Experiment Setting We implement our algorithm to solve MuJoCo’s Half-cheetah simu-
lation. This setting is more realistic than our toy setting and aims at learning how to control a
simplified cross-section of a cheetah robot. The setting uses continuous state-action spaces, which
further increases the complexity of the problem. The actions here are the torques to apply at each
joint of the model while the state contains the information on the speed along which the robot is
heading, rotational speed, and momenta. The goal of the simulation is to make the robot run as
fast as possible to the right. We solve the problem with our proposed algorithm as well as TRC
and PbOP as baselines.

Training Setting We run both policies in the MuJoCo setting until 1,000 timesteps have passed.
We repeat this for 100 episodes, saving the interactions and final preference based on the cumulative
reward after each episode. Finally, we use the data to perform gradient descent for a pre-defined
number of repetitions. We repeat the cycle of interaction and training 100 times. In total, the
algorithm sees 10,000,000 timesteps and 10,000 preference reward signals.

RA-PbRL Implementation For our implementation of RA-PbRL, we iterate through the tra-
jectories, using an initial state, action taken, and outcome state. We perform stochastic gradient
descent to find the best vectors that parameterize the transition and reward functions with mean-
squared error. After obtaining the best transition and reward functions, we use their parameter-
ization to create a parameterization of the risk-aware value function of our proposed algorithm.
For this, we simply concatenate the vectors parameterizing the transition and reward functions
alongside a vector parameterizing the policies. The policy vector used depends on the policy being
optimized (the best or exploratory policies.) We then compute the a-CVaR over the trajectory
preferences from the interaction. We finally optimize the value function parameterization using
this data for training and perform stochastic gradient descent.

To follow the theoretical bounds we establish, we compute the distance between the initial tran-
sition and reward parameterizations before and after optimization was performed. If the distance is
larger than what is established by the theoretical bounds, we undo the optimization, as the vectors
have abandoned the confidence bound.

Result Figure 1 shows our algorithm improving faster than both baselines we use. We compute
the CVaR regret by using the cumulative reward obtained by a deep-RL algorithm, mainly for
comparison. These results meet the expectations create by the results from our toy example in the

paper.

Half Cheetah - PbRL

045 Experiment

—— CVaR-PbRL (Proposed)
TRC
—— PbOP

0.40

0.25

0 200 400 600 800 1000
Timestep

Figure 1: MuJoCo’s Half-cheetah experiment with risk aversion set to @ = 0.1

