldsymbol{\theta}) + \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}) \left(\boldsymbol{\theta}' - \boldsymbol{\theta}\right) + \frac{1}{2} \left(\gamma_{\boldsymbol{\theta}} - 2\varepsilon\beta + \gamma_{Z} \sigma_{\min}^{2}(\mathbf{A})\right) \left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|_{2}^{2},$$

where $\sigma_{\min}(\mathbf{A}) := \min_{\|\boldsymbol{\theta}\|_2 = 1} \|\mathbf{A}\boldsymbol{\theta}\|_2$. Thus, we also have $\gamma \geq \gamma_{\boldsymbol{\theta}} - 2\varepsilon\beta + \gamma_Z \sigma_{\min}^2(\mathbf{A})$. Combining the above results, we obtain $\gamma \geq \max\left\{\gamma_{\boldsymbol{\theta}} - \beta^2/\gamma_Z, \gamma_{\boldsymbol{\theta}} - 2\varepsilon\beta + \gamma_Z \sigma_{\min}^2(\mathbf{A})\right\}$, which proves the γ -strongly convexity of $\mathrm{PR}(\boldsymbol{\theta})$.

C Proof of Lemma 3

The proof of Lemma 3 utilizes the following two supporting lemmas.

Lemma C1. Consider the update steps (5) and (6). Under Assumptions 1-3, for any $\theta \in \Theta$, $\lambda \in \mathbb{R}^m_+$, and $t \in [T]$, the Lagrangian (2) satisfies:

$$\sum_{t=1}^{T} \left(\mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}\right) - \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\lambda}_{t}\right) \right) \leq \frac{2R^{2}}{\eta} + \frac{\|\boldsymbol{\lambda}\|_{2}^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} + \sum_{t=1}^{T} \left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}\right) - \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}\right) \right\rangle, \tag{c1}$$

where \mathbb{R}_+ represents the set of non-negative real numbers.

Lemma C1 establishes a relationship between the Lagrangian (2) and the primal and dual variables in the robust primal-dual framework. In particular, in (c1), the last term is introduced due to the gradient approximation. If the approximate gradient $\nabla_{\theta} \widehat{\mathcal{L}}_t \left(\theta_t, \lambda_t\right)$ is unbiased, we have $\mathbb{E}\left[\nabla_{\theta} \mathcal{L}\left(\theta_t, \lambda_t\right) - \nabla_{\theta} \widehat{\mathcal{L}}_t \left(\theta_t, \lambda_t\right)\right] = \mathbf{0}$. Then, the last term in (c1) is eliminated by taking expectation. This is often the case in stochastic optimization without performativity [Tan et al., 2018; Yan et al., 2019; Cao and Başar, 2022]. However, in performative prediction, it is difficult to construct an unbiased gradient approximation because the unknown performative effect of decisions changes data distributions. Therefore, we must carry out the worst-case analysis on this term. In next lemma, we bound the ℓ_2 norms of the gradients $\|\nabla_{\lambda} \mathcal{L}(\theta_t, \lambda_t)\|_2^2$ and $\|\nabla_{\theta} \widehat{\mathcal{L}}_t(\theta_t, \lambda_t)\|_2^2$ in (c1).

Lemma C2. For any $t \in [T]$, the gradients $\nabla_{\lambda} \mathcal{L}(\theta_t, \lambda_t)$ and $\nabla_{\theta} \widehat{\mathcal{L}}_t(\theta_t, \lambda_t)$ respectively satisfy:

1.
$$\|\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_t, \boldsymbol{\lambda}_t)\|_2^2 \le 2C^2 + 2\delta^2 \eta^2 \|\boldsymbol{\lambda}_t\|_2^2$$
;

2.
$$\left\|\nabla_{\boldsymbol{\theta}}\widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\right\|_{2}^{2} \leq 4L^{2} + 4L_{\mathbf{g}}^{2} \left\|\boldsymbol{\lambda}_{t}\right\|_{2}^{2} + 2 \left\|\nabla_{\boldsymbol{\theta}}\widehat{PR}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}}PR(\boldsymbol{\theta}_{t})\right\|_{2}^{2}$$

Note that the bound of $\left\|\nabla_{\theta}\widehat{\mathcal{L}}_t(\theta_t, \lambda_t)\right\|_2^2$ involves the term $\left\|\nabla_{\theta}\widehat{\mathrm{PR}}_t(\theta_t) - \nabla_{\theta}\mathrm{PR}(\theta_t)\right\|_2^2$, which is the gradient approximation error at the tth iteration. Proofs of Lemma C1 and Lemma C2 are respectively given in § C.1 and § C.1. With these two Lemmas, we are ready to prove Lemma 3.

Proof of Lemma 3. By Lemma C1, we have

$$\sum_{t=1}^{T} \left(\mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}\right) - \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\lambda}_{t}\right) \right) \leq \frac{2R^{2}}{\eta} + \frac{\|\boldsymbol{\lambda}\|_{2}^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} + \frac{\eta}{2} \sum_{t=1}^{T} \|\nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} + \frac{a}{2} \sum_{t=1}^{T} \|\boldsymbol{\theta}_{t} - \boldsymbol{\theta}\|_{2}^{2} + \frac{1}{2a} \sum_{t=1}^{T} \|\nabla_{\boldsymbol{\theta}} \widehat{\mathbf{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \mathbf{PR}(\boldsymbol{\theta}_{t})\|_{2}^{2}, \quad (c2)$$

where a > 0 is a constant. Note that in (c2), we utilize the following inequality:

$$\left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \mathcal{L} \left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t} \right) - \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t} \left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t} \right) \right\rangle = \left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \operatorname{PR} \left(\boldsymbol{\theta}_{t} \right) - \nabla_{\boldsymbol{\theta}} \widehat{\operatorname{PR}}_{t} (\boldsymbol{\theta}_{t}) \right\rangle$$

$$\leq \frac{a}{2} \left\| \boldsymbol{\theta}_{t} - \boldsymbol{\theta} \right\|_{2}^{2} + \frac{1}{2a} \left\| \nabla_{\boldsymbol{\theta}} \operatorname{PR} (\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \widehat{\operatorname{PR}}_{t} (\boldsymbol{\theta}_{t}) \right\|_{2}^{2}.$$

Taking expectation over (c2) and plugging into the results in Lemma C2, we have

$$\sum_{t=1}^{T} \left(\mathbb{E}[\operatorname{PR}(\boldsymbol{\theta}_{t})] - \operatorname{PR}(\boldsymbol{\theta}_{PO}) \right) + \sum_{t=1}^{T} \mathbb{E} \left\langle \boldsymbol{\lambda}, \mathbf{g}(\boldsymbol{\theta}_{t}) \right\rangle - \sum_{t=1}^{T} \mathbb{E} \left\langle \boldsymbol{\lambda}_{t}, \mathbf{g}(\boldsymbol{\theta}_{PO}) \right\rangle - \frac{\delta \eta T}{2} \|\boldsymbol{\lambda}\|_{2}^{2} + \frac{\delta \eta}{2} \sum_{t=1}^{T} \mathbb{E} \|\boldsymbol{\lambda}_{t}\|_{2}^{2} \\
\leq \frac{2R^{2}}{\eta} + \frac{\|\boldsymbol{\lambda}\|_{2}^{2}}{2\eta} + \eta T \left(C^{2} + 2L^{2} \right) + \eta \left(\delta^{2} \eta^{2} + 2L_{\mathbf{g}}^{2} \right) \sum_{t=1}^{T} \mathbb{E} \|\boldsymbol{\lambda}_{t}\|_{2}^{2} \\
+ \frac{a}{2} \sum_{t=1}^{T} \mathbb{E} \|\boldsymbol{\theta}_{t} - \boldsymbol{\theta}\|_{2}^{2} + \left(\frac{1}{2a} + \eta \right) \sum_{t=1}^{T} \mathbb{E} \|\nabla_{\boldsymbol{\theta}} \widehat{\operatorname{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \operatorname{PR}(\boldsymbol{\theta}_{t}) \|_{2}^{2}, \tag{c3}$$

where we set θ to θ_{PO} since any $\theta \in \Theta$ satisfies (c2). In (c3), the term $\sum_{t=1}^{T} \lambda_t^{\top} \mathbf{g}(\theta_{PO})$ on the left side is non-positive and can be omitted, because we always have $\lambda_t \geq \mathbf{0}$ and $\mathbf{g}(\theta_{PO}) \leq \mathbf{0}$, $\forall t \in [T]$. Then, rearranging the term in (c3) gives

$$\sum_{t=1}^{T} \left(\mathbb{E}[\operatorname{PR}(\boldsymbol{\theta}_{t})] - \operatorname{PR}(\boldsymbol{\theta}_{\operatorname{PO}}) \right) + \sum_{t=1}^{T} \mathbb{E} \left\langle \boldsymbol{\lambda}, \mathbf{g}(\boldsymbol{\theta}_{t}) \right\rangle - \frac{1}{2} \left(\frac{1}{\eta} + \delta \eta T \right) \|\boldsymbol{\lambda}\|_{2}^{2} \\
\leq \frac{\eta}{2} \left(2\delta^{2} \eta^{2} - \delta + 4L_{\mathbf{g}}^{2} \right) \sum_{t=1}^{T} \mathbb{E} \|\boldsymbol{\lambda}_{t}\|_{2}^{2} + \frac{2R^{2}}{\eta} + \eta T \left(C^{2} + 2L^{2} \right) \\
+ \frac{a}{2} \sum_{t=1}^{T} \mathbb{E} \|\boldsymbol{\theta}_{t} - \boldsymbol{\theta}\|_{2}^{2} + \left(\frac{1}{2a} + \eta \right) \sum_{t=1}^{T} \mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\operatorname{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \operatorname{PR}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}. \tag{c4}$$

In (c4), the first term can be removed by properly choosing the stepsize η and the parameter δ , so that the coefficient $\frac{\eta}{2}\left(2\delta^2\eta^2-\delta+4L_{\mathbf{g}}^2\right)\leq 0$. Since $2\delta^2\eta^2-\delta+4L_{\mathbf{g}}^2$ is quadratic in η and $\eta>0$, the following range of δ meets the desired inequality:

$$\delta \in \left\lceil \frac{1 - \sqrt{1 - 32\eta^2 L_{\mathbf{g}}^2}}{4\eta^2}, \frac{1 + \sqrt{1 - 32\eta^2 L_{\mathbf{g}}^2}}{4\eta^2} \right\rceil.$$

We set $\eta = \frac{1}{\sqrt{T}}$. To guarantee that the value of δ within the above interval is a real number, we require $1 - 32\eta^2 L_{\mathbf{g}}^2 \geq 0$, i.e., the time horizon $T \geq 32L_{\mathbf{g}}^2$.

Next, we deal with the term $\frac{a}{2} \sum_{t=1}^{T} \mathbb{E} \| \boldsymbol{\theta}_{t} - \boldsymbol{\theta} \|_{2}^{2}$ in (c4). By the γ -convexity of the performative risk $\mathrm{PR}(\boldsymbol{\theta})$ give in Lemma 2, for any $\boldsymbol{\theta}_{t} \in \boldsymbol{\Theta}$, we have

$$PR(\boldsymbol{\theta}_t) \ge PR(\boldsymbol{\theta}_{PO}) + \langle \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_{PO}), \boldsymbol{\theta}_t - \boldsymbol{\theta}_{PO} \rangle + \frac{\gamma}{2} \|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{PO}\|_2^2.$$

From the optimality conditions, $\langle \nabla_{\theta} PR(\theta_{PO}), \theta_t - \theta_{PO} \rangle \geq 0, \forall t \in [T]$. Then, we have

$$\frac{a}{2} \sum_{t=1}^{T} \mathbb{E} \|\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{PO}\|_{2}^{2} \leq \sum_{t=1}^{T} \frac{a}{\gamma} \left(\mathbb{E}[PR(\boldsymbol{\theta}_{t})] - PR(\boldsymbol{\theta}_{PO}) \right).$$

Further, since any $\lambda \in \mathbb{R}_+^m$ satisfies Eq. (c4), we set $\lambda = \frac{\left[\mathbb{E}\left[\sum_{t=1}^T \mathbf{g}(\boldsymbol{\theta}_t)\right]\right]^+}{\frac{1}{\eta} + \delta \eta T}$. With the above results, we obtain

$$\left(1 - \frac{a}{\gamma}\right) \sum_{t=1}^{T} \left(\mathbb{E}[\operatorname{PR}(\boldsymbol{\theta}_{t})] - \operatorname{PR}(\boldsymbol{\theta}_{\operatorname{PO}})\right) + \frac{\left\|\left[\mathbb{E}\left[\sum_{t=1}^{T} \mathbf{g}\left(\boldsymbol{\theta}_{t}\right)\right]\right]^{+}\right\|_{2}^{2}}{2(1+\delta)\sqrt{T}}$$

$$\leq \sqrt{T}\left(2R^{2} + C^{2} + 2L^{2}\right) + \left(\frac{1}{2a} + \frac{1}{\sqrt{T}}\right) \sum_{t=1}^{T} \mathbb{E}\left\|\nabla_{\boldsymbol{\theta}}\widehat{\operatorname{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}}\operatorname{PR}(\boldsymbol{\theta}_{t})\right\|_{2}^{2}. \quad (c5)$$

Choosing $a \in (0, \gamma)$ and omitting the second term (non-negative) on the left side of (c5), we obtain

$$\begin{split} \sum_{t=1}^{T} \left(\mathbb{E}[\text{PR}(\boldsymbol{\theta}_{t})] - \text{PR}\left(\boldsymbol{\theta}_{\text{PO}}\right) \right) \leq & \frac{\gamma \sqrt{T}}{\gamma - a} \left(2R^{2} + C^{2} + 2L^{2} \right) \\ & + \frac{\gamma}{\gamma - a} \left(\frac{1}{2a} + \frac{1}{\sqrt{T}} \right) \sum_{t=1}^{T} \mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\text{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \text{PR}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}, \end{split}$$

which proves the regret bound in Lemma 3. Similarly, with $a \in (0, \gamma)$, the first term on the left side of (c5) is also non-negative. Omitting it gives

$$\frac{\sum_{i=1}^{m} \left(\left[\mathbb{E} \left[\sum_{t=1}^{T} g_{i} \left(\boldsymbol{\theta}_{t} \right) \right] \right]^{+} \right)^{2}}{2(1+\delta)\sqrt{T}} \leq \sqrt{T} \left(2R^{2} + C^{2} + 2L^{2} \right) + \left(\frac{1}{2a} + \frac{1}{\sqrt{T}} \right) \sum_{t=1}^{T} \mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{PR}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}. \quad (c6)$$

For each $\left(\left[\mathbb{E}\left[\sum_{t=1}^{T}g_{i}\left(\boldsymbol{\theta}_{t}\right)\right]\right]^{+}\right)^{2}$, $i\in[m]$, the above inequality also holds. Then, taking the square root on both sides of (c6) and using the inequality $\sqrt{a+b+c}\leq\sqrt{a}+\sqrt{b}+\sqrt{c}$, $\forall a,b,c\geq0$, we obtain

$$\left[\mathbb{E} \left[\sum_{t=1}^{T} g_i \left(\boldsymbol{\theta}_t \right) \right] \right]^{+} \leq \sqrt{1+\delta} \left(2R + \sqrt{2}C + 2L \right) \sqrt{T} \\
+ \sqrt{1+\delta} \left(\frac{T^{\frac{1}{4}}}{\sqrt{a}} + \sqrt{2} \right) \left(\sum_{t=1}^{T} \mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{PR}_t(\boldsymbol{\theta}_t) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_t) \right\|_{2}^{2} \right)^{\frac{1}{2}}.$$

As $\mathbb{E}\left[\sum_{t=1}^{T}g_{i}\left(\boldsymbol{\theta}_{t}\right)\right]\leq\left[\mathbb{E}\left[\sum_{t=1}^{T}g_{i}\left(\boldsymbol{\theta}_{t}\right)\right]\right]^{+}$, the constraint violation result in Lemma 3 is derived.

C.1 Proof of Lemma C1

The proof of Lemma C1 utilizes the following fact about a property of the projection operator.

Fact C1. Suppose that set $A \subset \mathbb{R}^d$ is closed and convex. Then, for any $\mathbf{y} \in \mathbb{R}^d$ and $\mathbf{x} \in A$, we have

$$\|\mathbf{x} - \Pi_{\mathcal{A}}(\mathbf{y})\|_2 \le \|\mathbf{x} - \mathbf{y}\|_2$$

where $\Pi_{\mathcal{A}}(\mathbf{y})$ denotes the projection of \mathbf{y} onto the set \mathcal{A} .

With Fact C1, the proof of Lemma C1 is given below.

From Lemma 2 and Assumption 3, we know that $\mathcal{L}(\theta, \lambda_t)$ is convex in θ . Then, we have

$$\mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\lambda}_{t}\right) \geq \mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}\right) + \left\langle \nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}\right), \boldsymbol{\theta} - \boldsymbol{\theta}_{t} \right\rangle.$$

Similarly, since $\mathcal{L}(\mathbf{x}, \lambda)$ is concave in λ , we have

$$\mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}) \leq \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) + \langle \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}), \boldsymbol{\lambda} - \boldsymbol{\lambda}_{t} \rangle.$$

Combining the above two inequalities yields

$$\mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}\right) - \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\lambda}_{t}\right) \leq \left\langle \nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}\right), \boldsymbol{\lambda} - \boldsymbol{\lambda}_{t} \right\rangle - \left\langle \nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}\right), \boldsymbol{\theta} - \boldsymbol{\theta}_{t} \right\rangle. \tag{c7}$$

From the update rule of λ given in (6), we have

$$\|\boldsymbol{\lambda} - \boldsymbol{\lambda}_{t+1}\|_{2}^{2} = \|\boldsymbol{\lambda} - [\boldsymbol{\lambda}_{t} + \eta \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})]^{+}\|_{2}^{2}$$

$$\stackrel{(a)}{\leq} \|\boldsymbol{\lambda} - \boldsymbol{\lambda}_{t}\|_{2}^{2} + \eta^{2} \|\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} - 2\eta \langle \boldsymbol{\lambda} - \boldsymbol{\lambda}_{t}, \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \rangle, \quad (c8)$$

where (a) is based on Fact C1. Rearranging the terms in (c8) gives

$$\langle \boldsymbol{\lambda} - \boldsymbol{\lambda}_{t}, \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \rangle \leq \frac{1}{2n} \left(\|\boldsymbol{\lambda} - \boldsymbol{\lambda}_{t}\|_{2}^{2} - \|\boldsymbol{\lambda} - \boldsymbol{\lambda}_{t+1}\|_{2}^{2} \right) + \frac{\eta}{2} \|\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2}.$$
 (c9)

Similarly, from the update rule of θ given in (5), we have

$$\|\boldsymbol{\theta} - \boldsymbol{\theta}_{t+1}\|_{2}^{2} = \|\boldsymbol{\theta} - \Pi_{\boldsymbol{\Theta}} \left(\boldsymbol{\theta}_{t} - \eta \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\right)\|_{2}^{2}$$

$$\leq \|\boldsymbol{\theta} - \boldsymbol{\theta}_{t}\|_{2}^{2} + \eta^{2} \|\nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} + 2\eta \left\langle \boldsymbol{\theta} - \boldsymbol{\theta}_{t}, \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\right\rangle. \tag{c10}$$

Rearranging the terms in (c10) gives

$$\left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\rangle \leq \frac{1}{2\eta} \left(\left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{t} \right\|_{2}^{2} - \left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{t+1} \right\|_{2}^{2} \right) + \frac{\eta}{2} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\|_{2}^{2}.$$

Then, we have

$$\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \mathcal{L} \left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t} \right) \rangle \leq \frac{1}{2\eta} \left(\| \boldsymbol{\theta} - \boldsymbol{\theta}_{t} \|_{2}^{2} - \| \boldsymbol{\theta} - \boldsymbol{\theta}_{t+1} \|_{2}^{2} \right) + \frac{\eta}{2} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t} (\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\|_{2}^{2} + \left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \mathcal{L} \left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t} \right) - \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t} (\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\rangle.$$
(c11)

Plugging (c9) and (c11) into (c7) yields

$$\mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}) - \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\lambda}_{t}) \leq \frac{1}{2\eta} \left(\|\boldsymbol{\lambda} - \boldsymbol{\lambda}_{t}\|_{2}^{2} - \|\boldsymbol{\lambda} - \boldsymbol{\lambda}_{t+1}\|_{2}^{2} \right) + \frac{\eta}{2} \|\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2}$$

$$+ \frac{1}{2\eta} \left(\|\boldsymbol{\theta} - \boldsymbol{\theta}_{t}\|_{2}^{2} - \|\boldsymbol{\theta} - \boldsymbol{\theta}_{t+1}\|_{2}^{2} \right) + \frac{\eta}{2} \|\nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2}$$

$$+ \left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) - \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\rangle. \tag{c12}$$

Summing (c12) over $t \in [T]$ yields

$$\sum_{t=1}^{T} \left(\mathcal{L} \left(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda} \right) - \mathcal{L} \left(\boldsymbol{\theta}, \boldsymbol{\lambda}_{t} \right) \right) \leq \frac{1}{2\eta} \left(\left\| \boldsymbol{\lambda} - \boldsymbol{\lambda}_{1} \right\|_{2}^{2} - \left\| \boldsymbol{\lambda} - \boldsymbol{\lambda}_{T+1} \right\|_{2}^{2} \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| \nabla_{\boldsymbol{\lambda}} \mathcal{L} (\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\|_{2}^{2} + \frac{1}{2\eta} \left(\left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{1} \right\|_{2}^{2} - \left\| \boldsymbol{\theta} - \boldsymbol{\theta}_{T+1} \right\|_{2}^{2} \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t} (\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\|_{2}^{2} + \sum_{t=1}^{T} \left\langle \boldsymbol{\theta}_{t} - \boldsymbol{\theta}, \nabla_{\boldsymbol{\theta}} \mathcal{L} (\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) - \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t} (\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\rangle. \tag{c13}$$

Since $\lambda_1 = 0$, $\|\theta - \theta_1\|_2^2 \le 4R^2$, Lemma C1 is proved by omitting the non-positive terms in (c13).

C.2 Proof of Lemma C2

From the definition of $\nabla_{\lambda} \mathcal{L}(\boldsymbol{\theta}, \lambda)$, for any $t \in [T]$, we have

$$\left\|\nabla_{\boldsymbol{\lambda}}\mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\right\|_{2}^{2} = \left\|\mathbf{g}(\boldsymbol{\theta}_{t}) - \delta\eta\boldsymbol{\lambda}_{t}\right\|_{2}^{2} \leq 2\left\|\mathbf{g}(\boldsymbol{\theta}_{t})\right\|_{2}^{2} + 2\delta^{2}\eta^{2}\left\|\boldsymbol{\lambda}_{t}\right\|_{2}^{2} \stackrel{(a)}{\leq} 2C^{2} + 2\delta^{2}\eta^{2}\left\|\boldsymbol{\lambda}_{t}\right\|_{2}^{2}$$

where (a) is based on the boundedness of the constraint $\mathbf{g}(\boldsymbol{\theta})$ given in Assumption 3. Similarly, from the definition of $\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_t, \boldsymbol{\lambda}_t)$, for any $t \in [T]$, we have

$$\|\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t})\|_{2}^{2} = \|\nabla_{\boldsymbol{\theta}} \operatorname{PR}(\boldsymbol{\theta}_{t}) + \nabla_{\boldsymbol{\theta}} \mathbf{g}(\boldsymbol{\theta}_{t})^{\top} \boldsymbol{\lambda}_{t}\|_{2}^{2}$$

$$\leq 2 \|\nabla_{\boldsymbol{\theta}} \operatorname{PR}(\boldsymbol{\theta}_{t})\|_{2}^{2} + 2 \|\nabla_{\boldsymbol{\theta}} \mathbf{g}(\boldsymbol{\theta}_{t})^{\top} \boldsymbol{\lambda}_{t}\|_{2}^{2}$$

$$\stackrel{(a)}{\leq} 2L^{2} + 2L_{\mathbf{g}}^{2} \|\boldsymbol{\lambda}_{t}\|_{2}^{2},$$

where (a) is based on the Lipschitz continuity of both the performative risk and the constraint. Then, we have

$$\begin{aligned} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathcal{L}}_{t}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\|_{2}^{2} &= \left\| \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) + \nabla_{\boldsymbol{\theta}} \widehat{PR}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_{t}) \right\|_{2}^{2} \\ &\leq 2 \left\| \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}_{t}, \boldsymbol{\lambda}_{t}) \right\|_{2}^{2} + 2 \left\| \nabla_{\boldsymbol{\theta}} \widehat{PR}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_{t}) \right\|_{2}^{2} \\ &\leq 4L^{2} + 4L_{\mathbf{g}}^{2} \left\| \boldsymbol{\lambda}_{t} \right\|_{2}^{2} + 2 \left\| \nabla_{\boldsymbol{\theta}} \widehat{PR}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}. \end{aligned}$$

By now, Lemma C2 is proved.

D Proof of Lemma 4

The proof of Lemma 4 will involve the accumulated parameter estimation error $\sum_{t=1}^{T} \| \widehat{\mathbf{A}}_t - \mathbf{A} \|_{\mathrm{F}}^2$, which is bounded by the following lemma.

Lemma D1 (Parameter Estimation Error). Let $\zeta_t = \frac{2}{\kappa_1(t-1)+2\kappa_3}$, $\forall t \in [T]$. Under Assumption 5, the accumulated parameter estimation error is upper bounded by:

$$\sum_{t=1}^{T} \mathbb{E} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{F}^{2} \leq \overline{\alpha} \ln(T),$$

where
$$\overline{\alpha} := \max \left\{ \frac{2\kappa_3}{\kappa_1} \left\| \widehat{\mathbf{A}}_0 - \mathbf{A} \right\|_F^2, \frac{8\kappa_2 \operatorname{tr}(\mathbf{\Sigma})}{\kappa_1^2} \right\}$$
.

See § E for the proof. Next, we proceed to prove Lemma 4.

Proof of Lemma 4. To facilitate our analysis, we introduce a finite-sample approximation for the gradient $\nabla_{\theta} PR(\theta)$, defined as

$$\nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \left[\nabla_{\boldsymbol{\theta}} \ell \left(\boldsymbol{\theta}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta} \right) + \mathbf{A}^{\top} \nabla_{Z} \ell \left(\boldsymbol{\theta}, Z_{0,i} + \mathbf{A} \boldsymbol{\theta} \right) \right].$$

Then, we have the following inequality:

$$\begin{split} & \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \mathrm{PR}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2} \\ & \leq 2 \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2} + 2 \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \mathrm{PR}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}. \end{split} \tag{d1}$$

From Assumption 4, we have

$$\mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \mathrm{PR}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}$$

$$\leq \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}_{Z_{0,i} \sim \mathcal{D}_{0}} \left\| \nabla_{\boldsymbol{\theta}} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_{t} \right) + \mathbf{A}^{\top} \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_{t} \right) - \nabla_{\boldsymbol{\theta}} \mathrm{PR}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2} \leq \frac{\sigma^{2}}{n}.$$

The first term in (d1) is handled as follows. Plugging into the expression of $\nabla_{\theta} \widehat{PR}_t(\theta_t)$ and $\nabla_{\theta} \widehat{PR}(\theta_t)$, we have

$$\begin{split} & \left\| \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \widehat{\mathrm{PR}}(\boldsymbol{\theta}_{t}) \right\|_{2}^{2} \\ & \leq \frac{2}{n^{2}} \sum_{i=1}^{n} \left\| \nabla_{\boldsymbol{\theta}} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \widehat{\mathbf{A}}_{t} \boldsymbol{\theta}_{t} \right) - \nabla_{\boldsymbol{\theta}} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_{t} \right) \right\|_{2}^{2} \\ & + \frac{2}{n^{2}} \sum_{i=1}^{n} \left\| \widehat{\mathbf{A}}_{t}^{\top} \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \widehat{\mathbf{A}}_{t} \boldsymbol{\theta}_{t} \right) - \mathbf{A}^{\top} \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_{t} \right) \right\|_{2}^{2}. \end{split} \tag{d2}$$

With the β -smoothness of the loss function given in Assumption 1, we have

$$\frac{2}{n^2} \sum_{i=1}^{n} \left\| \nabla_{\boldsymbol{\theta}} \ell \left(\boldsymbol{\theta}_t; Z_{0,i} + \widehat{\mathbf{A}}_t \boldsymbol{\theta}_t \right) - \nabla_{\boldsymbol{\theta}} \ell \left(\boldsymbol{\theta}_t; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_t \right) \right\|_2^2 \leq \frac{2\beta^2}{n} \left\| \widehat{\mathbf{A}}_t - \mathbf{A} \right\|_F^2 \left\| \boldsymbol{\theta}_t \right\|_2^2.$$

Moreover, the last term in (d2) is bounded by

$$\frac{2}{n^{2}} \sum_{i=1}^{n} \left\| \widehat{\mathbf{A}}_{t}^{\top} \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \widehat{\mathbf{A}}_{t} \boldsymbol{\theta}_{t} \right) - \mathbf{A}^{\top} \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_{t} \right) \right\|_{2}^{2}$$

$$\leq \frac{4}{n^{2}} \sum_{i=1}^{n} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{F}^{2} \left\| \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \widehat{\mathbf{A}}_{t} \boldsymbol{\theta}_{t} \right) \right\|_{2}^{2}$$

$$+ \frac{4\sigma_{\max}(\mathbf{A})}{n^{2}} \sum_{i=1}^{n} \left\| \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \widehat{\mathbf{A}}_{t} \boldsymbol{\theta}_{t} \right) - \nabla_{Z} \ell \left(\boldsymbol{\theta}_{t}; Z_{0,i} + \mathbf{A} \boldsymbol{\theta}_{t} \right) \right\|_{2}^{2}$$

$$\stackrel{(a)}{\leq} \frac{4L_{Z}^{2}}{n} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{F}^{2} + \frac{4\beta^{2}\sigma_{\max}(\mathbf{A})}{n} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{F}^{2} \left\| \boldsymbol{\theta}_{t} \right\|_{2}^{2},$$

where (a) is because the loss function is β -smooth and L_Z Lipachitz continuous in Z. Plugging the above results into (d1) and taking expectation yields

$$\mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{PR}_t(\boldsymbol{\theta}_t) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_t) \right\|_2^2 \leq \frac{2\sigma^2}{n} + \frac{4}{n} \left(2L_Z^2 + \beta^2 R^2 \left(1 + 2\sigma_{\max}(\mathbf{A}) \right) \right) \mathbb{E} \left\| \widehat{\mathbf{A}}_t - \mathbf{A} \right\|_F^2,$$

where we utilize the boundedness of the available set that $\|\boldsymbol{\theta}\|_2 \leq R$, $\forall \boldsymbol{\theta} \in \boldsymbol{\Theta}$. Summing the above inequality over T iterations yields

$$\sum_{t=1}^{T} \mathbb{E} \left\| \nabla_{\boldsymbol{\theta}} \widehat{PR}_{t}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} PR(\boldsymbol{\theta}_{t}) \right\|_{2}^{2}$$

$$\leq \frac{2T\sigma^{2}}{n} + \frac{4}{n} \left(2L_{Z}^{2} + \beta^{2} R^{2} \left(1 + 2\sigma_{\max}(\mathbf{A}) \right) \right) \sum_{t=1}^{T} \mathbb{E} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{F}^{2}.$$

Plugging into the result in Lemma D1 proves Lemma 4.

E Proof of Lemma D1

The proof of Lemma D1 utilizes the following two supporting lemmas.

Lemma E1 (One-Step Improvement). Suppose that Assumption 5 holds. For any $t \in [T]$, choose stepsize $\zeta_t \in \left(0, \frac{2}{\kappa_3}\right)$. Then, the parameter estimates satisfy:

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t} - \mathbf{A}\right\|_{\mathrm{F}}^{2} \middle| \widehat{\mathbf{A}}_{t-1}\right] \leq \left(1 - \kappa_{1} \zeta_{t} \left(2 - \zeta_{t} \kappa_{3}\right)\right) \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{\mathrm{F}}^{2} + 2\zeta_{t}^{2} \kappa_{2} \operatorname{tr}(\mathbf{\Sigma}), \forall t \in [T].$$

Lemma E2 (Sequence Result). Consider a sequence $\{S_t\}_{t=1}^T$ satisfying

$$S_t \le \left(1 - \frac{2}{t - 1 + t_0}\right) S_{t-1} + \frac{\alpha}{(t - 1 + t_0)^2}, \forall t \in [T],$$

where $t_0 \ge 0$ and $\alpha > 0$ are two constants. Then, we have

$$S_t \le \frac{\max\{t_0 S_0, \alpha\}}{t + t_0}, \forall t \in [T].$$

Proofs of Lemma E1 and Lemma E2 are respectively given in § E.1 and § E.2. With these two Lemmas, the proof of Lemma D1 is given below.

Proof of Lemma D1. For any $t \in [T]$, set $\zeta_t = \frac{2}{\kappa_1 \left(t-1+\frac{2\kappa_3}{\kappa_1}\right)}$. Then, we have $2-\zeta_t \kappa_3 = 2-\frac{2\kappa_3}{\kappa_1(t-1)+2\kappa_3} \geq 1$. Plugging this inequality into Lemma E1, we have

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t} - \mathbf{A}\right\|_{\mathrm{F}}^{2} \middle| \widehat{\mathbf{A}}_{t-1}\right] \leq \left(1 - \frac{2}{t - 1 + \frac{2\kappa_{3}}{\kappa_{1}}}\right) \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{\mathrm{F}}^{2} + \frac{8\kappa_{2}\operatorname{tr}(\mathbf{\Sigma})}{\kappa_{1}^{2}\left(t - 1 + \frac{2\kappa_{3}}{\kappa_{1}}\right)^{2}}.$$

Define $\overline{\alpha} := \max \left\{ \frac{2\kappa_3}{\kappa_1} \left\| \widehat{\mathbf{A}}_0 - \mathbf{A} \right\|_F^2, \frac{8\kappa_2 \operatorname{tr}(\mathbf{\Sigma})}{\kappa_1^2} \right\}$. By Lemma E2, we have

$$\mathbb{E} \left\| \widehat{\mathbf{A}}_t - \mathbf{A} \right\|_{\mathrm{F}}^2 \le \frac{\overline{\alpha}}{t + \frac{2\kappa_3}{\kappa_1}}.$$

Summing the above inequality yields

$$\sum_{t=1}^{T} \mathbb{E} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{\mathrm{F}}^{2} \leq \sum_{t=1}^{T} \frac{\overline{\alpha}}{t + \frac{2\kappa_{3}}{\kappa_{1}}} \leq \overline{\alpha} \left(\ln \left(T + \frac{2\kappa_{3}}{\kappa_{1}} \right) - \ln \left(\frac{2\kappa_{3}}{\kappa_{1}} \right) \right) \leq \overline{\alpha} \ln(T),$$

which proves Lemma D1.

E.1 Proof of Lemma E1

Denote by $\mathbf{b}_t := Z_t' - Z_t$. We have $\mathbb{E}[\mathbf{b}_t | \mathbf{u}_t] = \mathbf{A}\mathbf{u}_t$. Then,

$$\mathbb{E}\left[\left\|\mathbf{A}\mathbf{u}_{t}-\mathbf{b}_{t}\right\|_{2}^{2}\middle|\mathbf{u}_{t}\right] = \operatorname{tr}\left(\mathbb{E}\left(\mathbf{A}\mathbf{u}_{t}-\mathbf{b}_{t}\right)(\mathbf{A}\mathbf{u}_{t}-\mathbf{b}_{t})^{\top}\middle|\mathbf{u}_{t}\right) = 2\operatorname{tr}(\mathbf{\Sigma}). \tag{e1}$$

Recall that Σ is the variance of the base distribution \mathcal{D}_0 . In Algorithm 1, the update rule of the parameter estimate is $\widehat{\mathbf{A}}_t = \widehat{\mathbf{A}}_{t-1} - \zeta_t \left(\widehat{\mathbf{A}}_{t-1} \mathbf{u}_t - \mathbf{b}_t \right) \mathbf{u}_t^{\mathsf{T}}$. Thus, we have

$$\begin{aligned} \left\| \widehat{\mathbf{A}}_{t} - \mathbf{A} \right\|_{\mathrm{F}}^{2} &= \left\| \widehat{\mathbf{A}}_{t-1} - \mathbf{A} - \zeta_{t} \left(\widehat{\mathbf{A}}_{t-1}^{\top} \mathbf{u}_{t} - \mathbf{b}_{t} \right) \mathbf{u}_{t}^{\top} \right\|_{\mathrm{F}}^{2} \\ &= \left\| \widehat{\mathbf{A}}_{t-1} - \mathbf{A} \right\|_{\mathrm{F}}^{2} - 2\zeta_{t} \left\langle \widehat{\mathbf{A}}_{t-1} - \mathbf{A}, \left(\widehat{\mathbf{A}}_{t-1} \mathbf{u}_{t} - \mathbf{b}_{t} \right) \mathbf{u}_{t}^{\top} \right\rangle + \zeta_{t}^{2} \left\| \left(\widehat{\mathbf{A}}_{t-1} \mathbf{u}_{t} - \mathbf{b}_{t} \right) \mathbf{u}_{t}^{\top} \right\|_{\mathrm{F}}^{2}. \end{aligned}$$

Given $\widehat{\mathbf{A}}_{t-1}$ and \mathbf{u}_t , taking conditional expectation on the above equation gives

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t} - \mathbf{A}\right\|_{F}^{2} |\widehat{\mathbf{A}}_{t-1}, \mathbf{u}_{t}\right] \\
= \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{F}^{2} - 2\zeta_{t} \left\langle \widehat{\mathbf{A}}_{t-1} - \mathbf{A}, \left(\widehat{\mathbf{A}}_{t-1}\mathbf{u}_{t} - \mathbb{E}[\mathbf{b}_{t}|\mathbf{u}_{t}]\right) \mathbf{u}_{t}^{\top} \right\rangle + \zeta_{t}^{2} \mathbb{E}\left[\left\|\left(\widehat{\mathbf{A}}_{t-1}\mathbf{u}_{t} - \mathbf{b}_{t}\right) \mathbf{u}_{t}^{\top}\right\|_{F}^{2} |\widehat{\mathbf{A}}_{t-1}, \mathbf{u}_{t}|\right] \\
= \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{F}^{2} - 2\zeta_{t} \left\|\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right) \mathbf{u}_{t}\right\|_{2}^{2} + \zeta_{t}^{2} \left\|\mathbf{u}_{t}\right\|_{2}^{2} \mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t-1}\mathbf{u}_{t} - \mathbf{b}_{t}\right\|_{2}^{2} |\widehat{\mathbf{A}}_{t-1}, \mathbf{u}_{t}|\right]. (e2)$$

The term $\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t-1}\mathbf{u}_t - \mathbf{b}_t\right\|_2^2\middle|\widehat{\mathbf{A}}_{t-1}, \mathbf{u}_t\right]$ in (e2) satisfies

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t-1}\mathbf{u}_{t} - \mathbf{b}_{t}\right\|_{2}^{2} \middle| \widehat{\mathbf{A}}_{t-1}, \mathbf{u}_{t}\right] \\
= \left\|\widehat{\mathbf{A}}_{t-1}\mathbf{u}_{t} - \mathbf{A}\mathbf{u}_{t}\right\|_{2}^{2} + \mathbb{E}\left[\left\|\mathbf{A}\mathbf{u}_{t} - \mathbf{b}_{t}\right\|_{2}^{2} \middle| \mathbf{u}_{t}\right] + 2\left\langle\widehat{\mathbf{A}}_{t-1}\mathbf{u}_{t} - \mathbf{A}\mathbf{u}_{t}, \mathbf{A}\mathbf{u}_{t} - \mathbb{E}[\mathbf{b}_{t}|\mathbf{u}_{t}]\right\rangle \\
\stackrel{(a)}{=} \left\|\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2} + 2\operatorname{tr}(\mathbf{\Sigma}).$$
(e3)

where (a) is from (e1) and $\mathbb{E}[\mathbf{b}_t|\mathbf{u}_t] = \mathbf{A}\mathbf{u}_t$. Plugging (e3) into (e2) gives

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t} - \mathbf{A}\right\|_{F}^{2} \middle| \widehat{\mathbf{A}}_{t-1}, \mathbf{u}_{t}\right] = \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{F}^{2} - 2\zeta_{t} \left\|\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2} + \zeta_{t}^{2} \left\|\mathbf{u}_{t}\right\|_{2}^{2} \left\|\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2} + 2\zeta_{t}^{2} \left\|\mathbf{u}_{t}\right\|_{2}^{2} \operatorname{tr}(\mathbf{\Sigma}).$$
 (e4)

Taking conditional expectation over the random noise \mathbf{u}_t gives

$$\mathbb{E}\left[\left\|\mathbf{u}_{t}\right\|_{2}^{2}\left\|\left(\widehat{\mathbf{A}}_{t-1}-\mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2}\middle|\widehat{\mathbf{A}}_{t-1}\right] = \left\langle\left(\widehat{\mathbf{A}}_{t-1}-\mathbf{A}\right)\left(\widehat{\mathbf{A}}_{t-1}-\mathbf{A}\right)^{\top}, \mathbb{E}\left[\left\|\mathbf{u}_{t}\right\|_{2}^{2}\mathbf{u}_{t}\mathbf{u}_{t}^{\top}\middle|\widehat{\mathbf{A}}_{t-1}\right]\right\rangle \\
\leq \kappa_{3}\mathbb{E}\left[\left\|\left(\widehat{\mathbf{A}}_{t-1}-\mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2}\middle|\widehat{\mathbf{A}}_{t-1}\right].$$
(e5)

Plugging (e5) into (e4) yields

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t} - \mathbf{A}\right\|_{\mathrm{F}}^{2} \middle| \widehat{\mathbf{A}}_{t-1}\right]$$

$$\leq \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{\mathrm{F}}^{2} - \left(2\zeta_{t} - \zeta_{t}^{2}\kappa_{3}\right) \mathbb{E}\left[\left\|\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2} \middle| \widehat{\mathbf{A}}_{t-1}\right] + 2\zeta_{t}^{2}\kappa_{2}\operatorname{tr}(\mathbf{\Sigma}).$$

Further, we have

$$\mathbb{E}\left[\left\|\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)\mathbf{u}_{t}\right\|_{2}^{2} \middle| \widehat{\mathbf{A}}_{t-1}\right] = \operatorname{tr}\left(\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)^{\top}\left(\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right)\mathbb{E}\left[\mathbf{u}_{t}\mathbf{u}_{t}^{\top} \middle| \widehat{\mathbf{A}}_{t-1}\right]\right) \geq \kappa_{1}\left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{F}^{2}.$$

Then, choosing $\zeta_t \in \left(0, \frac{2}{\kappa_3}\right)$, we obtain

$$\mathbb{E}\left[\left\|\widehat{\mathbf{A}}_{t} - \mathbf{A}\right\|_{\mathrm{F}}^{2} \middle| \widehat{\mathbf{A}}_{t-1}\right] \leq \left(1 - \kappa_{1} \zeta_{t} \left(2 - \zeta_{t} \kappa_{3}\right)\right) \left\|\widehat{\mathbf{A}}_{t-1} - \mathbf{A}\right\|_{\mathrm{F}}^{2} + 2\zeta_{t}^{2} \kappa_{2} \operatorname{tr}(\mathbf{\Sigma}),$$

which proves Lemma E1.

E.2 Proof of Lemma E2

We prove Lemma E2 by induction. First, for t=0, $S_0 \leq \frac{\max\{t_0S_0,\alpha\}}{t_0}$ automatically holds. Define $\overline{\alpha} := \max\{t_0S_0,\alpha\}$. Suppose that $S_{t-1} \leq \frac{\overline{\alpha}}{t-1+t_0}$ holds. Then, we have

$$S_{t} \leq \left(1 - \frac{2}{t - 1 + t_{0}}\right) S_{t} + \frac{\alpha}{(t - 1 + t_{0})^{2}}$$

$$\leq \left(1 - \frac{2}{t - 1 + t_{0}}\right) \frac{\overline{\alpha}}{t - 1 + t_{0}} + \frac{\alpha}{(t - 1 + t_{0})^{2}}$$

$$\leq \frac{\overline{\alpha}}{t - 1 + t_{0}} - \frac{2\overline{\alpha}}{(t - 1 + t_{0})^{2}} + \frac{\overline{\alpha}}{(t - 1 + t_{0})^{2}}$$

$$\leq \frac{\overline{\alpha}}{t - 1 + t_{0}} - \frac{\overline{\alpha}}{(t - 1 + t_{0})^{2}} \leq \frac{\overline{\alpha}}{t + t_{0}},$$

where the last inequality is based on the fact that $(t+t_0)(t-2+t_0)=(t-1-t_0)^2-1\leq (t-1-t_0)^2$. Thus, $\frac{1}{t-1+t_0}-\frac{1}{(t-1+t_0)^2}=\frac{t-2+t_0}{(t-1-t_0)^2}\leq \frac{1}{t+t_0}$. By now, we have proved Lemma E2.

F Experiment Details

In this section, we elaborate on the simulation details of the numerical experiments in Section 5.

F.1 Multi-Task Linear Regression

The multi-task linear regression is conducted over a randomly generated Erdos-Renyi graph with n=10 nodes. The probability of an edge between any pair of nodes in the Erdos-Renyi graph

is 0.5. The decision dimension of each task is set to be 3. The decision of task i is initialized as $\boldsymbol{\theta}_i = \mathbf{0}, \forall i \in \mathcal{V}$. The injected noises $\{\mathbf{u}_t\}_{t=1}^T$ are independently drawn from $\mathcal{N}\left(\mathbf{0},\mathbf{I}\right)$. The number of iterations is $T = 10^6$. The number of initial samples is $n = 10^3$. The stepsize of the alternating gradient update is $\eta = 5 \times 10^{-3}$. The control parameter is $\delta = 1$. The stepsize of the online parameter estimation at the tth iteration is $\zeta_t = \frac{1}{t+10}, \forall t \in [T]$.

Data Generation Process: For any $i \in \mathcal{V}$, given a parameter vector $\boldsymbol{\theta}_i \in \mathbb{R}^d$, the feature-label pair (\mathbf{x}_i, y_i) is generated as follows:

1. $\mathbf{x}_i \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}_{\mathbf{x}_i}\right)$, where $\mathbf{\Sigma}_{\mathbf{x}_i}$ is a random symmetric positive-definite matrix with nuclear norm d.

2.
$$y_i = \boldsymbol{\beta}_i^{\top} \mathbf{x}_i + \boldsymbol{\mu}_i^{\top} \boldsymbol{\theta}_i + w_i$$
, where $\boldsymbol{\beta}_i \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right)$ and $w_i \sim \mathcal{N}\left(0, \sigma_i^2\right)$ with $\sigma_i^2 = 1$.

This distribution map is a location family with sensitivity parameter $\varepsilon = \sum_{i \in \mathcal{V}} \|\boldsymbol{\mu}_i\|_2$. To generate all the vectors $\{\boldsymbol{\mu}_i\}_{i \in \mathcal{V}}$, we first independently draw $|\mathcal{V}|$ samples from $\mathcal{N}\left(\mathbf{0},\mathbf{I}\right)$ and then projected their concatenation onto the sphere of radius ε .

In constraint-free case, given the squared-loss $\ell_i\left(\boldsymbol{\theta}_i; (\mathbf{x}_i, y_i)\right) = \frac{1}{2}(y_i - \boldsymbol{\theta}_i^{\top}\mathbf{x}_i)^2$ and the linearity of the performative effect, the performative optimum of each task i, denoted by $\boldsymbol{\theta}_{i,PO}$, can be computed in closed-form as

$$\boldsymbol{\theta}_{i,PO} = \mathcal{C}_{x_i x_i}^{-1} \mathcal{C}_{x_i y_i}, \forall i \in \mathcal{V},$$

where $C_{x_ix_i} := \Sigma_{\mathbf{x}_i} + \mu_i \mu_i^{\top}$ and $C_{x_iy_i} := \Sigma_{\mathbf{x}_i} \boldsymbol{\beta}_i$, $\forall i \in \mathcal{V}$. Correspondingly, the minimum performative risk is given by

$$PR(\boldsymbol{\theta}_{PO}) = \sum_{i \in \mathcal{V}} \mathcal{C}_{y_i y_i} - \mathcal{C}_{y_i x_i} \mathcal{C}_{x_i x_i}^{-1} \mathcal{C}_{x_i y_i},$$

where $\boldsymbol{\theta}_{\mathrm{PO}}$ is the concatenation of $\boldsymbol{\theta}_{i,\mathrm{PO}}$ for all $i \in \mathcal{V}$, $\mathcal{C}_{y_i y_i} := \boldsymbol{\beta}_i^{\top} \boldsymbol{\Sigma}_{\mathbf{x}_i} \boldsymbol{\beta}_i + \sigma_i^2$, $\mathcal{C}_{y_i x_i} = \mathcal{C}_{x_i y_i}^{\top}$

The constraint associated with each neighboring node pair $(i, j) \in \mathcal{E}$ is set to be

$$\left\| \boldsymbol{\theta}_i - \boldsymbol{\theta}_j \right\|_2^2 \le \left\| \boldsymbol{\theta}_{i, \text{PO}} - \boldsymbol{\theta}_{j, \text{PO}} \right\|_2^2 + \left(b'_{ij} \right)^2,$$

where $\{b'_{ij}\}_{(i,j)\in\mathcal{E}}$ are uniformly drawn from the region [0,0.02] in a symmetry manner, i.e., $b'_{ij}=b'_{ji}$, $\forall (i,j)\in\mathcal{E}$.

Let θ be the concatenation of θ_i for all $i \in \mathcal{V}$. The approximate performative gradient of APDA is computed by

$$\nabla_{\boldsymbol{\theta}} \widehat{PR}_{t}(\boldsymbol{\theta}_{t}) = \frac{1}{n} \sum_{i \in \mathcal{V}} \sum_{j=1}^{n} \left[\left(y_{i,j} - \boldsymbol{\theta}_{i,t}^{\top} \mathbf{x}_{i,j} \right) \left(\widehat{\boldsymbol{\mu}}_{i,t} - \mathbf{x}_{i,j} \right) \right], \forall t \in [T].$$

The approximate performative gradient of PD-PS is computed by

$$\nabla_{\boldsymbol{\theta}} \widehat{PR}_t(\boldsymbol{\theta}_t) = -\frac{1}{n} \sum_{i \in \mathcal{V}} \sum_{i=1}^n \left[\left(y_{i,j} - \boldsymbol{\theta}_{i,t}^{\top} \mathbf{x}_{i,j} \right) \mathbf{x}_{i,j} \right], \forall t \in [T].$$

The approximate performative gradient of the "baseline" is computed by

$$\nabla_{\boldsymbol{\theta}} PR_t(\boldsymbol{\theta}_t) = \frac{1}{n} \sum_{i \in \mathcal{V}} \sum_{j=1}^n \left[\left(y_{i,j} - \boldsymbol{\theta}_{i,t}^{\top} \mathbf{x}_{i,j} \right) (\boldsymbol{\mu}_i - \mathbf{x}_{i,j}) \right], \forall t \in [T].$$

The performative risk is computed by

$$PR(\boldsymbol{\theta}_t) = \mathcal{C}_{y_i y_i} - \mathcal{C}_{y_i x_i} \boldsymbol{\theta}_t - \boldsymbol{\theta}_t^{\top} \mathcal{C}_{x_i y_i} + \boldsymbol{\theta}_t^{\top} \mathcal{C}_{x_i x_i}^{-1} \boldsymbol{\theta}_t, \forall t \in [T].$$

All results are averaged over 100 realizations.

F.2 Multi-Asset Portfolio

In the implementation of the multi-asset portfolio, we add a regularizer $\xi \|\theta\|_2^2$ to the original loss function to make it strongly convex. This gives the optimization problem:

$$\begin{aligned} & \min_{\boldsymbol{\theta}} & & - \underset{\mathbf{z} \sim \mathcal{D}(\boldsymbol{\theta})}{\mathbb{E}} \mathbf{z}^{\top} \boldsymbol{\theta} + \xi \|\boldsymbol{\theta}\|_{2}^{2} \\ & \text{s.t.} & & \sum_{i=1}^{l} \theta_{i} \leq 1, \\ & & & \mathbf{0} \leq \boldsymbol{\theta} \leq \epsilon \cdot \mathbf{1}, \\ & & & \mathbf{s}^{\top} \boldsymbol{\theta} \leq S, \\ & & & & \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\Psi} \boldsymbol{\theta} \leq \rho. \end{aligned}$$

In the simulation, we set the number of assets l=10. The initial investment decision $\boldsymbol{\theta}_1$ is randomly chosen within the feasible set. The injected noises $\{\mathbf{u}_t\}_{t=1}^T$ are independently drawn from $\mathcal{N}\left(\mathbf{0},\mathbf{I}\right)$. The parameter ξ in the regularizer is set to be ε . The maximum amount of investment to one asset is $\epsilon=0.3$. The entries of the bid-ask spread vector \mathbf{s} are independently and uniformly drawn from the region [2,4]. The maximum allowable bid-ask spread is S=2. The risk tolerance threshold is $\rho=0.01$. The number of iterations is $T=10^6$. The number of initial samples is $n=10^3$. The stepsize of the alternating gradient update is $\eta=5\times 10^{-3}$. The control parameter is $\delta=1$. The stepsize of the online parameter estimation at the tth iteration is $\zeta_t=\frac{1}{t+10}, \forall t\in[T]$.

Data Generation Process: The rate of reture follows $\mathbf{z} = \overline{\mathbf{z}} + \mathbf{A}\boldsymbol{\theta} + \mathbf{u}_{\mathbf{z}}$, where $\overline{\mathbf{z}}$ is a constant vector, $\mathbf{u}_{\mathbf{z}} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{z}}\right)$, and $\boldsymbol{\Sigma}_{\mathbf{z}}$ is a random symmetric positive-definite matrix with nuclear norm 1/l. To generate $\overline{\mathbf{z}}$, we first uniformly draw a sample within the region $[10\varepsilon, 1+10\varepsilon]$ and then project it onto the sphere of radius 2.

This distribution map is a location family with sensitivity parameter $\varepsilon = \sigma_{\max}(\mathbf{A})$. Optimization of the multi-asset portfolio problem requires the covariance matrix of \mathbf{z} , which is unknown. Note that the randomness of \mathbf{z} lies in the term $\mathbf{u}_{\mathbf{z}}$. Then, we have $\mathbf{\Psi} = \mathbf{\Sigma}_{\mathbf{z}}$. The covariance matrix $\mathbf{\Sigma}_{\mathbf{z}}$ can be approximated based on the initial samples drawn from $\mathcal{D}(\mathbf{0})$. The optimal investment is computed by CVX tools [Grant and Boyd, 2014].

The approximate performative gradient of APDA is given by

$$\nabla_{\boldsymbol{\theta}} \widehat{PR}_t(\boldsymbol{\theta}_t) = -\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n} \mathbf{z}_j + \left(2\xi \cdot \mathbf{I} - \widehat{\mathbf{A}}_t\right) \boldsymbol{\theta}, \forall t \in [T].$$

The approximate performative gradient of PD-PS is given by

$$\nabla_{\boldsymbol{\theta}} \widehat{PR}_t(\boldsymbol{\theta}_t) = -\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n} \mathbf{z}_j + 2\xi \boldsymbol{\theta}, \forall t \in [T].$$

The approximate performative of the "baseline" is given by

$$\nabla_{\boldsymbol{\theta}} \widehat{PR}_t(\boldsymbol{\theta}_t) = -\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n} \mathbf{z}_j + (2\xi \cdot \mathbf{I} - \mathbf{A}) \, \boldsymbol{\theta}, \forall t \in [T].$$

The performative risk is given by

$$PR(\boldsymbol{\theta}_t) = \overline{\mathbf{z}}^{\top} \boldsymbol{\theta}_t + \boldsymbol{\theta}_t^{\top} \mathbf{A} \boldsymbol{\theta}_t + \xi \|\boldsymbol{\theta}_t\|_2^2.$$

All results are averaged over 100 realizations.