
8th ICML Workshop on Automated Machine Learning (2021)

Towards Model Selection using Learning Curve
Cross-Validation

Felix Mohr felix.mohr@unisabana.edu.co
Universidad de La Sabana, Colombia

Jan N. van Rijn j.n.van.rijn@liacs.leidenuniv.nl

Leiden University, the Netherlands

Abstract

Cross-validation (CV) methods such as leave-one-out cross-validation, k-fold cross-validation,
and Monte-Carlo cross-validation estimate the predictive performance of a learner by re-
peatedly training it on a large portion of the given data and testing on the remaining
data. These techniques have two drawbacks. First, they can be unnecessarily slow on large
datasets. Second, providing only point estimates, they give almost no insights into the
learning process of the validated algorithm. In this paper, we propose a new approach for
validation based on learning curves (LCCV). Instead of creating train-test splits with a
large portion of training data, LCCV iteratively increases the number of training examples
used for training. In the context of model selection, it eliminates models that can be safely
dismissed from the candidate pool. We run a large scale experiment on the 67 datasets
from the AutoML benchmark, and empirically show that LCCV in over 90% of the cases
results in similar performance (at most 0.5% difference) as 10-fold CV, but provides addi-
tional insights on the behaviour of a given model. On top of this, LCCV achieves runtime
reductions between 20% and over 50% on half of the 67 datasets from the AutoML bench-
mark. This can be incorporated in various AutoML frameworks, to speed up the internal
evaluation of candidate models. As such, these results can be used orthogonally to other
advances in the field of AutoML.

1. Introduction

Model validation is an important aspect in several learning approaches in which different
models compete against each other. Automated machine learning (AutoML) tools make
excessive use of validation techniques to assess the performance of machine learning pipelines
(Thornton et al., 2013; Feurer et al., 2015; Olson et al., 2016; Mohr et al., 2018). But
also specific learners like decision tables (Kohavi, 1995) use cross-validation to assess the
performance of a whole model or parts of it. In any case, the underlying activity that
employs validation is a model selection process. In the context of model selection, the
cross-validation procedure can often be considered just an interchangeable function that
provides some estimate for the quality of a model. That is, approaches adopting cross-
validation such as decision tables or AutoML tools typically are agnostic to the particular
choice of the cross-validation technique but are just interested in some kind of “robust”
performance estimation. Typical choices to implement such a validation function are leave-
one-out validation (LOO), k-fold cross-validation (kCV), and Monte-Carlo Cross-Validation
(MCCV); we refer to Abu-Mostafa et al. (2012) for details.

©2021 Felix Mohr and Jan N. van Rijn.

Mohr and van Rijn

This work is based on the observation that in situations with a high number of possi-
bly costly evaluations, the above validation methods are often unnecessarily slow as they
consider more data than necessary to estimate the generalization performance. While
large training sets are sometimes necessary to estimate the generalization performance of a
learner, in many cases the number of data points required to build the best possible model
of a class is much lower. Then, large train folds unnecessarily slow down the validation
process, sometimes substantially. For example, the error rate of a linear SVM on the nu-
merai28.6 dataset is 48% when training with 4 000 instances but also when training with
90 000 instances. However, in the latter case, the evaluation is almost 50 times slower. We
can economize runtime when the latter evaluation could be neglected.

In this paper, we propose an iterative cross-validation approach through the notion of
learning curves. Learning curves express the prediction performance of the models produced
by a learner for different numbers of examples available for learning. Validation is now done
as follows. Instead of evaluating a learner just for one number of training examples (say
80% of the original dataset size), it is evaluated, in increasing order, at different so-called
anchor points of training fold sizes (e.g., increasing size of 64, 128, 256, 512, . . .). At
each anchor point, several validations are conducted until a stability criterion is met. For
each learner, we evaluate at each anchor point whether it is still feasible to improve over
the so-far best-seen model. We do this based on the assumption that learning curves are
convex. When extrapolating the learning curve in the most optimistic way does not yield
an improvement over the best-seen model, the current model is dropped, economizing the
runtime that was otherwise spent on larger anchor points. We dub this approach learning
curve cross-validation (LCCV). While other authors have also worked with the concept of
sub-sampling (Jamieson and Talwalkar, 2016; Li et al., 2017; Petrak, 2000; Provost et al.,
1999; Sabharwal et al., 2016) or learning curves modelling (Baker et al., 2018; Domhan et al.,
2015; Klein et al., 2017; Leite and Brazdil, 2010; van Rijn et al., 2015), these techniques
typically have a higher emphasize on the runtime aspect. As such, these techniques have
on one hand the possibility of disregarding a good model early, while on the other hand,
they do have more time to evaluate other models. For a more extensive overview, we refer
the reader to Appendix A. The main contribution of LCCV is that it employs a convexity
assumption on learning curves, and using this convexity assumption more often selects the
best model, at the cost of higher runtime compared to the aforementioned techniques.

2. Learning Curve Cross-Validation

The idea of learning curve cross-validation (LCCV) is to compute an empirical learning
curve with performance observations only at some points. To gain insights about the true
learning curve, we define a finite set of anchor points S = (s1, .., sT) and validate learners
using training data of the sizes in S. To obtain stable estimates for the performance at
s ∈ S, several independent such validations will be conducted at each anchor point.

The LCCV algorithm is sketched in Alg. 1 (Appendix B) and works as follows. The
algorithm iterates over stages, one for each anchor point in S (in ascending order). In the
stage for anchor point s (lines 6-11), the learner is validated by drawing folds of training
size s and validate it against data not in those folds. These validations are repeated until
a stopping criterion is met (cf. Sec. 2.1). Then it is checked whether the observations

2

Towards Model Selection using Learning Curve Cross-Validation

are currently compatible with a convex learning curve model. If this is not the case, the
algorithm steps back two stages and gathers more points in order to get a better picture
and “repair” the currently non-convex view (l. 12). Otherwise, a decision is taken with
respect to the three possible interpretations of the current learning curve. First, if it can
be inferred that the performance at sT will not be competitive with r, LCCV returns ⊥
(l. 14, cf. Sec. 2.2), indicating that this model will not be competitive compared to the
best found model so far, neglecting evaluations on anchor points with more data. Second,
if extrapolation of the learning curve suggests that the learner is competitive, then LCCV
directly jumps to full validation of the candidate (l. 16, cf. Sec. 2.3). In any other case,
we just keep evaluating in the next stage (l. 18). Finally, the estimate for sT is returned
together with the confidence intervals for all anchor points. Note that since most learners
are not incremental, each stage implies training from scratch. In spite of this issue, LCCV
uses at with the set of exponentially increasing anchor points at most twice as much as the
one of 10CV in the worst case, and the experiments show that it is often substantially faster
than 10CV.

2.1 Repeated Evaluations for Convex Learning Curves

To decide whether or not the samples at an anchor point are sufficient, LCCV makes use of
the confidence bounds of the sample mean at the anchor points. To compute such confidence
bounds (l. 8 in the algorithm), we assume that observations at each anchor follow a normal
distribution. Since the true standard deviation is not available for the estimate, we use
the empirical one. We can then use the confidence interval to decide on the necessity to
acquire more samples or stop the sampling process. After a maximum number of samples,
we continue to the next anchor point regardless of the confidence interval. Once the width
of the interval drops below some predefined threshold ε, we consider the estimate (sample
mean) to be sufficiently accurate (l. 6). Since error rates reside in the unit interval in which
we consider results basically identical if they differ on an order of less than 10−4, this value
could be a choice for ε. While this is indeed an arguably good choice in the last stage, the
“inner” stages do not require such high degree of certainty. To achieve this objective, a lose
confidence interval is perfectly fine. Eventually, the required certainty in the inner stages
is just a parameter, and we found it to work well with a generous value of 0.1.

2.2 Aborting a Validation

Based on the observations made so far, we might ask if it is still conceivable that the
currently validated learner will have a performance of at least r at the full dataset size.
Once we are sure that we cannot reach that threshold r anymore, we can return ⊥ (l. 14).

The assumption that learning curves have a convex shape is key in deciding whether to
abort the validation early. An important property following from convexity is that the slope
of the learning curve is an increasing function (for measures that we want to minimize) that,
for increasing training data sizes, approximates 0 from below (and sometimes even exceeds
it). The crucial consequence is that the slope of the learning curve at some point x is lower
or equal than the slope at some “later” point x′ > x. Formally, denote the learning curve
as a function f . We have that f ′(x) < f ′(x′) if x′ > x. Of course, as a learning curve is a
sequence, it is not derivable in the strict sense, so we rather sloppily refer to its slope f ′ as

3

Mohr and van Rijn

the slope of the line that connects two neighbored values. In the empirical learning curve
with only some anchor estimates, this means the following. If the sample means vi of the
observations Oi for a number si ∈ S of training samples were perfect, then the slope of the
learning curve after the last (currently observed) anchor point would be at least as high as
the maximal slope observed before, which is just the slope of the last leg. That is,

f ′(x) ≥ max
i

{
vi+1 − vi
si+1 − si

}
=
vt − vt−1
st − st−1

∀x ≥ st,

where t is the number of completed stages. Perfect here means that the vi essentially are
the true learning curve values at those anchor points.

However, the empirical estimates are imprecise, which might yield too pessimistic slopes
and cause unjustified pruning. It is hence more sensible to rely on the most optimistic slopes
possible under the determined confidence bounds as described in Sec. 2.1. To this end, let
Ci be the confidence intervals of the vi at the already examined anchors. Extrapolating
from the last anchor point st, the best possible performance of this particular learner is

f(x′) ≥ f(st)− (|x′| − st)
(

supCt−1 − inf Ct

st−1 − st

)
, (1)

which can now be compared against r to decide whether or not the execution should be
stopped by choosing |x′| to be the “maximum” training set size, e.g. 90% of the original
dataset size if using 10CV as a reference.

2.3 Skipping Intermediate Evaluations

Unless we insist on evaluating at all anchor points for insight maximization, we should
evaluate a learner on the full data once it becomes evident that it is definitely competitive.
This is obviously the case if we have a stable (small confidence interval) anchor point score
that is at least as good as r; in particular, it is automatically true for the first candidate.
Of course, this only applies to non-incremental learners; for incremental learners, we just
keep training to the end or stop at some point if the condition of Sec. 2.2 applies. Note
that, in contrast to cancellation, we cannot lose a relevant candidate by jumping to the full
evaluation. We might waste some computational time, but, unless a timeout applies, we
cannot lose relevant candidates. Hence, we do not need strict guarantees for this decision
as for cancellation. With this observation in mind, it indeed seems reasonable to estimate
the performance of the learner on the full data and to jump to the full dataset size if
this estimate is at least as good as r. A dozen of function classes have been proposed to
model the behavior of learning curves (see, e.g., Domhan et al. (2015)), but one of the most
established ones is the inverse power law (IPL) (Bard, 1974). The inverse power law allows
us to model the learning curve as a function

f̂(x) = a− bx−c, (2)

where a, b, c > 0 are positive real parameters. Given observations for at least three an-
chor points, we can fit a non-linear regression model using, for example, the Levenberg-
Marquardt algorithm (Bard, 1974). After each stage, we can fit the parameters of the
above model and check whether f̂(x′) ≤ r, where x′ is again our reference training set size,
e.g. 90% of the full data (l. 16 in the algorithm).

4

Towards Model Selection using Learning Curve Cross-Validation

3. Evaluation

In this evaluation, we compare the effect of using LCCV instead of 10CV as validation
methods inside a simple AutoML tool based on random search. To enable full reproducibil-
ity, the implementations of all experiments conducted here alongside the code to create the
result figures and tables are available for the public1.

Our evaluation measures the runtime of a random search AutoML tool that evaluates
1 000 candidate classifiers from the scikit-learn library (Pedregosa et al., 2011) using the two
validation techniques LCCV and 10CV. The behavior of the random search is simulated by
creating a randomly ordered sequence A of 1 000 learners. The model selection technique
(random AutoML tool) simply iterates over this sequence, calls the validation method for
each candidate, and updates the currently best candidate based on the result. For LCCV,
the currently best observation is passed as parameter r, and a candidate is discarded if ⊥
is returned. For the sake of this evaluation, we simply used copies of 17 classifiers under
default parametrization. Appendix C lists the used classifiers.

The performance of a validation method on a given dataset is the average total runtime
of the random search using this validation method. Of course, the concrete runtime can
depend on the concrete set of candidates but also, in the case of LCCV, their order. Hence,
over 10 seeds, we generate different classifier portfolios to be validated by the techniques,
measure their overall runtime (of course using the same classifier portfolio and identical
order for both techniques), and form the average over them. As common in AutoML, we
configured a timeout per validation. In these experiments, we set the timeout per validation
to 60s. This timeout refers to the full validation of a learner and not, for instance, to the
validation of a single fold. Put differently, 60s after the random search invoked the validation
method, it interrupts validation and receives a partial result. For the case of 10CV, this
result is the mean performance among the evaluated folds or nan if not even the first fold
could be evaluated. For LCCV, the partial result is the average results of the biggest
evaluated anchor point.

To obtain insights over different types of datasets, we ran the above experiments for all
of the 67 datasets of the AutoML benchmark suite (Gijsbers et al., 2019). These datasets
offer a broad spectrum of numbers of instances and attributes. All the datasets are pub-
lished on the openml.org platform (Vanschoren et al., 2013). The reported “ground truth”
performance of the chosen learner of each run is computed by an exhaustive MCCV. To
this end, we form 100 bi-partitions of split size 90%/10% and use the 90% for training and
10% for testing in all of the 100 repetitions. The average error rate observed over these 100
partitions is used as the validation score. Note that we do not need anything like “test”
data in this evaluation, because we are only interested in whether the LCCV can reproduce
the same model selection as 10CV.

The results are summarized in Fig. 1. The boxplots capture, in this order, the average
runtimes of LCCV and 10CV (leftmost figure), the absolute and relative reductions of
runtimes in minutes when using LCCV compared to 10CV (central plots), and the deviations
in the error rate of the eventually chosen model when using LCCV compared to 10CV
(rightmost figure). More detailed insights and visualizations can be found in Appendix D.
The first observation is dedicated to the last plot and confirms that, to a large degree,

1. https://github.com/fmohr/lccv

5

openml.org
https://github.com/fmohr/lccv

Mohr and van Rijn

LCCV 10CV
0

250

500

750

1000

Absolute
Runtimes (m)

0

100

200

300

Absolute
Reductions (m)

50

0

50

Relative
Reductions (%)

0.06

0.04

0.02

0.00

0.02

Absolute
Performance Diff.

Figure 1: Comparison between LCCV and 10CV as validators in a random search.

LCCV and 10CV produce solutions of similar quality. In all but two of the 67 cases, the
performance difference between LCCV and 10CV is within a range of less than 0.01, and
among these the number of times when LCCV is even better than 10CV is balanced. The
two cases in which LCCV failed to reproduce the result of 10CV are due to a slightly
non-convex behavior of the optimal learner, which we discuss below in more detail. In
this light, the runtime reductions achieved by LCCV over 10CV appear to be quite decent.
Looking at the absolute reductions (left center plot), we see that the mean reduction (dashed
line) is around 70 minutes. More precisely, this is a reduction from 290m runtime for 10CV
compared to an average runtime of 222m for LCCV, which corresponds to a relative average
runtime reduction of 15%. Even the absolute median runtime reduction is 36m, so on half
of the datasets the overall runtime was reduced by at least 36 minutes and up to over 5
hours, which are relative reductions between 20% and 50%.

4. Conclusion

We presented LCCV, a technique to validate learning algorithms based on learning curves.
In contrast to other evaluation methods that leverage learning curves, LCCV is designed to
only prune once it can clearly no longer improve upon the current best candidate. Based
on a convexity assumption, which turns out to hold almost always in practice, candidates
are pruned once they can provably no longer improve upon the current best candidate.
This makes LCCV potentially slower, but more reliable than other learning curve-based
approaches, whereas it is faster and equally reliable as vanilla cross-validation methods.

We ran preliminary experiments that showed that LCCV outperforms 10CV in many
cases in terms of runtime of a random-based model selection algorithm that employs these
methods for validation. Reductions are on the order of up to between 20% and 50%, which
corresponds to 60 minutes reduction on average and up to over 5 hours in some cases. We
emphasize that LCCV is a contribution that is complementary to other efforts in AutoML
and can be used with many of the tools in this field.

Future work will focus on integrating LCCV into various AutoML workbenches, such
as Auto-sklearn and ML-Plan. Indeed, having enabling these toolboxes to speed up the
individual evaluations, has the potential to further push the state-of-the-art of AutoML
research.

6

Towards Model Selection using Learning Curve Cross-Validation

References

Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data,
volume 4. AMLBook New York, NY, USA:, 2012.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural archi-
tecture search using performance prediction. In ICLR 2018 - Workshop Track, 2018.

Yonathan Bard. Nonlinear parameter estimation. Academic press, 1974.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hy-
perparameter optimization. In Advances in Neural Information Processing Systems 24,
NIPS’11, pages 2546–2554. Curran Associates, Inc., 2011.

Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. Metalearning:
Applications to Data Mining. Springer Publishing Company, Incorporated, 1 edition,
2008.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of learning curves.
In Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJ-
CAI’15, 2015.

Matthias Feurer and Frank Hutter. Towards further automation in automl. In ICML
AutoML workshop, 2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in
Neural Information Processing Systems, pages 2962–2970, 2015.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

Pieter Gijsbers, Joaquin Vanschoren, and Randal S Olson. Layered tpot: Speeding up
tree-based pipeline optimization. arXiv preprint arXiv:1801.06007, 2018.

Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin
Vanschoren. An open source automl benchmark. arXiv preprint arXiv:1907.00909, 2019.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Proceedings of the conference on Learning
and Intelligent Optimization, LION 5, pages 507–523, 2011.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hy-
perparameter optimization. In Artificial Intelligence and Statistics, AISTATS’16, pages
240–248, 2016.

7

Mohr and van Rijn

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve
prediction with Bayesian neural networks. In International Conference on Learning Rep-
resentations, ICLR’17, 2017.

Ron Kohavi. The power of decision tables. In Machine Learning: ECML-95, 8th European
Conference on Machine Learning, volume 912 of LNCS, pages 174–189. Springer, 1995.

Rui Leite and Pavel Brazdil. Active testing strategy to predict the best classification algo-
rithm via sampling and metalearning. In Proceedings of the 19th European Conference
on Artificial Intelligence, ECAI’10, pages 309–314, 2010.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of
Machine Learning Research, 18:185:1–185:52, 2017.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated racing for automatic algorithm configura-
tion. Operations Research Perspectives, 3:43–58, 2016.

Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of deep neural
networks. ArXiv [cs.NE], 1604.07269v1:8 pages, 2016.

Felix Mohr, Marcel Wever, and Eyke Hüllermeier. Ml-plan: Automated machine learning
via hierarchical planning. Machine Learning, 107(8):1495–1515, 2018.

Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. Evaluation
of a tree-based pipeline optimization tool for automating data science. In Proceedings of
the Genetic and Evolutionary Computation Conference 2016, GECCO’16, pages 485–492.
ACM, 2016.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of Machine Learn-
ing Research, 12:2825–2830, 2011.

Johann Petrak. Fast Subsampling Performance Estimates for Classification Algorithm Se-
lection. In Proceedings of ECML-00: Workshop on Meta-Learning, 2000.

Fábio Pinto, Carlos Soares, and Joao Mendes-Moreira. Towards automatic generation of
metafeatures. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 215–226. Springer, 2016.

Foster Provost, David Jensen, and Tim Oates. Efficient progressive sampling. In Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’99, page 23–32. ACM, 1999.

Ashish Sabharwal, Horst Samulowitz, and Gerald Tesauro. Selecting near-optimal learners
via incremental data allocation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

8

Towards Model Selection using Learning Curve Cross-Validation

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems 25,
NIPS’12, pages 2951–2959. Curran Associates, Inc., 2012.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-WEKA:
combined selection and hyperparameter optimization of classification algorithms. In The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’13, pages 847–855, 2013.

Jan N van Rijn, Salisu Mamman Abdulrahman, Pavel Brazdil, and Joaquin Vanschoren.
Fast algorithm selection using learning curves. In International symposium on intelligent
data analysis, pages 298–309. Springer, 2015.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

9

Mohr and van Rijn

Appendix A. Related Work

Model selection is at the heart of many data science approaches. When provided with a
new dataset, a data scientist is confronted with the question of which model to apply to
this. This problem is typically abstracted as algorithm selection or hyperparameter opti-
mization problem. To properly deploy model selection methods, there are three important
components:

1. A configuration space which specifies which set of algorithms is complementary and
should be considered

2. A search procedure which determines the order in which these algorithms are consid-
ered

3. An evaluation mechanism which assesses the quality of a certain algorithm

Most research addresses the question how to efficiently search the configuration space, lead-
ing to a wide range of methods such as random search (Bergstra and Bengio, 2012), Bayesian
Optimization (Bergstra et al., 2011; Hutter et al., 2011; Snoek et al., 2012), evolutionary
optimization (Loshchilov and Hutter, 2016), meta-learning (Brazdil et al., 2008; Pinto et al.,
2016) and planning-based methods (Mohr et al., 2018).

Our work aims to make the evaluation mechanism faster, while at the same time avoid
compromising the performance of the algorithm selection procedure. As such, it can be
applied orthogonal to the many advances made on the components of the configuration
space and the search procedure.

The typical methods used as evaluation mechanisms are using classical methods such
as a holdout set, cross-validation, leave-one-out cross-validation, and bootstrapping. This
can be sped up by applying racing methods, i.e., to stop evaluation of a given model once a
statistical test excludes the possibility of improving over the best seen so far. Some notable
methods that make use of this are ROAR (Hutter et al., 2011) and iRace (López-Ibáñez
et al., 2016). Feurer and Hutter (2018) focus on setting the hyperparameters of AutoML
methods, among others selecting the evaluation mechanism. Additionally, model selection
methods are accelerated by considering only subsets of the data. By sampling various
subsets of the dataset of increasing size, one can construct a learning curve. While these
methods at their core have remained largely unchanged, there are two directions of research
building upon this basis: (i) model-free learning curves, and (ii) learning curve prediction
models.

Model-free learning curves: The simplest thing one could imagine is training and
evaluating a model based upon a small fraction of the data (Petrak, 2000). Provost et al.
(1999) propose progressive sampling methods using batches of increasing sample sizes (which
we also leverage in our work) and propose mechanisms for detecting whether a given al-
gorithm has already converged. However, the proposed convergence detection mechanism
does not take into account randomness from selecting a given set of sub-samples, making
the method fast but at risk of terminating early. More recently, successive halving addresses
the model selection problem as a bandit-based problem, that can be solved by progressive
sampling (Jamieson and Talwalkar, 2016). All models are evaluated on a small number of
instances, and the best models get a progressively increasing number of instances. While

10

Towards Model Selection using Learning Curve Cross-Validation

this method yields good performance, it does not take into account the development of
learning curves, e.g., some learners might be slow starters, and will only perform well when
supplied with a large number of instances. For example, the extra tree classifier (Geurts
et al., 2006) is the best algorithm on the PhishingWebsites dataset when training with
all (10 000) instances but the worst when using 1 000 or fewer instances; it will be discarded
by successive halving. Hyperband aims to address this by building a loop around succes-
sive halving, allowing learners to start at various budgets (Li et al., 2017). Progressive
sampling methods can also be integrated with AutoML systems, such as TPOT Gijsbers
et al. (2018). Sabharwal et al. (2016) propose a novel method called Data Allocation using
Upper Bounds, which aims to select a classifier that obtains near-optimal accuracy when
trained on the full dataset while minimizing the cost of misallocated samples. While the
aforementioned methods all work well in practice, these are all greedy in the fact that they
might disregard a certain algorithm too fast, leading to fast model selection but sometimes
sub-optimal performances.

Another important aspect is that the knowledge of the whole portfolio plays a key
role in successive halving and Hyperband. Other than our approach, which is a validation
algorithm and does not have knowledge about the portfolio to be evaluated (and makes no
global decisions on budgets), successive halving assume that the portfolio is already defined
and given, and Hyperband provides such portfolio definitions. In contrast, our approach
will just receive a sequence of candidates for validation, and this gives more flexibility to
the approaches that want to use it.

Learning curve prediction models: A model can be trained based on the learning
curve, predicting how it will evolve. Domhan et al. (2015) propose a set of parametric
formulas to which can be fitted so that they model the learning curve of a learner. They
employ the method specifically to neural networks, and the learning curve is constructed
based on epochs, rather than instances. This allows for more information about earlier
stages of the learning curve without the need to invest additional runtime. By selecting
the best fitting parametric model, they can predict the performance of a certain model for
a hypothetical increased number of instances. Klein et al. (2017) build upon this work by
incorporating the concept of Bayesian neural networks.

When having a set of historic learning curves at disposition, one can efficiently relate
a given learning curve to an earlier seen learning curve, and use that to make predictions
about the learning curve at hand. Leite and Brazdil (2010) employ a k-NN-based model
based on learning curves for a certain dataset to determine which datasets are similar to
the dataset at hand. This approach was later extended by van Rijn et al. (2015), to also
select algorithms fast.

Most similar to our approach, Baker et al. (2018) proposed a model-based version of
Hyperband. They train a model to predict, based on the performance of the last sample,
whether the current model can still improve upon the best-seen model so far. Like all
model-based learning curve methods, this requires vast amounts of meta-data, to train
the meta-model. And like the aforementioned model-free approaches, these model-based
approaches are at risk of terminating a good algorithm too early. In contrast to these
methods, our method is model-free and always selects the optimal algorithm based on a
small set of reasonable assumptions.

11

Mohr and van Rijn

Appendix B. Pseudo Code

Algorithm 1: LCCV: LearningCurveCrossValidation

1 (s1, .., sT)← initialize anchor points according to min exp and data size;
2 (C1, .., CT)← initialize confidence intervals as [0, 1] each;
3 t← 1;
4 while t ≤ T ∧ (supCT − inf CT > ε) ∧ |OT | < n do
5 repair convexity ← false;

/* work in stage t: gather samples at current anchor point st */

6 while supCt − inf Ct > ε ∧ |Ot| < n ∧ ¬ repair convexity do
7 add sample for st training points to Ot;
8 update confidence interval Ct;
9 if t > 1 then σt−1 = (supCt−1 − inf Ct)/(st−1 − st) ;

10 if t > 2 ∧ σt−1 < σt−2 ∧ |Ot−1| < n then
11 repair convexity ← true;

/* Decide how to proceed from this anchor point */

12 if repair convexity then
13 t← t− 1;

14 else if projected bound for sT is > r + δ then
15 return ⊥
16 else if r = 1 ∨ (t ≥ 3 ∧ ipl estimate(sT) ≤ r) then
17 t← T ;

18 else
19 t← t+ 1

20 return 〈mean(CT), (C1 , ..,CT)〉

Appendix C. Classifiers used in the Evaluation

The list of classifiers applied from the scikit-learn library Pedregosa et al. (2011) is as follows:
LinearSVC, DecisionTreeClassifier, ExtraTreeClassifier, LogisticRegression, PassiveAggres-
siveClassifier, Perceptron, RidgeClassifier, SGDClassifier, MLPClassifier, LinearDiscrimi-
nantAnalysis, QuadraticDiscriminantAnalysis, BernoulliNB, MultinomialNB, KNeighborsClas-
sifier, ExtraTreesClassifier, RandomForestClassifier, GradientBoostingClassifier

All classifiers have been considered under default configuration exclusively. In the eval-
uations of Sec. 3 with portfolios of 1000 learners, each learner in the portfolio corresponds
to a copy of one of the above. Note that since we just use these learners as representatives
of some learners produced by the AutoML algorithm, it is unnecessary to consider truly
different learner parametrizations. One can just consider these copies to be “other” algo-
rithms that “incidently” have the same (or very similar) error rates and runtimes as others
in the portfolio.

12

Towards Model Selection using Learning Curve Cross-Validation

Appendix D. Detailed Results of the Random Search

The detailed results of the two validation methods per dataset are shown in Fig. 2. The
semantics of this figure is as follows. Each pair of points connected by a dashed line stand for
evaluations of a dataset. In this pair, the blue point shows the mean runtime of the random
search applying LCCV (x-axis) and the eventual mean error rate (y-axis). The orange point
shows the same information when validating with 10CV. Note that the runtimes are shown
on a log-scale. The dashed lines connecting a pair of points are green if LCCV is faster
than CV and red otherwise. The line is labeled with the dataset id and the absolute (and
relative) difference in runtime. The vertical dashed lines are visual aids in the log-scale to
mark runtimes of 30 minutes, 1 hour, and 10 hours.

103 104 105

Runtime (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r R
at

e

3
29m (34.0%)

12
9m (8.0%)

23
-8m (-26.0%)

31
3m (12.0%)

54
0m (-1.0%)

181
-2m (-6.0%)

188
3m (12.0%)

1457
161m (25.0%)

1461
72m (20.0%)

1464
-5m (-75.0%)

1468
6m (6.0%)

1475
93m (42.0%)

1485
65m (41.0%)

1486
39m (8.0%)

1487
24m (48.0%)

1489
21m (28.0%)

1494
-13m (-56.0%)

1515
15m (15.0%)

1590
-30m (-9.0%)

4134
72m (22.0%)

4135
76m (21.0%)

4534
53m (26.0%)

4538
42m (21.0%)

4541
243m (32.0%)

23512
63m (30.0%)

23517
44m (10.0%)

40498
55m (46.0%)

40668
155m (25.0%)

40670
44m (21.0%)

40685
101m (33.0%)

40701
-16m (-32.0%)

40900
25m (51.0%)

40975
0m (0.0%)

40978
-65m (-12.0%)

40981
-1m (-9.0%)

40982
1m (2.0%)

40983
-1m (-5.0%)

40984
43m (44.0%)

40996
302m (37.0%)

41027
109m (42.0%)

41138
-2m (-7.0%)

41142
262m (50.0%)

41143
9m (5.0%)

41144
50m (36.0%)

41145
103m (38.0%)

41146
2m (3.0%)

41147
33m (13.0%)

41156
-11m (-32.0%)

41157
9m (10.0%)

41158
68m (37.0%)

41159
277m (33.0%)

41161
115m (14.0%)

41162
-7m (-7.0%) 41163

271m (35.0%)

41164
90m (20.0%)

41165
359m (38.0%)

41166
220m (33.0%)

41168
250m (43.0%)

41169
280m (44.0%)

42732
-12m (-1.0%)

42733
31m (6.0%)

42734
-46m (-34.0%)

LCCV
10CV

Figure 2: Visual comparison of LCCV (blue) and random search (orange). The x-axis
displays the runtime in seconds, the y-axes displays the error rate. The dashed
line indicates which LCCV results and random search results are performed on
the same dataset.

13

	Introduction
	Learning Curve Cross-Validation
	Repeated Evaluations for Convex Learning Curves
	Aborting a Validation
	Skipping Intermediate Evaluations

	Evaluation
	Conclusion
	Related Work
	Pseudo Code
	Classifiers used in the Evaluation
	Detailed Results of the Random Search

