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ABSTRACT

Active learning (AL) for multiple target models aims to reduce labeled data query-
ing while effectively training multiple models concurrently. Existing AL algo-
rithms often rely on iterative model training, which can be computationally expen-
sive, particularly for deep models. In this paper, we propose a one-shot AL method
to address this challenge, which performs all label queries without repeated model
training. Specifically, we extract different representations of the same dataset us-
ing distinct network backbones, and actively learn the linear prediction layer on
each representation via an ℓp-regression formulation. The regression problems
are solved approximately by sampling and reweighting the unlabeled instances
based on their maximum Lewis weights across the representations. An upper
bound on the number of samples needed is provided with a rigorous analysis for
p ∈ [1,+∞). Experimental results on 11 benchmarks show that our one-shot ap-
proach achieves competitive performances with the state-of-the-art AL methods
for multiple target models.

1 INTRODUCTION

The rapid advancements in deep learning have led to a substantial increase in demand for extensive
labeled data points to effectively train high-performance models. However, data labeling remains
costly due to its reliance on human labor. To address this challenge, active learning (AL) (Settles,
2009; Ren et al., 2021) has emerged as an effective strategy for mitigating annotation expenses.
This approach estimates the potential utility of different unlabeled instances in improving the per-
formance of a target model and selectively queries the labels of the most beneficial instances from
the oracle (i.e., an expert who can provide the ground-truth label). A typical practice of AL conducts
label querying and model updating iteratively to exploit the insights from model decisions, i.e., se-
lecting one or a small batch of instances based on the model predictions and updating the target
model in each iteration until the labeling budget is exhausted (Cohn et al., 1994; Huang et al., 2014).
This paradigm has been widely applied in real-world scenarios (Hoi et al., 2008; Shi & Zhou, 2023).

Recently, there has been a significant surge in the demand for the deployment of machine learning
systems on diverse resource-constrained devices (Deng et al., 2020; Gou et al., 2021; Menghani,
2023). For example, speech recognition and face recognition systems usually need to support var-
ious types of machines with varying computing and memory resources. As a result, the task of
training multiple models with varying complexities using the same labeled dataset has arisen (Cai
et al., 2019), leading to a new setting of AL where there are multiple target models to be learned
simultaneously (Tang & Huang, 2022).

Tang & Huang (2022) provide both theoretical and empirical evidence showcasing the potential
of AL in alleviating the substantial data labeling burden associated with training multiple target
models. They propose an iterative AL algorithm DIAM and validate its effectiveness for multiple
deep models. However, the use of iterative AL methods results in a significant increase in model
training cost. This is due to the requirement of training multiple deep models at each query iteration.
A potential solution is increasing the querying batch size of conventional batch-mode AL methods.
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Nevertheless, this may lead to redundant querying (Yang & Loog, 2019). A more cost-effective
strategy could be one-shot or single-shot querying, which selects the required number of unlabeled
instances and makes all label queries within one iteration devoid of re-training the models.

Most existing one-shot AL methods query a representative set of instances using the distance be-
tween feature vectors (Yang & Loog, 2019; Viering et al., 2019; Jin et al., 2022; Shoham & Avron,
2023). However, this approach faces challenges when handling multiple deep models, as the same
instance can exhibit different feature representations in different models. This phenomenon arises
due to the intrinsic representation learning of deep models, where data representations are implicitly
optimized during the training process and varied network architectures yield distinct embeddings.
These embeddings may contain abundant information to facilitate data selection. However, such
information has not been well exploited by existing one-shot AL methods. Therefore, they may not
yield optimal performances in the setting of multiple models.

In this paper, we propose a one-shot AL method for multiple deep models, accompanied by a rigor-
ous theoretical analysis. Our method is based on the fact that a deep model can be viewed as a linear
prediction layer (i.e., multiple neuron models) and a nonlinear feature extractor (i.e., the network
backbone). Therefore, training multiple deep models can be described as learning linear prediction
layers from the outputs of distinct network backbones. In this way, active learning from diverse
data representations can be formulated as optimizing a shared sampling matrix to minimize the error
of each linear predictor. To facilitate computing and analysis, we consider the learning of the pre-
diction layer as an ℓp regression problem with p ∈ (0,+∞). Notably, our empirical studies place
particular emphasis on the case of p = 2, i.e., the squared loss, which is one of the most commonly
used loss functions in deep learning. Specifically, suppose that there are k models and Aj ∈ Rn×d

(j = 1, . . . , k) is the feature matrix obtained by feeding the dataset into the j-th network backbone.
Let f : R → R be an L-Lipschitz function with f(0) = 0. Typical choices of f are activation
functions such as ReLU, Sigmoid, and so on. We abuse the notation and apply f to a vector v ∈ Rn

coordinatewise, i.e. f(v) = (f(v1), . . . , f(vn))
T . Suppose that y1, . . . ,yc ∈ Rn are c label vectors

and the task is to minimize the loss
∑c

i=1 ∥f(Ajθij)− yi∥pp over θ1j , . . . ,θcj ∈ Rd for all models
j simultaneously. Since the construction of S is independent of y1, . . . ,yc, we henceforth assume
that c = 1, with a single label vector y ∈ Rn. Therefore, we seek a shared reweighted sampling
matrix S such that we can, from the labels of the sampled instances Sy, approximately solve the
regression problem minθ ∥f(Ajθ)− y∥pp for all models j simultaneously.

The simplest case is when there is a single model, i.e., k = 1. In this case, Gajjar et al. (2023a) are
the first to study the problem of actively learning a single neuron model. They cast the problem as a
least-squares regression problem (i.e. p = 2) minθ ∥f(Aθ)− y∥22 and find an θ̃ such that

∥f(Aθ̃j)− y∥22 ≤ C ·
(
∥f(Aθ∗)− y∥22 + ϵL2∥Aθ∗∥22

)
,

where θ∗ = argminθ ∥f(Aθ)−y∥22 is the minimizer, C is an absolute constant and ϵ is an accuracy
parameter. Recall that L is the Lipschitz constant of f . Gajjar et al. (2023a) also show that the
additive term ϵL2∥Aθ∗∥22 is necessary. For k > 1 and general p, we seek approximate solutions
θ̃1, . . . , θ̃k with the following error guarantee of a similar form on each individual model:

∥f(Aj θ̃j)− y∥pp ≤ C ·
(
∥f(Ajθj)− y∥pp + ϵLp∥Ajθj∥pp

)
, (1)

where θj = argminθ ∥f(Ajθ)−y∥pp is the minimizer for model j and C = C(p) > 0 is a constant
depending only on p.

Gajjar et al. (2023a) construct S to be a leverage score sampling matrix and solve θ̃ =
argminθ∈E ∥f(SAθ) − Sy∥22 with E = {θ : ∥SAθ∥22 ≤ ∥Sy∥22/(ϵL2)}. At the core of
their argument lies the classical fact that such an S gives an ℓ2 subspace embedding for A, i.e.,
∥SAθ∥2 ≈ ∥Aθ∥2 for all θ simultaneously. In fact, it is not necessary to sample the rows
of A according to the exact leverage scores τ1(A), . . . , τn(A); any sampling probability propor-
tional to ti ≳ τi(A) for i-th row will suffice, with the number of samples being proportional to∑

i ti. This very fact motivates us to tackle the task of data selection from diverse representa-
tions by sampling the rows according to the maximum of leverage scores across Aj’s, i.e., let-
ting ti ∼ maxj τi(A

j). Solving for each model j by θ̃j = argminθ∈Ej ∥f(SAjθ) − Sy∥22
with Ej = {θ : ∥SAjθ∥22 ≤ ∥Sy∥22/(ϵL2)} will then achieve (1) for p = 2. This indicates
that the queried instances are effective in learning each of the linear predictors, which fits our
problem well. A potential caveat is that the number of samples needed will be proportional to
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∑
i ti ∼

∑
i maxj τi(A

j), which could be as large as kd. However, empirical studies show that this
is not the case for real-world datasets (see Section 3.2) and our approach will thus be efficient.

For general p, instead of leverage scores, it is natural to consider Lewis weights, which can be seen
as generalizations of leverage scores for general p (see Section 3.1 for the definition). It is known
that an ℓp Lewis weight sampling matrix S give an ℓp subspace embedding, i.e., ∥SAθ∥p ≈ ∥Aθ∥p
for all θ simultaneously (Cohen & Peng, 2015). The approach mentioned above extends to general
p naturally, attaining (1) for general p, by sampling according to the maximum Lewis weights and
solving an ℓp-regression problem for x̃j with an ℓp-version of Ej .

Theoretical Results. For k = 1, the latest result is to use Õ(d/ϵ4) queries Gajjar et al. (2023b),
with an analysis specific to p = 2. We generalize the approach to the ℓp Lewis weight sampling for
p ≥ 1 and extends it to k ≥ 1, giving the following theorem.
Theorem 1.1 (Informal version of Corollary 3.6). Let w1(A

j), . . . , wn(A
j) denote the Lewis

weights of Aj and T =
∑n

i=1 maxj∈[k] wi(A
j). Suppose that T = poly(d). There exists a random-

ized algorithm which samples

m ≲

{
ϵ−4T log d, p = 1

ϵ−4Tdmax{ p
2−1,0} log2 d log(d/ϵ) p > 0 and p ̸= 1

unlabeled instances and outputs solutions θ̃1, . . . , θ̃k ∈ Rd such that (1) holds for all j ∈ [k] with
probability at least 0.9.

Note that for a single matrix A ∈ Rn×d, the sum T =
∑

i wi(A) = d and so Theorem 1.1 implies a
sample complexity of Õ(dmax{p/2,1}/ϵ4), recovering the result in Gajjar et al. (2023b) for p = 2.

Empirical Findings. Extensive experiments are conducted on 11 classification and regression
benchmarks with 50 distinct deep models. In Section 3.2, we empirically observe that the sum
of the maximum leverage scores grows very slowly as the number of models increases. This result
reveals the strong correlation among the leverage scores of different deep representations, providing
a direction for interpreting deep representation learning (Kornblith et al., 2019; Nguyen et al., 2020).
In Section 4, we validate the effectiveness of our method with fine-tuning and vanilla learning sce-
narios of deep models for both the ℓ2-regression loss and cross-entropy loss. The results show that
our method outperforms other one-shot baselines. Even when comparing with the state-of-the-art
iterative AL methods for multiple models, our approach achieves competitive performance.

2 RELATED WORK

Active learning has been extensively studied in the past decades (Settles, 2009; Ren et al., 2021).
With a limited query budget, many methods try to query the labels of the most useful instances for
a target model by designing effective selection criteria, which commonly depend on two notions,
informativeness and representativeness. Informativeness-based criteria prefer instances where the
target model has a highly uncertain prediction (Lewis & Gale, 1994; Yan & Huang, 2018; Kirsch
et al., 2019), while representativeness-based criteria prefer instances which can help reduce the
distribution gap between the queried instances and the entire dataset (Dasgupta & Hsu, 2008; Chat-
topadhyay et al., 2012; Sener & Savarese, 2018). While most existing methods focus on improving
the performance of a specific target model, Tang & Huang (2022) extend the setting of AL to mul-
tiple target models. In this scenario, the active learner seeks to enhance the performance of every
target model simultaneously by selective querying. Their work demonstrates that the query com-
plexity of AL for multiple models can be upper bounded by that of an appropriately designed single
model. Based on this insight, they propose an iterative algorithm called DIAM, which queries the
labels of the instances located in the joint disagreement regions among multiple models. Although
the method is effective, a significant concern is the substantial cost incurred by training multiple
deep models at each iteration.

To reduce the computational cost of repetitive model training, one-shot AL algorithms have been
proposed to query all useful instances in a single batch, thereby avoiding the need for model updates.
Yang & Loog (2019) employ existing AL methods with pseudo-labeling to obtain a candidate set of
diverse instances, and select the queries based on the feature distance between unlabeled instances
and candidate instances. Viering et al. (2019) select representative data points by the kernelized
discrepancy methods, e.g., Maximum Mean Discrepancy (MMD) (Borgwardt et al., 2006), and give
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error bounds under different assumptions on data distribution. Jin et al. (2022) propose a one-shot
AL method for deep image segmentation. Their approach uses self-supervised learning to obtain
more informative representations and selects diverse instances based on clustering results and feature
distances. In addition, Coreset (Sener & Savarese, 2018) and Transductive Experimental Design
(Yu et al., 2006) are implicit one-shot AL methods. However, all the aforementioned one-shot AL
methods cannot handle the distinct representations of multiple deep models.

Although most existing AL methods rely on heuristics lacking theoretical analysis, AL with Lewis
weight sampling has been well studied for active ℓp-regression problems minθ ∥Aθ − y∥p, where
the matrix A ∈ Rn×d is fully accessible while the label vector y ∈ Rn needs to be queried (Chen &
Price, 2019; Chen & Derezinski, 2021; Parulekar et al., 2021; Chen et al., 2022; Musco et al., 2022).
Provable guarantees are obtained for (1+ϵ)-approximate solutions, i.e., ∥Aθ′−y∥p ≤ (1+ϵ)∥Aθ∗−
y∥p, where θ′ is the output of the algorithm and θ∗ the true minimizer. For p = 1, Parulekar et al.
(2021) show that O(ϵ−2d log(d/(ϵδ))) samples suffice. For p = 2, Chen & Price (2019) solve the
problem optimally with O(d/ϵ) queries. For p ∈ (1, 2), Chen & Derezinski (2021) propose the first
algorithm to solve the problem with sublinear query complexity, i.e., O(ϵ−2d2 log d). For p > 2,
Musco et al. (2022) show that O(ϵ−pdp/2 log2 d logp−1(d/ϵ)) queries suffice. Recently, Gajjar et al.
(2023a) extend such sampling method to the single neuron model for p = 2, which inspires our
work. They establish a multiplicative constant-factor error bound of the form (1) using O(d2/ϵ4)
samples. This has been further improved to O(d/ϵ4) in Gajjar et al. (2023b).

3 OUR APPROACH

3.1 PRELIMINARIES

Notation. Suppose that the dataset has n instances α1, . . . ,αn and each αi has a ground-truth label
yi. The given data consist of a small labeled set L = {(αi, yi)}nl

i=1, used for model initialization,
and a large unlabeled set U = {αnl+i}nu

i=1, used for active querying. Here, n = nl + nu and it is
assumed that nl ≪ nu. A neural network can be viewed as the composition of a network backbone
and a linear prediction layer θ ∈ Rd composed by an activation function f(·). The prediction of
the network is given by f(Aθ), where A ∈ Rn×d is the feature matrix obtained by feeding the
dataset into the network backbone. Denote by y ∈ Rn the corresponding label vector that needs to
be queried. In our theoretical analysis, we assume that d≪ n, A has full column rank, the network
backbone is fixed during the learning of θ and f is L-Lipschtiz continuous with f(0) = 0.

We always assume that p > 0. The ℓp norm of a vector θ is defined to be ∥θ∥p = (
∑n

i=1 |θi|p)
1
p ,

where θi is the i-th coordinate of θ. When p < 1, this is not a norm, nevertheless, it remains a
well-defined quantity and we shall abuse the notation and denote it by ∥θ∥p.

For a matrix A, the operator norm of A is defined as ∥A∥2 = supθ∈Rd\{0} ∥Aθ∥2/∥θ∥2. For integer
n ≥ 1, we use [n] to denote the set {1, 2, . . . , n}. We write a = (1± ϵ)b if (1− ϵ)b ≤ a ≤ (1 + ϵ)b
and a ≲t1,t2,... b if there exists a constant C depending only on t1, t2, . . . such that a ≤ Cb. We
also write a ∼t1,t2,... b if a ≲t1,t2,... b and b ≲t1,t2,... a.

Lewis Weights Sampling. We shall define the Lewis weights and state a classical result that Lewis
weight sampling gives subspace embeddings, which is the starting point of our algorithm.

Definition 3.1 (ℓp Lewis Weights). Suppose that A ∈ Rn×d and its i-th row is ai ∈ Rd. The Lewis
weights of A are w1, . . . , wn such that wi = (a⊤

i (A
⊤W 1− 2

pA)−1ai)
p
2 , where W is a diagonal

matrix with diagonal elements w1, w2, . . . , wn.

We remark that Lewis weights satisfy that wi(A) ∈ [0, 1] and
∑n

i=1 wi(A) = d. When p = 2,
Lewis weights are exactly the leverage scores. Next, we define ℓp subspace embedding and sampling
matrix. Then, we state the result that Lewis weight sampling gives subspace embeddings.

Definition 3.2 (ℓp Subspace Embedding). Let ϵ ∈ (0, 1) be the distortion parameter. A matrix
S ∈ Rm×n is said to be an ℓp ϵ-subspace-embedding matrix for A ∈ Rn×d if it holds simultaneously
for all vectors θ ∈ Rd that (1− ϵ)∥Aθ∥p ≤ ∥SAθ∥p ≤ (1 + ϵ)∥Aθ∥p.

Definition 3.3 (Sampling Matrix). Suppose that p1, . . . , pn ≥ 0 such that p1 + p2 + · · · + pn = 1
and e1, . . . , en are the standard basis vectors of Rn. A matrix S ∈ Rm×n is called a reweighted
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sampling matrix if the rows of S are i.i.d. copies of random vector X , where X = (mpj)
−1/peTj

with probability pj , j = 1, . . . , n. The number m of rows in S is called the sample size.

Lemma 3.4 (Constant-factor Subspace Embedding, (Cohen & Peng, 2015, Theorem 7.1)). Given
A ∈ Rn×d. Suppose that ti ≥ βwi for all i ∈ [n], where

β ≳p


log3 d+ log 1

δ , 0 < p < 2, p ̸= 1

log d
δ , p = 1, 2

d
p
2−1(log d+ log 1

δ ) 2 < p <∞
is a sampling parameter. Let m =

∑n
i=1 ti. If S ∈ Rm×n is a reweighted sampling matrix with

sampling probability pi = ti
m for all i, then S is an ℓp

1
2 -subspace-embedding matrix for A with

probability at least 1− δ.

We note that our main theorem only requires constant-factor subspace embedding property of the
sampling matrix S and, therefore, we can ignore the dependence on ϵ in the bounds for ℓp subspace
embeddings. The case of p ≤ 2 is proved by Cohen & Peng (2015) and the case of p > 2 is
originally due to Bourgain et al. (1989).

3.2 AN EMPIRICAL OBSERVATION

Recall that the sample size of maximum Lewis weight sampling is proportional to
∑

i maxj wi(A
j).

We would like first to examine this sum across representations as it will determine the potential query
savings. In the following empirical studies, we mainly consider the case of p = 2 (i.e., squared loss),
where the Lewis weight becomes exactly the leverage score.

We conduct experiments on 11 datasets. Due to the space limitation, the empirical settings, dataset
specifications and more results are deferred to Appendix D. We report the results of MNIST, CIFAR-
100 and CelebA datasets below in Figure 1. We plot the theoretical upper bound and the exact values
of the sum of the maximum leverage score of each instance across different representations.

The results show that the exact sum grows very slowly as the number of models increases in both
classification and regression tasks. This suggests highly consistent discrimination power of most
instances across different representations, as the leverage score measures how hard an instance can
be linearly represented by others. Therefore, our algorithm is cost-effective. Leverage scores also
provide a possible direction to interpret the behavior of deep representation learning, as prior works
have not discovered any simple form of correlation among the diverse representations obtained by
different model architectures (Kornblith et al., 2019; Nguyen et al., 2020).

3.3 THE ALGORITHM

Based on our empirical observations, we propose to sample and reweight unlabeled instances based
on their maximum Lewis weights across multiple representations. Specifically, given the feature
matrices of the labeled and unlabeled instances (denoted by {Lj}kj=1 and {U j}kj=1, respectively),
our algorithm begins with calculating the Lewis weights of the unlabeled instances based on each of
their feature representations. Next, a normalized maximum Lewis weight among multiple represen-
tations for each unlabeled instance is obtained:

pi =
maxj∈[k] wi(U

j)∑nu

i=1 maxj∈[k] wi(U j)
, i = 1, . . . , nu.
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(b) CIFAR-100
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Figure 1: The trends of the sum of the maximum Lewis weights with p = 2 among multiple repre-
sentations as the number of deep models increases.
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Algorithm 1 The Proposed Algorithm.
Input: Feature matrices of labeled and unlabeled instances Lj , U j (j = 1, . . . , k), query budget τ .
Output: Trained linear models θ̃1, . . . , θ̃k.
Initialize: p, ȳ ← zero vector of length nu; Q ← an empty list; m← 0

1: pi ← max1≤j≤k wi(U
j) for i = 1, . . . , nu

2: pi ← pi/∥p∥1 for i = 1, . . . , nu

3: while Q has fewer than τ distinct elements do
4: q ← sample a number from [nu] with replacement with probability p1, . . . , pnu

5: m← m+ 1
6: append q to Q
7: if the label of q-th unlabeled instance is unknown then
8: ȳq ← query the label of q-th unlabeled instance
9: S ← zero matrix with shape (nl +m)× (nl + nu)

10: Si,i ← 1 for i = 1, . . . , nl

11: Si+nl,Qi+nl
← (m · pQi)

−1/p for i = 1, . . . ,m
12: y ← [y1, . . . , ynl

, ȳ]T

13: for j = 1, ..., k do
14: Aj ←

[
Lj

Uj

]
15: θ̃j ← argminx∈E ∥Sf(Ajθ)− Sy∥pp, where E = {θ : ∥SAjθ∥pp ≤ 1

ϵLp ∥Sy∥pp}
16: return θ̃1, . . . , θ̃k

In the querying phase, we conduct i.i.d. sampling with replacement on the unlabeled set using a
probability distribution p. The sampling process is repeated until τ distinct unlabeled instances are
sampled. LetQ denote the set of indices of unlabeled instances that are selected for label query. We
reweight each of the instance with index q ∈ Q by (m · pq)−1/p. Finally, both the initially labeled
instances with weight 1 and the reweighted queried instances will be used to update each of the target
model. Note that, although Q may contain repeated entries, each instance will be queried only once
and reoccurrences will not incur additional query cost. We present our algorithm in Algorithm 1.

3.4 THEORETICAL GUARANTEES

Our main result is as follows, which can be seen as the guarantee for a single model.

Theorem 3.5. Let p > 0, f(θ) be an L-Lipschitz function with f(0) = 0, A ∈ Rn×d be the data
matrix and y ∈ Rn be the target vector. Consider a reweighted sampling matrix S with with row
sampling probability pi =

ti
m , where t1, . . . , tn are some quantities and m =

∑
i ti.

Suppose that t1, . . . , tn ∈ R satisfy that ti ≥ βwi(A), where

β ≳p

{
ϵ−4 log(

∑n
i=1 ti), p = 1

ϵ−4dmax{ p
2−1,0} log2 d log(

∑n
i=1 ti), p > 0 and p ̸= 1.

(2)

Then, if S is a reweighted sampling matrix as described above and θ̃ = argminθ∈E ∥Sf(Ax) −
Sy∥p, where E = {θ : ∥SAθ∥pp ≤ ∥Sy∥pp/(ϵLp)}, it holds with probability at least 0.9 that

∥f(Aθ̃)− y∥pp ≤ C
(
∥f(Aθ∗)− y∥pp + ϵLp∥Aθ∗∥pp

)
,

where θ∗ = argminθ ∥f(Aθ)− y∥p and C > 0 is a constant depending only on p.

The proof of Theorem 3.5 is deferred to Appendix A. Our analysis also suggests that an ℓp-subspace-
embedding can be obtained using Õ(d/ϵ2) samples, removing the log n factor in (Woodruff & Ya-
suda, 2023), which may be of independent interest. See Appendix B for discussions. Below we
show the guarantee for multiple models, which follows easily as a corollary of Theorem 3.5.

Corollary 3.6. Let A1, . . . , Ak ∈ Rn×d be data matrices and T =
∑n

i=1 maxj∈[k] wi(A
j). Let

f(θ) be an L-Lipschitz function with f(0) = 0 and y ∈ Rn be the target vector. There exists an
algorithm that makes

m ∼p

{
ϵ−4T log(T/ϵ), p = 1

ϵ−4Tdmax{ p
2−1,0} log2 d log(dT/ϵ), p > 0 and p ̸= 1

(3)
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queries and outputs solutions θ̃1, . . . , θ̃k ∈ Rd such that (1) holds for all j ∈ [k] with probability
at least 0.9.

Proof. Let ti = β · maxj wi(A
j), then for any fixed j, it holds that ti ≥ βwi(A

j). Also, m =∑
i ti = βT . The sampling probability pi = ti/m = maxj wi(A

j)/T , which is exactly our
sampling scheme in Algorithm 1. Take

β ∼
{
ϵ−4 log d, p = 1

ϵ−4dmax{ p
2−1,0} log2 d log(dT/ϵ), p > 0 and p ̸= 1

,

then β satisfies the condition (2) in Theorem 3.5, whence the conclusion follows.

Remark. The proof of Corollary 3.6 implies the same guarantee for Algorithm 1 if τ is set to be
the quantity for m in (3). Indeed, the proof of Corollary 3.6 shows that the guarantee holds as soon
as the variable m in Algorithm 1 reaches the desired amount in (3), which allows double counting
of identical sampled rows; setting τ to be the same value will only result in a larger number m of
samples and the guarantee will persist.

4 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of our method1. Due to the
space limitation, some empirical settings and experimental results are presented in the appendix.

Empirical Settings. We incorporate two learning scenarios in our experiments, i.e., fine-tuning and
vanilla deep learning. The first one is a common learning scenario for big models. It first pre-trains
the model on preliminary tasks. Then, the weights of the network backbone are fixed, and only
the prediction heads are fine-tuned on downstream tasks. This setting aligns well with our problem
formulation. The second scenario is the default learning scheme, i.e., updating all the parameters of
the network with the training dataset.

We employ 50 distinct network architectures as the target models. These architectures are published
by a recent NAS method OFA (Cai et al., 2019) for accommodating diverse resource-constraint
devices, ranging from NVIDIA Tesla V100 GPU to mobile devices. It aligns well with our problem
setting. We conduct experiments on 11 datasets, including 8 classification benchmarks: MNIST
(LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), Kuzushiji-MNIST (Clanuwat et al., 2018),
SVHN (Netzer et al., 2011), EMNIST-letters and EMNIST-digits (Cohen et al., 2017), CIFAR-10
and CIFAR-100 (Krizhevsky, 2009); and 3 regression benchmarks: Biwi (Fanelli et al., 2013), FLD
(Sun et al., 2013) and CelebA (Liu et al., 2015). The specifications of the datasets and model
configurations are deferred to the Appendix E.1. The active learning settings are outlined as follows.

• For the scenario of vanilla deep learning, we conduct performance comparisons on the classi-
fication benchmarks. Specifically, 3000 instances are sampled uniformly from the training set
to initialize the models. The other compared methods will then select 3000 unlabeled instances
from the remaining data points for querying at each iteration, while our method conducts one-
shot querying with budgets of 9000 and 15000 instances. The cross-entropy loss is employed in
model training. In this scenario, the one-shot methods also query 3000 instances per batch for
better comparison. However, these methods select batches independently.

• For the fine-tuning scenario, we use the regression datasets. Initially, 500 instances are sampled
uniformly from the training set to fine-tune each network. Then, we fix the backbone parameters
and actively query the labels among the remaining instances. Afterwards, 50 linear prediction
layers with mean squared error (MSE) loss and ReLU activation function are trained on the
updated labeled dataset, utilizing the features extracted by different network backbones. In this
scenario, all the compared methods have the same query budgets of 3000 and 6000 instances.

We compare our algorithm with the following methods in the vanilla deep learning scenario.

• (iterative) DIAM (Tang & Huang, 2022): The state-of-the-art iterative AL method for multiple
target models, which prefers the instances in the joint disagreement regions of multiple models.

1All experiments are conducted on a machine with four GeForce RTX 3090 graphic cards and an Intel Xeon
Gold 5317 CPU. The source code is included in the supplementary material for experiment reproducibility.
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(c) Fashion-MNIST
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(d) SVHN

0 3000 6000 9000 12000 15000
number of queries

45

50

55

60

65

70

75

80

m
ea

n 
ac

cu
ra

cy

DIAM
Entropy
Random
Coreset
QBC
Our

(e) CIFAR-10
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(f) CIFAR-100
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(g) EMNIST-letters

0 3000 6000 9000 12000 15000
number of queries

90

92

94

96

98

100

m
ea

n 
ac

cu
ra

cy

DIAM
Entropy
Random
Coreset
QBC
Our

(h) EMNIST-digits

Figure 2: Results of Performance comparison in classification datasets. The error bars indicate the
standard deviation of the performances of multiple models.

• (iterative) Entropy (Lew is & Catlett, 1994): This strategy selects instances with the highest pre-
diction entropy. We follow the implementation in (Tang & Huang, 2022) to adapt it to multiple
models. It queries the instances with the highest mean prediction entropy.

• (iterative) QBC (Seung et al., 1992): This strategy selects the instances that the target models
have the most inconsistent predictions. The inconsistency is evaluated by KL divergence.

• (one-shot) Coreset (Sener & Savarese, 2018): This strategy selects the most representative in-
stances. We follow the implementation in (Tang & Huang, 2022) to adapt it to multiple models.
It solves the coreset problem based on the features extracted by the supernet in OFA.

• (one-shot) Random: This strategy selects instances uniformly from the unlabeled pool.

In the fine-tuning scenario, fewer existing methods are available. Specifically, we compare our
algorithm with Coreset, Random and QBC methods. Although QBC is usually implemented in an
iterative fashion, we employ a large query batch size for it to unify the query settings.

Our method selects and reweights the unlabeled instances based on the leverage scores (i.e., p = 2)
in both scenarios. Note that, in the fine-tuning scenario, our implementations remove the constraint
E in Line 15 in Algorithm 1 for better examination of the practicability. In the vanilla deep learning
scenario, we use the default training scheme of deep models to replace Line 15 in Algorithm 1. The
mean accuracy and the mean MSE are used to evaluate the performances of multiple target models
for classification and regression tasks, respectively.

Experiment Results. We report the performance comparison results in Figure 2 and Figure 3. In
the scenario of vanilla deep learning, we can observe that our one-shot method achieves comparable
performances with the other iterative AL methods in most cases. This phenomenon indicates that
our method can significantly reduce the costs of training multiple deep model while preserving its
proficiency in the ability of query saving. QBC is the worst one. We find that it causes a severe
class imbalance according to the results in Table 5 in the appendix. This may explain its inferior
performances. Coreset is usually worse than Random. Note that, the problem settings of Sener &
Savarese (2018) and our work are different. there are 50 distinct target networks to be learned in

Table 1: Comparisons on the running time between our method and the other baselines with a query
budget 15000 instances. The running time includes data querying and model training (GPU hours).

MNIST F.MNIST K.MNIST SVHN CIF.10 CIF.100 EMN.l. EMN.d.
DIAM 46.643 47.597 46.765 52.228 45.493 53.532 73.522 120.840
QBC 23.937 24.419 24.502 26.011 25.541 30.498 36.280 40.231

Entropy 24.060 24.293 24.455 25.792 25.173 28.655 34.291 42.719
Our 5.299 5.366 5.354 5.605 5.350 5.57 9.717 12.711

Coreset 5.200 5.201 5.285 5.466 5.450 5.745 8.984 11.043
Random 4.317 4.333 4.402 4.583 4.567 4.712 7.317 8.027
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Figure 3: Results of performance comparisons in regression datasets with different query budgets.

our experiment. The Coreset implementation of Tang & Huang (2022) solves the coreset problem
based on the features extracted by the supernet. A drawback of this approach is that the selected
instances may not be useful for other models, because the data representations are different. We
believe this is the reason that why Coreset is less effective than Random in our setting. Entropy
method achieves comparable performances with Random. The reason may also be evidenced by the
results in Table 5 in the appendix that their class imbalance ratios are highly consistent, implies that
the mean entropy scores tend to have an extremely small standard deviation. The performances of
DIAM are less stable. It is effective in the datasets associated with MNIST, but fails on the others.
This deficiency has not been observed in our method.

In the scenario of fine-tuning, Figure 3 shows that our approach outperforms than the other baselines
with different querying budgets in terms of achieving better mean MSE. These results indicate that
our method is effective and robust to different query budgets, it can effectively identify the desired
number of useful unlabeled instances under diverse representations to learn linear prediction layers.

We further examine the running time of different AL methods. The results are reported in Table 1.
For the one-shot methods Coreset and Random, we report their running time of one-shot querying
15000 instances. It can be observed that the cost of repeated model training is prohibitive in AL for
multiple deep models, demonstrating the advantages of one-shot querying. Among the active selec-
tion methods, DIAM is the slowest approach because it selects instances based on the predictions
of the unlabeled dataset in the latter half of training epochs of each target model. Generating the
predictions from multiple models could be expensive, particularly with a large unlabeled pool. QBC
and Entropy exhibit similar time costs. Both of them need to feed the unlabeled instances into 50
models to obtain their predictions.

In the fine-tuning scenario, all the compared methods conduct one-shot querying and linear pre-
diction layers are trained with the same computational costs. As a result, the running time of the
compared methods is comparable. The results are deferred to Table 6 in the appendix.

5 CONCLUSION

In this paper, we propose a one-shot AL algorithm for multiple deep models. The task is formulated
as seeking a shared reweighted sampling matrix to approximately solve multiple ℓp-regression prob-
lems for neuron models on distinct deep representations. Our approach is to sample and reweight
the unlabeled instances based on their maximum Lewis weights across different representations. We
establish an upper bound on the number of samples needed by our algorithm to achieve constant-
factor approximations for multiple models and general p. Our techniques on the one hand substan-
tially improve the upper bound on the number of samples of (Gajjar et al., 2023a) in the case of
single model and p = 2, on the other hand remove the log n factor in (Woodruff & Yasuda, 2023)
for Lewis weight sampling to obtain ℓp-subspace-embedding. Extensive experiments are conducted
on 11 benchmarks and 50 deep models. We observe that the sum of the maximum Lewis weights
with p = 2 grows very slowly as the number of target models increases, providing a direction for
interpreting deep representation learning. The performance comparisons show that our algorithm
achieves competitive performances with the state-of-the-art AL methods for multiple deep models.
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A PROOF OF THEOREM 3.5

We first need a simple inequality.

Fact A.1. Suppose that a, b > 0 and p > 0. It holds that (a+ b)p ≤ 2|p−1|(ap + bp).

Let OPT = minθ ∥Aθ − y∥p. Theorem 3.5 is proved by the following chain of inequalities.∥∥∥f(Aθ̃)− y
∥∥∥p
p

(A)
≤ 2|p−1|(

∥∥∥f(Aθ̃)− f(Aθ∗)
∥∥∥p
p
+ OPTp)

(B)
≤ 2|p−1|(

∥∥∥Sf(Aθ̃)− Sf(Aθ∗)
∥∥∥p
p
+ ϵ2LpRp + OPTp)
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(C)
≤ 2|p−1|(2|p−1|

∥∥∥Sf(Aθ̃)− Sy
∥∥∥p
p
+ C1OPTp + ϵ2LpRp)

(D)
≤ 2|p−1|

[
C2

(
OPTp + ϵLp ∥Aθ∗∥pp

)
+ C1OPTp + ϵ2LpRp

]
(E)
≤ C(OPTp + ϵLp ∥Aθ∗∥pp)

where inequalities (A) and (C) use Fact A.1, inequality (D) uses (Gajjar et al., 2023a, Claim 1).
Inequality (E) follows from that
Rp := max(∥Aθ̃p∥, ∥Aθ∗∥p) ≤ ∥Aθ̃∥p + ∥Aθ∗∥p

(EA)
≤ 2

∥∥∥SAθ̃∥∥∥p
p
+ ∥Aθ∗∥pp

(EB)
≤ 2
∥Sy∥pp
ϵLp

+ ∥Aθ∗∥pp
(EC)
≤ 100

∥y∥pp
ϵLp

+ ∥Aθ∗∥pp
(ED)
≤ 100 · 2|p−1| ∥f(Aθ∗)− y∥pp + Lp∥Aθ∗∥pp

ϵLp
+ ∥Aθ∗∥pp

= 100 · 2|p−1| ∥f(Aθ∗)− y∥pp
ϵLp

+

(
100 · 2|p−1|

ϵ
+ 1

)
∥Aθ∗∥pp ,

where inequality (EA) holds because S is a subspace embedding matrix for A, inequality (EB) is
from the constraint of our approximate solution in Line 16, inequality (EC) holds with probability
at least 49/50 by Markov’s inequality and inequality (ED) follows from Fact A.1.

We shall prove inequality (B) in the following lemma. We note that the following lemma is proved
in (Gajjar et al., 2023a, Lemmata 2 and 3), but their sampling complexity is Õ(d2/ϵ4) with an
additional d factor compared with ours. We improve their result by using the reduction technique
and removing the ϵ-net argument.

Lemma A.2. Suppose that A ∈ Rn×d and t1, . . . , tn ∈ R such that ti ≥ βwi(A) for all i and
p ≥ 1. Let m =

∑
i ti and S ∈ Rm×n be a reweighted sampling matrix of with row sampling

probabilities p1, . . . , pn, where pi =
ti
m . If

β ≳
dmax{ p

2−1,0}

ϵ2

(
log2 d logm+ log

1

δ

)
then with probability at least 1 − δ and fixed constant R > 0, it holds for all pairs of vectors
θ1,θ2 ∈ Rd with ∥Aθ1∥p ≤ R and ∥Aθ2∥p ≤ R that

∥Sf(Aθ1)− Sf(Aθ2)∥pp = ∥f(Aθ1)− f(Aθ2)∥pp ± ϵLpRp.

Proof. Let x = f(Aθ1) − f(Aθ2) and y = Aθ1 − Aθ2. Denote T to be the set B(R) × B(R) =
{(θ1,θ2) : ∥SAθ1∥p ≤ R, ∥SAθ2∥p ≤ R}. We shall try to upper bound

E
S

(
max

(θ1,θ2)∈T

∣∣∥Sx∥pp − ∥x∥pp∣∣)ℓ

for ℓ = log 1
δ .

Since taking the ℓ-th moment of the maximum is a convex function and E ∥Sx∥pp = ∥x∥pp, the
symmetrization trick yields that

E
S

(
max

(θ1,θ2)∈T

∣∣∥Sx∥pp − ∥x∥pp∣∣)ℓ

≤ 2ℓ E
S,σ

(
max

(θ1,θ2)∈T

∣∣∣∣∣
m∑

k=1

σk
|xik |p

mpik

∣∣∣∣∣
)ℓ

,

where σk’s are Rademacher variables.

It follows from Lemma 3.4 that S is a 1
2 -subspace embedding matrix of A with probability at least

1 − δ/2. Furthermore, by Lemma A.4, with probability at least 1 − δ/2, the Lewis weights of SA
is upper bounded by 1

β . Let E denote the event on S that the above two conditions hold. Then
Pr(E) ≥ 1− δ. We assume the following proof is conditioned on E .
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Next, we prove the conditional expectation over S and σ when conditioned on E satisfies that

E
S,σ

( max
(θ1,θ2)∈T

∣∣∣∣∣
m∑

k=1

σk
|xik |p

mpik

∣∣∣∣∣
)ℓ
∣∣∣∣∣∣ E
 ≤ ( ϵ

2
LpRp

)ℓ
δ. (4)

Once (4) is established, it would follow Markov’s inequality that

Pr

{
max

(θ1,θ2)∈T

∣∣∥Sx∥pp − ∥x∥pp∣∣ ≥ ϵLpRp

∣∣∣∣ E}
≤

ES,σ[
(
max(θ1,θ2)∈T

∣∣∥Sx∥pp − ∥x∥pp∣∣)ℓ ∣∣E ]
(ϵLpRp)ℓ

≤ 2ℓ
ES,σ

[(
max(θ1,θ2)∈T

∣∣∣∑m
k=1 σk

|xik
|p

mpik

∣∣∣)ℓ∣∣∣∣ E]
(ϵLpRp)ℓ

≤ 2ℓ
( ϵ2L

pRp)ℓδ

(ϵLpRp)ℓ
(by (4))

= δ.

and then a union bound that

Pr

{
max

(θ1,θ2)∈T

∣∣∥Sx∥pp − ∥x∥pp∣∣ ≥ ϵLpRp

∣∣∣∣ E} < 2δ,

which would complete the proof after rescaling δ to δ/2.

Now we focus on the proof of (4), which mostly follows the same approach of Theorem 15.13
in Ledoux & Talagrand (1991).

Let

uk =
f(a⊤

ik
θ1)− f(a⊤

ik
θ2)

(mpik)
1/p

, vk =
a⊤
ik
θ1 − a⊤

ik
θ2

(mpik)
1/p

, k ∈ [m].

Then u = Sx and x = Sy. We also denote

Λ = max
(θ1,θ2)∈T

∣∣∣∣∣
m∑

k=1

σk|uk|p
∣∣∣∣∣ ,

so (4) can be rewritten as

E
S,σ

[
Λℓ
∣∣ E] ≤ ( ϵ

2
LpRp

)ℓ
δ.

We shall split the sum in Λ into two parts: large Lewis weights and small Lewis weights. Specif-
ically, we define λk = wk(SA)/d to be the reweighted Lewis weight of SA and J = {k ∈ [m] :
λk ≥ 1

m2 }.
First consider those coordinates not in J (small Lewis weights).

max
(θ1,θ2)∈T

∣∣∣∣∣∣
m∑

k=1,k/∈J

σk|uk|p
∣∣∣∣∣∣ ≤

∑
k/∈J

|uk|p ≤ Lp
∑
k/∈J

λk|λ
− 1

p

k vk|p ≤
2p

m
dmax(1, p2 )LpRp,

where the last inequality follows from the fact (see (Ledoux & Talagrand, 1991, Lemma 15.17)) that

max
k∈[m]

|λ− 1
p

k vk| ≤ dmax( 1
p ,

1
2 )∥v∥p (5)

and (by the definition of B(R)) that ∥v∥p ≤ 2R.

Next we consider the coordinates in J (large Lewis weights). We have

max
(θ1,θ2)∈T

∣∣∣∣∣∑
k∈J

σk|uk|p
∣∣∣∣∣ = max

(θ1,θ2)∈T

∣∣∣∣∣∑
k∈J

λkσk|λ
− 1

p

k uk|p
∣∣∣∣∣

≤
√

1

dβ
max

(θ1,θ2)∈T

∣∣∣∣∣∑
k∈J

√
λkσk|λ

− 1
p

k uk|p
∣∣∣∣∣ ,
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where the second line follows from the fact that reweighted Lewis weights of SA are upper bounded
by 1

dβ . By the triangle inequality, we have

E
σ
[Λℓ|E ] ≤

(
2p

m
dmax(1, p2 )LpRp

)ℓ

+ (
1

dβ
)

ℓ
2 E

σ

 max
(θ1,θ2)∈T

∣∣∣∣∣∑
k∈J

√
λkσk|λ

− 1
p

k uk|p
∣∣∣∣∣
ℓ
∣∣∣∣∣∣ E


=:

(
2p

m
dmax(1, p2 )LpRp

)ℓ

+ (
1

dβ
)

ℓ
2 E

σ
[Ξℓ|E ],

where

Ξ = max
(θ1,θ2)∈T

∣∣∣∣∣∑
k∈J

√
λkσk|λ

− 1
p

k uk|p
∣∣∣∣∣ .

To bound Eσ[Ξ
ℓ|E ], we introduce the associated distance δ((θ1,θ2), (θ

′
1,θ

′
2)) so that it is enough

to bound it by the estimated entropy of B(R). We define the distance to be
δ2((θ1,θ2), (θ

′
1,θ

′
2))

=
∑
k∈J

λk


∣∣∣∣λ− 1

p

k [f(a⊤
ik
θ1)− f(a⊤

ik
θ2)]

∣∣∣∣p
mpik

−

∣∣∣∣λ− 1
p

k [f(a⊤
ik
θ′
1)− f(a⊤

ik
θ′
2)]

∣∣∣∣p
mpik


2

:=
∑
k∈J

λk(|λ
− 1

p

k uk|p − |λ
− 1

p

k u′
k|p)2

(6)

and the norm

∥θ∥J := max
k∈J

|λ− 1
p

k a⊤
ik
θ|

(mpik)
1
p

. (7)

By the tail bound of Dudley’s integral (see e.g. (Vershynin, 2018, Theorem 8.1.6)), it holds that

Pr

{
Ξ ≳

∫ ∞

0

(logN(T, δ, ϵ))
1
2 dϵ+ z · diam(T )

∣∣∣∣ E} ≤ exp(−z2).

According to Lemma A.3, it holds that∫ ∞

0

(logN(T, δ, ϵ))
1
2 dϵ ≲ dmax( p−2

4 ,0)LpRp−1

∫ ∞

0

(logN(B(R), BJ , ϵ))
1
2 dϵ.

For p ≥ 2, the entropy estimate in (Ledoux & Talagrand, 1991, Proposition 15.18) gives that

d
p−2
4 LpRp−1

∫ ∞

0

(logN(B(R), BJ , ϵ))
1
2 dϵ

= d
p−2
4 LpRp−1

∫ ∞

0

(logN(B(1), BJ ,
ϵ

R
))

1
2 dϵ

≲ d
p−2
4 LpRp−1

∫ 1

0

(
d log

(
1 +

R
√
d

ϵ

)) 1
2

dϵ+

∫ 2
√
d

1

(
R2

ϵ2
d logm

) 1
2

dϵ


≲ d

p
4LpRp log d

√
logm.

For 1 < p ≤ 2, it follows from the entropy estimate in (Ledoux & Talagrand, 1991, Proposition
15.19) and a similar argument to that for p ≥ 2 that∫ ∞

0

(logN(T, δ, ϵ))
1
2 dϵ ≲ d

1
2LpRp log d

√
logm.

By the property of subgaussian variables (see e.g. (Chen et al., 2022, Proposition 4.12)), we have

E
σ
[Ξℓ|E ] ≤ Kℓ(

√
ℓdmax{ p

4 ,
1
2}LpRp + dmax( p

4 ,
1
2 )LpRp log d

√
logm)ℓ.

Hence, given ℓ = log(1/δ), as long as β ≥ 2p+1e · ϵ−2K2dmax( p
2−1,0)(log(1/δ) + log2 d logm), it

follows that

E
σ
[Λℓ|E ] ≤

(
2p

m
dmax(1, p2 )LpRp

)ℓ

+ (
1

dβ
)

ℓ
2 E

σ
[Ξℓ|E ]
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≤
(
2p

dβ
dmax(1, p2 )LpRp

)ℓ

+

(
Kdmax( p

4 ,
1
2 )LpRp(

√
ℓ+ log d

√
logm)√

dβ

)ℓ

≤
(

ϵ2LpRp

log(1/δ) + log2 d logm

)ℓ

+ (ϵLpRp)ℓδ

≤ (ϵLpRp)ℓδ.

Therefore, taking expectation over S while conditioned on E , we have that ES,σ[Λ
ℓ|E ] ≤

(ϵLpRp)ℓδ. Rescaling ϵ = ϵ/2 completes the proof of (4), as desired.

Lemma A.3. Let δ((θ1,θ2), (θ′
1,θ

′
2)) and ∥θ∥J be as defined in (6) and (7), respectively. It holds

that

δ((θ1,θ2), (θ
′
1,θ

′
2)) ≲

{
d

p−2
4 LpRp−1(∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J) p ≥ 2,

LpR
p
2 (∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J)

p
2 1 ≤ p ≤ 2.

Hence diam(T ), the diameter of the subspace T , is at most O(dmax( p
4 ,

1
2 )LpRp).

Proof. For p ≥ 2, we have

δ2((θ1,θ2), (θ
′
1,θ

′
2))

(A)
≤
∑
k∈J

λk|λ
− 1

p

k uk − λ
− 1

p

k u′
k|2(|λ

− 1
p

k uk|p−1 + |λ− 1
p

k u′
k|p−1)2

(B)
≤ 2L2pp

∑
k∈J

λk


∣∣∣∣λ− 1

p

k (a⊤
ik
θ1 − a⊤

ik
θ′
1)

∣∣∣∣+ ∣∣∣∣λ− 1
p

k (a⊤
ik
θ2 − a⊤

ik
θ′
2)

∣∣∣∣
(mpik)

1
p


2

·
(
|λ− 1

p

k vk|2p−2 + |λ− 1
p

k v′
k|2p−2

)

(C)
≤ 2p−1pd

p−2
2 L2pRp−2

∑
k∈J

λk


∣∣∣∣λ− 1

p

k (a⊤
ik
θ1 − a⊤

ik
θ′
1)

∣∣∣∣+ ∣∣∣∣λ− 1
p

k (a⊤
ik
θ2 − a⊤

ik
θ′
2)

∣∣∣∣
(mpik)

1
p


2

·
(
|λ− 1

p

k vk|p + |λ
− 1

p

k v′
k|p
)

(D)
≤ 2p−1pd

p−2
2 L2pRp−2 (∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J)

2
∑
k∈J

λk(|λ
− 1

p

k vk|p + |λ
− 1

p

k v′
k|p)

(E)
≤ 22p−1pd

p−2
2 L2pR2p−2 (∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J)

2
,

where the inequality (A) follows from |a|p − |b|p ≤ p(|a|p−1 + |b|p−1)|a − b|, (B) follows from
triangle inequality and (a + b)2 ≤ 2(a2 + b2), (C) follows from (5) and (E) is obtained by ∥v∥p ≤
∥SAθ1∥p + ∥SAθ2∥p ≤ 2R.

For 1 ≤ p ≤ 2, we have
δ2((θ1,θ2), (θ

′
1,θ

′
2))

≤
∑
k∈J

λk|λ
− 1

p

k uk − λ
− 1

p

k u′
k|2(|λ

− 1
p

k uk|p−1 + |λ− 1
p

k u′
k|p−1)2

≤ max
k∈J
|λ− 1

p

k uk − λ
− 1

p

k u′
k|p ·

∑
k∈J

λk|λ
− 1

p

k uk − λ
− 1

p

k u′
k|2−p(|λ− 1

p

k uk|2p−2 + |λ− 1
p

k u′
k|2p−2)

≤ Lp(∥θ1 − θ′
1∥J + ∥θ2 − θ′

2∥J)p(
∑
k∈J

λk|λ
− 1

p

k uk − λ
− 1

p

k u′
k|p)

2−p
p

·

[
(
∑
k∈J

λk|λ
− 1

p

k uk|p)
2p−2

p + (
∑
k∈J

λk|λ
− 1

p

k u′
k|p)

2p−2
p

]
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≤ Lp(∥θ1 − θ′
1∥J + ∥θ2 − θ′

2∥J)p(
∑
k∈J

λk|λ
− 1

p

k uk|p + λk|λ
− 1

p

k u′
k|p)

2−p
p

·

[
(
∑
k∈J

λk|λ
− 1

p

k uk|p)
2p−2

p + (
∑
k∈J

λk|λ
− 1

p

k u′
k|p)

2p−2
p

]
≤ 2pL2pRp(∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J)p,

where we use Hölder’s inequality ∥fg∥1 ≤ ∥f∥α∥g∥β with α = p
2−p and β = p

2p−2 in the third
line.

For p ≥ 2, the diameter of T is upper bounded by
max

(θ1,θ2)∈T,(θ′
1,θ

′
2)∈T

δ((θ1,θ2), (θ
′
1,θ

′
2))

≤ 2
2p−1

2 pd
p−2
4 LpRp−1(∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J)

≤ 2
2p−1

2 pd
p
4LpRp,

where we use the fact that ∥θ1 − θ′
1∥J ≤ d

1
2R from (5). For 1 ≤ p ≤ 2, the diameter of T is upper

bounded by LpR
p
2 (∥θ1 − θ′

1∥J + ∥θ2 − θ′
2∥J)

p
2 ≤ d

1
2LpRp where we obtain ∥θ1 − θ′

1∥J ≤ d
1
pR

from (5).

Lemma A.4. Suppose that A ∈ Rn×d and t1, . . . , tn ∈ R such that ti ≥ βwi(A) for all i. Let
m =

∑
i ti and S ∈ Rm×n be a reweighted sampling matrix of with row sampling probabilities

p1, . . . , pn, where pi =
ti
m . If β ≥ ϵ−2 log d

δ , then the ℓp Lewis weights of SA are upper bounded
by 2

β with probability at least 1− δ.

Proof. Let ai ∈ Rd×1 be the i-th row of A. Without loss of generality, suppose A⊤W 1− p
2A = Id.

Hence, the Lewis weights of A are w
2
p

i = a⊤
i (A

⊤W 1− p
2A)−1ai = a⊤

i ai = ∥ai∥22. We claim that

(1− ϵ)Id ⪯
m∑

k=1

aika
⊤
ik

mpik
w

1− 2
p

ik
⪯ (1 + ϵ)Id

holds with probability at least 1 − δ. Let Xk =
aik

a⊤
ik

pik
w

1− 2
p

ik
and then we have EXk = Id. First,

we have EXk = Id and ∥Xk − Id∥2 ≤ 1 +
∥aik

∥2
2

wik
/d w

1− 2
p

ik
= 1 + m

β . Besides, we have that

∥E (Xk − Id)∥22 =
∥∥E(Xk − Id)

⊤(Xk − Id)
∥∥
2

=
∥∥EX⊤

k Xk − Id
∥∥
2

=

∥∥∥∥∥∥wik

pik
· E

aika
⊤
ik
w

1− 2
p

ik

pik
− Id

∥∥∥∥∥∥
2

=

∥∥∥∥∥wik

pik

n∑
i=1

aia
⊤
i w

1−2/p
ik

+ Id

∥∥∥∥∥
2

≤ 1 +
m

β
.

By matrix Chernoff bound, it follows that

Pr

{∥∥∥∥∥ 1

m

m∑
k=1

(Xk − Id)

∥∥∥∥∥
2

≥ ϵ

}
≤ 2d exp

(
−mϵ2

1 + d+ (1 + d) · ϵ/3

)
≤ 2d exp

(
−βϵ2

)
Setting β = Θ( d

ϵ2 log
d
δ ) guarantees the failure probability to be at most δ, proving the claim.

Therefore, we have that

(1− ϵ)

(
d

m

)1− 2
p

Id ⪯

[
m∑

k=1

aik

(mpik)
1
p

(
wik

dpik

)1− 2
p a⊤

ik

(mpik)
1
p

]−1

⪯ (1 + 2ϵ)

(
d

m

)1− 2
p

Id
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holds with probability at least 1− δ. Hence, it follows that

a⊤
i

(mpi)1/p
·

[
m∑

k=1

aik

(mpik)
1
p

(
dpik
wik

) 2
p−1 a⊤

ik

(mpik)
1
p

]−1
· ai

(mpi)1/p
≤ (1 + 2ϵ)

d

m

(
wik

dpik

)2/p

.

Applying (Chen et al., 2022, Lemma A.2) and setting ϵ = 1
2 gives that wi(SA) ≤ 2 d

m
wi

dpi
≤ 2

β .

Lemma A.5. Let p > 0 and p ̸= 1. Suppose that A ∈ Rn×d and wi(A) ≤ 1/β for all i and
β > 1. Let Λ = maxx:∥Ax∥p≤1 |

∑n
i=1 σi |(Ax)i|p|, where σ1, . . . , σn are independent Rademacher

variables. Then the following tail bound holds:

Pr

Λ ≥
[
C
dmax{ p

2−1,0}

β

] 1
2 [

log2 d log n+ z
] ≤ 2 exp(−z2).

Proof. The tail bound is proven by Dudley’s integral tail bound

Pr

{
sup
t∈T

Xt ≳
∫ ∞

0

√
lnN(T, d, ϵ)dϵ+ z · diam(T )

}
≤ 2 exp(−z2),

where N(T, d, ϵ) is the ϵ-covering number of T and diam(T ) is the diameter of the space T . In
our setting, T is the subspace {y = Ax : x ∈ Rd}. From (Ledoux & Talagrand, 1991, Equa-
tion (15.17) and (15.18)), the diameter is bounded by dmax( p

4 ,
1
2 ). By Dudley’s integral, we have

Eσ Λ ≲
∫∞
0

√
lnN(T, d, ϵ)dϵ. The upper bound of the integral was proven in (Ledoux & Tala-

grand, 1991, Theorem 15.13), assuming that wi(A) ≤ d/n. The same proof can go through when
the upper bound of wi(A) ≤ 1/β, with (Ledoux & Talagrand, 1991, (15.17)) replaced with

EΛ ≤ 3dmax( p
2 ,1)

2n
+

(
2

dβ

) 1
2

Ξ,

where

Ξ = E
σi

sup

x:

∥∥∥∥W− 1
p Ax

∥∥∥∥
p

≤1

∣∣∣∣∣∑
i∈J

(
wi

d
)

1
2σi|xi|p

∣∣∣∣∣
In the proof of Ledoux & Talagrand (1991), λi is our wi

d , and the factor 1
M is replaced with 1

dβ due
to the change of Lewis weights’ upper bound from n

M to 1
β .

The main difficulty is to upper bound Ξ, which is again done by using Dudley’s integral. The argu-
ment to upper bound the integral in (Ledoux & Talagrand, 1991, Theorem 15.13) still goes through
when the upper bound of Lewis weights is changed, yielding that Ξ ≤ Cdmax( p

4 ,
1
2 ) log d

√
log n.

Combining the diameter of T and the inequality for EΛ gives us the result.

B SUBSPACE EMBEDDING

We note that there are mainly two kinds of ℓp Lewis weight sampling. The first kind is to retain or
discard each row independently. Specifically, the i-th row of A is retained with probability pi and
discarded with probability 1− pi. The resulting sampled matrix SA has a random number of rows.
The second kind has a fixed, prescribed number m of sampled rows. Each sample is i.i.d. chosen to
be the i-th row of A with probability ti/m , where t1, . . . , tn are weights satisfying that

∑
i ti = m.

We use sampling of the second kind (recall Definition 3.3) in our algorithm. However, our main
result (Theorem 3.5) still works for the first kind of sampling matrices, see Appendix C for details.

In this section, we give the sample complexity for ℓp subspace embedding with distortion 1 + ϵ for
p > 2, using both kinds of sampling schemes.

For p > 2, Woodruff & Yasuda (2023) consider the first kind of sampling and give a sample com-

plexity of O(d
p
2

ϵ2 (log
2 d log n + log 1

δ )) for ℓp-subspace-embeddings. This is the first result for
p > 2 that has an ϵ−2 dependence, as the only prior result was O(ϵ−5dp/2 log d) with an ϵ−5 depen-
dence (Bourgain et al., 1989). Still, based on the result of Bourgain et al. (1989), we can improve
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the analysis of Woodruff & Yasuda (2023) and remove the undesired log n factor in their sample
complexity. We have the following theorem.
Theorem B.1. Let A ∈ Rn×d, 2 < p < ∞ and 0 < ϵ, δ < 1. Let pi = min{βwi, 1} where wi is

ℓp Lewis weight of ai for A and β = Ω(d
p
2
−1

ϵ2 (log d + log 1
δ )) be the oversampling parameter. Let

S ∈ Rn×n be the reweighted sampling matrix in which the i-th row

Si =

{
1

(pi)1/p
e⊤i , with prob. pi

0, with prob. 1− pi.

With probability at least 1−δ, S has m = Ω(d
p
2

ϵ2 (log
2 d log d

ϵ+log 1
δ )) nonzero rows and ∥SAx∥pp =

(1± ϵ) ∥Ax∥pp.

We only sketch the changes in the proof of Woodruff & Yasuda (2023). First, in the sampling we
do not use γ-one-sided Lewis weights but the exact Lewis weights of A. True Lewis weights do
not affect the symmetrization trick. After the symmetrization step, we remove the part of flattening
matrix A in their proof. Instead, we claim: (1) By Theorem 7.3 in (Bourgain et al., 1989), S is a
1
2 -subspace embedding matrix of A. (2) By Lemma A.3 of (Chen et al., 2022), Lewis weights of
SA are uniformly upper bounded by 2

β . Conditioned on (1) and (2), it suffices to prove

E
S,σ

max
x:∥SAx∥p≤1

∣∣∣∣∣
m∑

k=1

σk|(SA)kx|p
∣∣∣∣∣
ℓ

≤ ϵℓ.

This ℓ-th moment upper bound can be derived in the same fashion as the end of the proof of
Lemma A.2. Then applying the Markov inequality gives us ∥SAx∥pp = (1 ± ϵ)∥Ax∥pp with proba-
bility at least 1− δ.

The next theorem gives the sample complexity for ℓp subspace embedding for p > 2 in which
samplings are i.i.d. and the probability of every row ai being sampled is wi/d.
Theorem B.2. Let A ∈ Rn×d, 2 < p <∞ and 0 < ϵ, δ < 1. Suppose that the ℓp Lewis weights of
A are w1, . . . , wn. Let pi = wi/d and S ∈ Rm×d be a reweighted sampling matrix whose i-th row

Si =
1

(mpi)1/p
e⊤j with probability pj . Set m = Ω(d

p
2

ϵ2 (log
2 d log d

ϵ + log 1
δ )), then with probability

at least 1− δ, we have ∥SAx∥pp = (1± ϵ) ∥Ax∥pp.

We only highlight the necessary changes in the proof of Theorem B.2.

• The symmetrization step goes through in the same fashion as the long chain of inequalities in the
proof of Lemma A.2.

• By Theorem 7.3 of (Bourgain et al., 1989), S is a 1
2 -subspace embedding matrix of A.

• By Lemma A.4, Lewis weights of SA are uniformly upper bounded by 2
β . The left steps are the

same as the changes mentioned for Theorem B.1.

C RESULT FOR THE OTHER SAMPLING METHOD

In this section, we prove that our main result Theorem 3.5 still holds if the reweighted sampling
matrix S is defined to be of the first kind:

Si =

{
1

(pi)1/p
e⊤i , with prob. pi

0, with prob. 1− pi,

where pi = βwi and β = Ω(d
p
2
−1

ϵ2 (log2 d log d
ϵ + log 1

δ )). Accordingly, Lines 3–8 of Algorithm 1
are changed to the following lines.

1: for i = 1, 2, . . . , n do
2: if ai is sampled with probability pi = βwi then
3: Si,i = p

−1/p
i and query the label of ai

Compared to the proof of Theorem 3.5, the following modifications are needed: (1) By Theorem B.1,
S is a 1/2-subspace embedding matrix of A. (2) To show that Lemma A.2 holds, we observe that
by Lemma A.3 of (Chen et al., 2022), Lewis weights of SA are uniformly upper bounded by 2

β .
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(b) Kuzushiji-MNIST
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(c) Fashion-MNIST
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(e) EMNIST-digits
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(f) SVHN
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(g) CIFAR-10
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(h) CIFAR-100
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(k) CelebA

Figure 4: The trends of the sum of the maximum Lewis weights with p = 2 among multiple repre-
sentations as the number of deep models increases.

D DETAILS OF EMPIRICAL OBSERVATION

To address the challenges of distinct representations from multiple deep models, one solution is to
sample the unlabeled instances by their maximum Lewis weight among different representations.
Recall that the sample size is proportional to the sum of the sampling probabilities, this strategy
will not save the number of queries if the sum of the maximum Lewis weights is k times larger
than that of a single regression problem. Therefore, we would like first to examine the sum of
maximum Lewis weights across representations as it will determine the potential query savings. In
the following empirical studies, we mainly consider the case of p = 2 (i.e., squared loss), where the
Lewis weight becomes exactly the leverage score.

Empirical Settings. We conduct experiments on 11 datasets, the details are summarized in Table 3.
For each dataset, we randomly sample 3000 instances to train the models with 20 epochs, then
extract features for the whole dataset and calculate their leverage scores. We use the squared loss
in model training and keep all other settings the same as the OFA project. We employ 50 distinct
network architectures as the target models. These architectures are published by a recent NAS
method OFA (Cai et al., 2019) for accommodating diverse resource-constraint devices, ranging from
NVIDIA Tesla V100 GPU to mobile devices. To demonstrate the distinctness of these models, we
report the initial performances of the models on the classification datasets in Table 2. It can be
observed that the model performances are significantly diverse. It aligns well with our problem

Table 2: Summary of the initial performances of 50 deep models on the classification datasets. We
report the mean accuracy, standard deviation of the accuracies, maximum and minimum accuracy in
the table.

Dataset mean accuracy std. deviation maximum minimum
MNIST 94.79 4.39 97.61 72.99

F.MNIST 81.76 3.03 85.09 67.32
K.MNIST 74.79 7.94 85.61 51.31
CIFAR-10 48.54 3.36 53.01 36.92
CIFAR-100 11.34 2.14 16.85 7.63

SVHN 45.53 7.62 60.98 31.88
EMNIST-l. 70.04 14.21 83.23 25.84
EMNIST-d. 95.12 3.64 97.76 76.13
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Table 3: The specifications of the datasets used in the experiments.
Dataset #Training #Testing #Label Task
MNIST (LeCun et al., 1998) 60,000 10,000 10 Classification
Fashion-MNIST (Xiao et al., 2017) 60,000 10,000 10 Classification
Kuzushiji-MNIST (Clanuwat et al., 2018) 60,000 10,000 10 Classification
SVHN (Netzer et al., 2011) 73,257 26,032 10 Classification
EMNIST-digits Cohen et al. (2017) 240,000 40,000 10 Classification
EMNIST-letters (Cohen et al., 2017) 88,800 14,800 26 Classification
CIFAR-10 (Krizhevsky, 2009) 50,000 10,000 10 Classification
CIFAR-100 Krizhevsky (2009) 50,000 10,000 100 Classification
Biwi (Fanelli et al., 2013) 10,317 5,361 2 Regression
FLD (Sun et al., 2013) 13,466 249 10 Regression
CelebA (Liu et al., 2015) 162,770 19,962 10 Regression

setting. Figure 1 shows the theoretical upper bound and the exact values of the sum of the maximum
leverage score of each instance across different representations.

Results. We first plot the upper bound of the sum of the maximum leverage scores across multiple
representations as the number of models increases. For matrices A1, . . . , Ak of n rows, it clearly
holds that

∑
i maxj wi(A

j) ≤ min{
∑

i

∑
j wi(A

j),
∑

i 1} ≤ min{
∑

i rank(A
j), n}. This upper

bound is plotted in red color, which grows almost linearly until it reaches the number of instances n.

We examine the exact values of the sum of maximum leverage scores across multiple representa-
tions. All figures show that the exact sum grows very slowly as the number of models increases. This
suggests highly consistent discrimination power of most instances across different representations,
as the leverage score when p = 2 is exactly the leverage score, which measures how hard an instance
can be linearly represented by others. Therefore, a small number of discriminating examples suffices
to effectively train multiple models. leverage scores also provide a possible direction to interpret the
behavior of deep representation learning, as prior works have not discovered any simple form of
correlation among the diverse representations obtained by different model architectures (Kornblith
et al., 2019; Nguyen et al., 2020).

E DETAILED EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

E.1 DETAILED SETTINGS

All experiments are run on two GPU servers, each equipped with four GeForce RTX 3090 graphic
cards, an Intel Xeon Gold 5317 CPU and 128 GB Memory. The details of the datasets are presented
in Table 3. The configurations of 50 deep models are specified in Table 4. Note that the network
dentition and pre-trained weights of each configuration can be downloaded from the GitHub page of
the OFA project (Cai et al., 2019).

We follow the training settings of (Tang & Huang, 2022) in our experiment of the vanilla deep
learning scenario. Specifically, at each query iteration, each target model will be initialized with the
pre-trained weights on ImageNet and trained for 20 epochs on the labeled dataset with batch size 32.
SGD optimizer is employed with learning rate 1.5 × 10−3, momentum coefficient 0.9 and weight
decay factor 3× 10−5. A dropout rate of 0.1 is used in the training process.

In our experiments of the fine-tuning scenario, we train a linear prediction layer with ReLU activa-
tion function using mean squared loss. The training specifications are introduced as follows. The
SGD optimizer is employed with a learning rate of 10−3 and a weight decay coefficient of 10−1.
The layer is trained for 30 epochs with training batch size 128. We set the random seed to 0 for
reproducibility. Please refer to the submitted source code to reproduce our results.

The implementations of each compared method are introduced as follows. We use the code in (Tang
& Huang, 2022) to implement DIAM, Coreset and Entropy methods. Specifically, DIAM first ob-
tains the predictions of the unlabeled instances using the models in the latter half of training epochs
of each target network. Then, it selects the batch of instances that multiple models have inconsistent
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Table 4: The names of the model specifications used in the experiments. The network dentition
and pre-trained weights of each configuration can be downloaded from the GitHub page of the OFA
project (Cai et al., 2019).

flops@595M top1@80.0 finetune@75 flops@482M top1@79.6 finetune@75
flops@389M top1@79.1 finetune@75 LG-G8 lat@24ms top1@76.4 finetune@25
LG-G8 lat@16ms top1@74.7 finetune@25 LG-G8 lat@11ms top1@73.0 finetune@25
LG-G8 lat@8ms top1@71.1 finetune@25 s7edge lat@88ms top1@76.3 finetune@25
s7edge lat@58ms top1@74.7 finetune@25 s7edge lat@41ms top1@73.1 finetune@25
s7edge lat@29ms top1@70.5 finetune@25 note8 lat@65ms top1@76.1 finetune@25
note8 lat@49ms top1@74.9 finetune@25 note8 lat@31ms top1@72.8 finetune@25
note8 lat@22ms top1@70.4 finetune@25 note10 lat@64ms top1@80.2 finetune@75
note10 lat@50ms top1@79.7 finetune@75 note10 lat@41ms top1@79.3 finetune@75
note10 lat@30ms top1@78.4 finetune@75 note10 lat@22ms top1@76.6 finetune@25
note10 lat@16ms top1@75.5 finetune@25 note10 lat@11ms top1@73.6 finetune@25
note10 lat@8ms top1@71.4 finetune@25 pixel1 lat@143ms top1@80.1 finetune@75
pixel1 lat@132ms top1@79.8 finetune@75 pixel1 lat@79ms top1@78.7 finetune@75
pixel1 lat@58ms top1@76.9 finetune@75 pixel1 lat@40ms top1@74.9 finetune@25
pixel1 lat@28ms top1@73.3 finetune@25 pixel1 lat@20ms top1@71.4 finetune@25
pixel2 lat@62ms top1@75.8 finetune@25 pixel2 lat@50ms top1@74.7 finetune@25
pixel2 lat@35ms top1@73.4 finetune@25 pixel2 lat@25ms top1@71.5 finetune@25
1080ti gpu64@27ms top1@76.4 finetune@25 1080ti gpu64@22ms top1@75.3 finetune@25
1080ti gpu64@15ms top1@73.8 finetune@25 1080ti gpu64@12ms top1@72.6 finetune@25
v100 gpu64@11ms top1@76.1 finetune@25 v100 gpu64@9ms top1@75.3 finetune@25
v100 gpu64@6ms top1@73.0 finetune@25 v100 gpu64@5ms top1@71.6 finetune@25
tx2 gpu16@96ms top1@75.8 finetune@25 tx2 gpu16@80ms top1@75.4 finetune@25
tx2 gpu16@47ms top1@72.9 finetune@25 tx2 gpu16@35ms top1@70.3 finetune@25
cpu lat@17ms top1@75.7 finetune@25 cpu lat@15ms top1@74.6 finetune@25
cpu lat@11ms top1@72.0 finetune@25 cpu lat@10ms top1@71.1 finetune@25

predictions. Coreset selects data points based on the representation of the pre-trained super-net in
OFA. Entropy calculates the entropy scores of unlabeled instances based on the predictions of each
target model. Subsequently, it selects the instances with the highest mean entropy scores across
multiple model predictions.

E.2 ADDITIONAL RESULTS

E.2.1 STUDY ON MEAN PERCENTAGE OF COVERED INSTANCES

We further examine how many instances with high leverage scores under the representation of a
single model can be covered by the maximum leverage score sampling. The statistics are calculated
as follows: We first get the intersection between the sets of instances that have the top t% highest
leverage score under the representation of model j (denoted by Itj) and top t% highest Maximum
leverage score (denoted by It). Then, we divide the cardinality of this subset by the number of t%
unlabeled instances. Finally, we calculate this value for each j ∈ [k] and compute the average to
obtain the mean percentage of covered instances, i.e.,

κ(t) =
1

k

k∑
j=1

|Itj ∩ It|
|It|

.

We report the mean percentage of covered instances of 50 deep models in Figure 5. It can be
observed that κ(10) is about 30% on most datasets (except for Biwi), that is, I10 covers on average
about 30% of the instances with high leverage scores of each representation for most datasets. For
all datasets, as t increases, κ(t) increases rapidly. These phenomena suggest that sampling a modest
number of instances by maximum leverage scores can effectively train multiple deep models, as
there are a significant fraction of instances with high leverage scores shared across different models.
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(a) MNIST
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(b) Kuzushiji-MNIST
10% 20% 30% 40% 50% 60% 70% 80% 90%

percentage of the instances with top % Maximum Lewis weights

0%

20%

40%

60%

80%

m
ea

n 
pe

rc
en

ta
ge

 o
f c

ov
er

ed
 in

st
an

ce
s

32.0

43.0

51.6
59.1

65.8
71.9

77.7
84.1

91.0

(c) Fashion-MNIST
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(d) EMNIST-letters
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(e) EMNIST-digits
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(f) SVHN
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(g) CIFAR-10
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(h) CIFAR-100
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(i) Biwi
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(j) FLD
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(k) CelebA

Figure 5: The mean percentage of shared data between instances having the highest maximum
leverage score and those having the highest leverage score under the representation of a specific
deep model.

E.2.2 STUDY ON THE CLASS IMBALANCE RATIO

Another metric of interest for AL classification algorithms is the class imbalance ratio, which is
defined as maxc

∑
i∈[nl]

I{yi = c}/minc
∑

i∈[nl]
I{yi = c}, where I is the indicator function.

Some active query strategies may cause severe class imbalance, rendering them hardly generalizable
to other target models and learning tasks. This issue becomes more significant for multiple target
models. In this experiment, we examine the class imbalance ratios of different AL methods in the
classification tasks. Specifically, we compare the ratios after the third AL iteration, where a total of
12000 labeled instances are present, including the initially labeled set. The results are reported in
Table 5.

We can observe that our proposed method consistently produces a balanced labeled dataset. Its
class imbalanced ratio is very close to that of the Random sampling. On the other hand, Coreset
suffers from the class imbalance, suggesting that the training instances with different classes exhibit
diverse intra-class distances under deep representation. This implies that the instances sampled
by Coreset may have a large distribution gap with the dataset. Entropy obtains a similar class
imbalance ratio to that of Random, which might appear counter-intuitive, given that Entropy prefers
the instances near the decision boundary and such instances are typically less likely to be class-
balanced. A possible reason is that the mean entropy scores of the unlabeled instances may have
a small standard deviation, potentially diminishing the advantages of using Entropy for identifying
the most informative instances, in the setting of multiple target models.
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Table 5: The class imbalance ratio of different query strategies.
MNIST F.MNIST K.MNIST SVHN CIF.10 CIF.100 EMN.l. EMN.d.

DIAM 2.007 3.250 1.472 2.121 1.525 4.390 2.216 2.811
QBC 1.867 6.721 1.987 4.474 5.212 13.607 9.178 10.664

Coreset 3.561 3.708 2.116 2.330 1.871 6.000 5.375 4.491
Random 1.262 1.091 1.067 3.008 1.062 1.511 1.092 1.222
Entropy 1.331 1.077 1.091 3.052 1.087 1.439 1.088 1.166

Our 1.217 1.081 1.050 2.993 1.098 1.440 1.109 1.209

Table 6: Running time (hours) of the methods in regression benchmarks. The running time includes
model training and data querying.

Methods Biwi FLD CelebA
Random 1.217 1.383 1.202
Coreset 1.483 1.883 3.667

Our 1.551 1.850 5.817
QBC 1.632 1.800 4.110
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