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A TECHNICAL DETAILS

A.1 TECHNICAL DETAILS OF Λθ

Within this paper, the aim of the landscape analysis is to profile the dynamic optimization status
of the current optimization process. That is, given a d-dimensional target optimization problem
f , at any time step t, the optimization process maintains a population of m candidate solutions
{Xt

i ∈ Rd}mi=1, and their corresponding objective values {yti = f(Xt
i )}mi=1. We consider an end-to-

end neural network structure that receives the candidates population and their corresponding objective
values as input, and then outputs h-dimensional dynamic optimization status sti for each Xt

i . This
optimization status feature aggregates the information of the optimization problem and the current
candidate population, hence can be used for dynamic landscape analysis in MetaBBO algorithms.
We have to note that the core challenges in designing such a neural landscape analyser locate at: 1)
generalizability: it should be able to handle optimization problems with different searching ranges
and objective value scales; 2) scalability: it should be capable of computing the dynamic optimization
status efficiently as the amount of the sampled candidates or the dimensions of the problem scales. We
address the above two challenges by designing a two-stage attention based neural network structure as
the landscape analyser (Λθ) in NeurELA. We now introduce the architecture of the Λθ and establish
its overall computation graph step by step. For the convenience of writing, we omit superfix for time
step t.

Pre-processing Module. To make NeurELA generalizable across different problems with various
searching ranges and objective value scales, we apply min-max normalization over the searching
space and the objective value space. Concretely, for a specific d-dimensional optimization problem
f (suppose a minimization problem), we acquire its searching range {[lbj , ubj ]}dj=1, where lbj and
ubj represent the lower bound and the upper bound at j-th dimension. Then we normalize each Xi in

the candidate population by Xj
i =

Xj
i −lbj

ubj−lbj , where Xj
i denotes the j-th dimension of Xi. After the

min-max normalization over the searching space, we min-max normalize the objective values within
this time step, yi = yi−ymin

ymax−ymin
, where ymin and ymax denotes the lowest and highest achieved

objective values in this time step. We have to note that by normalizing the Xi and yi within the
range of [0, 1], we attain universal representation for different optimization problems, ensuring the
generalizability of the subsequent neural network modules. The normalized {Xi}mi=1 and {yi}mi=1

are then re-organized as a collection of meta data {{(Xj
i , yi)}mi=1}dj=1 with the shape of d×m× 2.

We then embed the meta data with a linear mapping Wemb ∈ R2×h as the final input encoding s, of
which the shape is d×m× h. h denotes the hidden dimension of the subsequent two-stage attention
module.

Two-stage Attention Block. We construct a two-stage attention block (Ts-Attn) to aggregate
optimization status information across candidate solutions and across each dimension of the decision
variables. The overall computation graph of the Ts-Attn is illustrated in the right of Figure 2 in the
main body, of which a basic component is the attention block (Attn). As illustrated in the left of Figure
2 in the main body, the Attn block mainly follows designs of the original Transformer Vaswani et al.
(2017), except that the layer normalization Ba et al. (2016) is used instead of batch normalization Ioffe
& Szegedy (2015). Given a group of L input encoding vectors Xin ∈ RL×h, Eq. (1) details the
computation of the Attn block.

g = LN(Xin + MHSA(Xin))

v = FF(2)(ReLU(FF(1)(g)))

o = LN(g + v)

(1)

where MHSA, LN and FF denote the multi-head self-attention Vaswani et al. (2017) (with the hidden
dimension of h), layer normalization Ba et al. (2016) and linear feed forward layer respectively. The
output o holds identical shape with the input Xin. In our Ts-Attn block, we employ an Attn block
Attninter for the first cross-solution information sharing stage, and the other Attn block Attnintra

for the second cross-dimension information sharing stage (illustrated in the right of Figure 2 in the
main body. The Ts-Attn receives the input encoding s of the current candidate population, and then
advances the information sharing in both cross-solution and cross-dimension level. The computation
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is detailed in Eq. (2).

H = Attninter(S)
H = Transpose(H, d×m× h → m× d× h) + PE

Hout = Attnintra(H)

Findiv = MeanPooling(Hout,m× d× h → m× h)

Fpop = MeanPooling(Findiv),m× h → h)

(2)

At the first stage, we let the input encoding s (attained from the pre-processing module) pass through
Attninter. Since we group the encodings of the same dimension of all candidates in s, the Attninter

promotes the optimization information sharing across candidates in current population. From the first
stage, we obtain a group of hidden features H with the shape of d ×m × h. At the second stage,
we first transpose H into the shape of m× d× h to regroup all dimensions of a candidate together.
We then add cos/sin positional encoding (PE) over the transposed H to inform the order of different
dimensions in a candidate. We then let H pass through Attnintra to advance the information sharing
among the different dimensions within the same candidate. The output of Attnintra holds the shape
of m× d×h. At last, we apply MeanPooling on Hout to get the landscape feature for each candidate
Findiv in the population, and apply a second MeanPooling on Findiv to get the landscape feature for
the whole candidate population Fpop. We have to note that we calculate both Findiv and Fpop to make
our NeurELA compatible with diverse MetaBBO algorithms, which either require the landscape
feature of the whole population (e.g., Wu & Wang (2022)) or require a separate landscape feature
for each candidate (e.g., Sun et al. (2021)). The highly parallelizable attention-based neural-network
architecture ensure the scalability of our method as the amount of the sampled candidates or the
dimensions of the problem increases.

Now we summarize the end-to-end workflow of the neural landscape analyser (Λθ) in our NeurELA.
At any time-step t within the optimization process, the pre-processing module transforms the infor-
mation of the candidate population (i.e., {Xt

i}mi=1 and {yti}mi=1) into the input encoding s. Then the
Ts-Attn module transforms s into the dynamic landscape features F t

inidiv and F t
pop.

A.2 TRAIN-TEST SPLIT OF BBOB TESTSUITES

BBOB contains 24 synthetic problems owning various landscape properties Mersmann et al. (2011)
(e.g. multi-modality, global structure, separability and etc.). Table 1 list all of the 24 problems
according to their category. Due to the diversity of properties, how to split these problems into
train-test set becomes a key issue to ensure the training performance and its generalization ability.
Our fundamental principle to split is to maximize the inclusion of representative landscape properties
as possible. Specifically we visualize these 24 problems under 2D setting, and then select 12
representative problems into train set. We also provide contour map of problems in train set in
Figure 1 and test set in Figure 2. Moreover, to avoid possible issue Kudela (2022) coming from fixed
optima which is often located in [0, ..., 0] in current benchmark problems (this might facilitate model
to overfit to this fixed point), we thus add random offset O into each problems, that is to convert
y = f(x) into y = f(x−O). This operation is inserted into both train set Dtrain and test set Dtest.

A.3 TRAIN-TEST SPLIT OF BBOB-NOISY AND PROTEIN-DOCKING TESTSUITES

We summarize some key characteristic of this two testsuits as follows.

• BBOB-Noisy: this testsuits contains 30 noisy problems from COCO Hansen et al. (2021).
They are obtained by further inserting noise with different models and levels into problems
in BBOB testsuits. BBOB-Noisy is characterized by its noisy nature and often used to
examine robustness of certain optimizers.

• Protein-Docking: this testsuits contains 280 instances of different protein-protein com-
plexes Hwang et al. (2010). These problems are characterized by rugged objective landscapes
and are computationally expensive to evaluate.

We follow train-test split for these two testsuites defined in MetaBox Ma et al. (2023). Under easy
mode in MetaBox, 75% of instances are allocated into training and the remaining 25% are used in

2
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Table 1: Overview of the BBOB testsuits.

No. Functions

Separable functions

1 Sphere Function
2 Ellipsoidal Function
3 Rastrigin Function
4 Buche-Rastrigin Function
5 Linear Slope

Functions
with low or moderate

conditioning

6 Attractive Sector Function
7 Step Ellipsoidal Function
8 Rosenbrock Function, original
9 Rosenbrock Function, rotated

Functions with
high conditioning

and unimodal

10 Ellipsoidal Function
11 Discus Function
12 Bent Cigar Function
13 Sharp Ridge Function
14 Different Powers Function

Multi-modal
functions

with adequate
global structure

15 Rastrigin Function (non-separable counterpart of F3)
16 Weierstrass Function
17 Schaffers F7 Function
18 Schaffers F7 Function, moderately ill-conditioned
19 Composite Griewank-Rosenbrock Function F8F2

Multi-modal
functions
with weak

global structure

20 Schwefel Function
21 Gallagher’s Gaussian 101-me Peaks Function
22 Gallagher’s Gaussian 21-hi Peaks Function
23 Katsuura Function
24 Lunacek bi-Rastrigin Function

Default search range: [-5, 5]D

testing. Training or further fine-tuning on these two testsuites in our experiments are executed in the
train set, and then validate performance of corresponding MetaBBO algorithms in the test set Dtest.
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Figure 1: Fitness landscapes of functions in BBOB train set when dimension is set to 2.
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Figure 2: Fitness landscapes of functions in BBOB test set when dimension is set to 2.
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A.4 LICENSE OF USED OPEN-SOURCED ASSETS

Our codebase can be accessed at https://anonymous.4open.science/r/
Neur-ELA-303C. In Table 2 we listed several open-sourced assets used in our work and
their corresponding licenses.

Table 2: Used open-sourced tools and their licenses.

Used scenario Asset License
Top-level optimizer PyPop7 Duan et al. (2022) GPL-3.0 license

MetaBBO algorithms implementation
Low-level train-test workflow MetaBox Ma et al. (2023) BSD-3-Clause license

Parallel processing Ray Moritz et al. (2018) Apache-2.0 license
ELA feature calculation pflacco Kerschke & Trautmann (2019) MIT license

A.5 CONTROL-PARAMETERS OF ES

Fast CMAES We grid-search three key hyper-parameters in Fast CMAES, including the mean value
µ and sigma value σ of the initial Gaussian distribution used for sampling, learning rate of evolution
path update c. We list the grid search options in Table 3 and choose the best setting according to
training performance on BBOB. Besides, for other control-parameters of the Fast CMAES, we follow
the default settings listed in its original paper Li et al. (2018).

Table 3: Grid-search of control-parameters of Fast CMAES.

Control-parameters Grid options Selected setting
Initial mean value µ [0D, RD] RD

Initial sigma value σ [0.1, 0.3] 0.3
Learning rate of evolution path update c [2.0/(D + 5.0), 6.0/(D + 5.0)] 2.0/(D + 5.0)
Note: D represents the searching dimension of Fast CMAES. More specifically, as the top-level

optimizer to neural-evolve our neural landscape analyser Λθ, D specifies the dimension of Λθ

which is 3296 under default settings in our main experiment.

Other candidate evolution strategy variants We follows the default settings as implementations
in PyPop7 Duan et al. (2022) for other candidate top-level optimizers. We made a comparision
study among SEP-CMAES Ros & Hansen (2008), R1ES, RMES Li & Zhang (2017), original
CMAES Hansen & Ostermeier (2001) and Fast CMAES under their default settings and finally select
Fast CMAES as the default top-level optimizer of this work.

B ADDITIONAL DISCUSSION

B.1 TRAINING CONVERGENCE

0 5 10 15 20 25 30 35 40 45 50
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0.6

0.5
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Figure 3: Training curves of different
ES baselines when training NeurELA

In NeurELA, the meta-objective as defined in Eq. (4), is
non-differentiable. Hence, we train the neural network in
NeurELA through neuroevolution. Such paradigm requires
effective evolutionary optimizers which maintain a population
of neural networks and reproduce elite offsprings iteratively
according to the training objective of the neural networks.
In NeurELA, we adopt Evolution Strategy (ES) since it is
claimed to be more effective then other optimizers. There
are many modern variants of ES method, of which we select
five: Fast CMAES (Li et al., 2018), Sep-CMAES (Ros &
Hansen, 2008), R1ES (Li & Zhang, 2017), RMES (Li &
Zhang, 2017) and CMAES (Hansen & Ostermeier, 2001) as
candidates. We present the training curves of all five optional
ES baselines under our training settings in Figure 3. The
results demonstrate that the Fast CMAES we adopted for
training NeurELA converges and achieves superior training effectiveness to other ES baselines.
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B.2 DIFFERENCE BETWEEN NEURELA AND DEEP-ELA

Although a previous work Deep-ELA (Seiler et al., 2024) also proposed using attention-based
architecture for landscape analysis, there are significant differences between our NeurELA and
Deep-ELA, which we listed as below:

1. Target scenario. NeurELA is explicitly designed for MetaBBO tasks, where dynamic optimization
status is critical for providing timely and accurate decision-making at the meta level. In contrast,
Deep-ELA serves as a static profiling tool for global optimization problem properties and is not
tailored for dynamic scenarios. NeurELA supports dynamic algorithm configuration, algorithm
selection, and operator selection. In contrast, Deep-ELA’s features are restricted to static algorithm
selection and configuration, limiting its adaptability in dynamic MetaBBO workflows.

2. Feature extraction workflow. First, NeurELA addresses the limited scalability of Deep-ELA for
high dimensional problem. Concretely, the embedding in Deep-ELA is dependent on the problem
dimension and hence the authors of Deep-ELA pre-defined a maximum dimension (50 in the original
paper). To address this, NeurELA proposes a novel embedding strategy which re-organizes the sample
points and their objective values to make the last dimension of the input tensor is 2 (Section 3.2).
This embedding format has a significant advantage: the neural network of NeurELA is hence capable
of processing any dimensional problem and any number of sample points. NeurELA enhances the
information extraction through its two-stage attention-based neural network. Specifically, when
processing the embedded data, Deep-ELA leverages its self-attention layers for information sharing
across sample points only. In contrast, NeurELA incorporates a two-stage attention mechanism,
enabling the neural network to first extract comprehensive and useful features across sample points
(cross-solution attention) and then across problem dimensions (cross-dimension attention). This
design helps mitigate computational bias and improve feature representation.

3. Training method. The training objective and training methodology in NeurELA and Deep-
ELA are fundamentally different. Deep-ELA aims to learn a neural network that could serve as an
alternative of traditional ELA. Its training objective is to minimize the contrastive loss (InfoNCE)
between the outputs of its two prediction heads (termed as student head and teacher head) by gradient
descent, in order to achieve invariance across different landscape augmentation on the same problem
instance. In contrast, the training objective of NeurELA is to learn a neural network that could provide
dynamic landscape features for various MetaBBO tasks. Specifically, its objective is to maximize the
expected relative performance improvement when integrated into different MetaBBO methods. Since
such relative performance improvement is not differentiable, NeurELA employs neuroevolution as its
training methodology. Neuroevolution is recognized as an effective alternative to gradient descent,
offering robust global optimization capabilities.

In summary, NeurELA and Deep-ELA are two totally different works with different target operating
scenarios, algorithm design tasks, neural network designs and workflows, and training methodologies.

B.3 FURTHER INTERPRETATION ANALYSIS

To further interpret what features have been learned by our NeurELA, we have conducted following
experimental analysis to further interpret the relationship between NeurELA features and traditional
ELA features, where we uses Pearson Correlation analysis to quantify the correlation between each
NeurELA feature and each traditional ELA feature.Below, we explain our experimental methodology
step by step:

1. We select three MetaBBO methods (LDE, RLEPSO and RL-DAS) from our training task set
and employ their pre-trained models to optimize the 24 problem instances in CoCo BBOB-10D
suite. Each MetaBBO method performed 10 independent runs per problem instance, with each run
consisting of 500 optimization steps. Now we obtain 3*24*10 = 720 optimization trajectories, each
with length 500, and the data at each step of a trajectory is the population and the corresponding
objective values {Xs, Y s}.

2. Based on the obtained trajectories, we use the pre-trained NeurELA model (outputs 16 features)
and the traditional ELA (we choose 32 ELA features from the traditional ELA including the Meta-
model group, Convexity group, Level-Set group, Local landscape group and Distribution group)
to calculate landscape features for each optimization step. After the computation, we obtain 720
landscape features time series for NeurELA and traditional ELA respectively.
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Figure 4: Correlation score of NeurELA features and traditional ELA features

3. For each pair of landscape features time series, we measure the relationship between the i-th
feature in NeurELA features and the j-th feature in traditional ELA features by computing the Pearson
Correlation Coefficient ri,j of the time series of these two features: {FNeurELA

i,1 . . .FNeurELA
i,500 } and

{FELA
j,1 . . .FELA

j,500 }.

4. We obtain the final correlation scores of each feature pair between NeurELA and traditional ELA by
averaging ri,j of this feature pair over the 720 time series data, i ∈ {1, 2, . . . , 16}, j ∈ {1, 2, . . .32}.
Finally we obtain a correlation matrix with 32 rows and 16 columns. We illustrate this correlation
matrix by the heatmap in Figure 4. The x-axis denote 16 NeurELA features and y-axis denote 32
ELA features, a larger value denotes the two features are closely related.

From the correlation results in that Figure, we could find some relationship patterns between our
NeurELA features and the traditional ELA features: a) four NeurELA features F1, F4, F8 and F16
are novel features learned by NeurELA which show weak correlation (< 0.6) with all ELA features.
b) some NeurELA features show strong correlation with one particular feature group in traditional
ELA, such as F3 with the Meta-model group. c) some NeurELA features show strong correlation
with multiple feature groups in traditional ELA, such as F10 with Distribution group and Meta-model
group. d) all NeurELA features show weak correlation with the Convexity group and Local landscape
group, which might reveals these two group features are less useful for addressing MetaBBO tasks.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Qiqi Duan, Guochen Zhou, Chang Shao, Zhuowei Wang, Mingyang Feng, Yijun Yang, Qi Zhao, and
Yuhui Shi. Pypop7: A pure-python library for population-based black-box optimization. arXiv
preprint arXiv:2212.05652, 2022.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 2001.

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 2021.

Howook Hwang, Thom Vreven, Joël Janin, and Zhiping Weng. Protein–protein docking benchmark
version 4.0. Proteins: Structure, Function, and Bioinformatics, 2010.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Pascal Kerschke and Heike Trautmann. Comprehensive feature-based landscape analysis of continu-
ous and constrained optimization problems using the r-package flacco. Applications in Statistical
Computing, 2019.

Jakub Kudela. A critical problem in benchmarking and analysis of evolutionary computation methods.
Nature Machine Intelligence, 2022.

Zhenhua Li and Qingfu Zhang. A simple yet efficient evolution strategy for large-scale black-box
optimization. IEEE Transactions on Evolutionary Computation, 2017.

Zhenhua Li, Qingfu Zhang, Xi Lin, and Hui-Ling Zhen. Fast covariance matrix adaptation for
large-scale black-box optimization. IEEE Transactions on Cybernetics, 2018.

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining Ma,
and Zhiguang Cao. Metabox: A benchmark platform for meta-black-box optimization with
reinforcement learning. In Annual Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter Rudolph.
Exploratory landscape analysis. In Annual Conference on Genetic and Evolutionary Computation,
2011.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework
for emerging ai applications. In Symposium on Operating Systems Design and Implementation,
2018.

Raymond Ros and Nikolaus Hansen. A simple modification in cma-es achieving linear time and
space complexity. In International Conference on Parallel Problem Solving from Nature, 2008.

Moritz Vinzent Seiler, Pascal Kerschke, and Heike Trautmann. Deep-ela: Deep exploratory landscape
analysis with self-supervised pretrained transformers for single-and multi-objective continuous
optimization problems. arXiv preprint arXiv:2401.01192, 2024.

Jianyong Sun, Xin Liu, Thomas Bäck, and Zongben Xu. Learning adaptive differential evolution
algorithm from optimization experiences by policy gradient. IEEE Transactions on Evolutionary
Computation, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Di Wu and G Gary Wang. Employing reinforcement learning to enhance particle swarm optimization
methods. Engineering Optimization, 2022.

7


	Technical Details
	Technical Details of 
	Train-test split of BBOB testsuites
	Train-test split of BBOB-Noisy and Protein-Docking testsuites
	License of Used Open-sourced Assets
	Control-parameters of ES

	Additional Discussion
	Training Convergence
	Difference between NeurELA and Deep-ELA
	Further Interpretation Analysis


