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This document contains additional materials for our proposed method, ProGRIP, including additional
details of our implementation (Sec. A), two demonstrative applications in semantic shape editing
(Sec. B) and shape compactness (Sec. C), our study on using repeatable parts instead of posed parts
for segmentation (Sec. D), a comparison on reconstruction quality between our box abstractions and
our posed implicit functions (Sec. E), a comparison on reconstruction quality between repeatable
parts and nonrepeatable parts both using implicit shape representations (Sec. F), more baselines
(Sec. G), more qualitative visualizations (Sec. H), and some representative failure cases of our method
(Sec. I). Please visit our project webpage, progrip-project.github.io, for additional visualizations.

A Additional Implementation Details

Architecture. We use an auto-encoding architecture for generating ProGRIP programs. The encoding
network uses an identical architecture as in [12], which takes in a pointcloud of 4096 points and
predicts a 512-d feature vector as the global feature of the input. Then this global feature vector is feed
into a geometry transformer to predict as set of repeatable parts, specified by their scale s; and part
latent z;. The geometry transformer is constructed by stacking 4 self-attention blocks [ 1], each with
8 attention head, 256-d hidden features, and 2048-d feed-forward features. Note that this architecture
is the same as the transformer used in [1]. Further, to predict the occurrences of each repeatable
part, we use another pose transformer with the same architecture as the geometry transformer to
transform the part latent 2z; to a set of posed occurrences parameterised by the translation #; ;,
rotation R; ;, and existence probability J; ;. At program generation, we set the maximum number
of repeatable parts N = 10 and the maximum number of occurrences for each repeatable part
M = 6. So far, the architecture is already capable of predicting a ProGRIP composed of posed parts
{(si, zi, ti j, Ri j, i ;) }. To further model the fine geometric details of the object, we execute each
posed part as a pose implicit function that can answer occupancy queries for any point «. Particularly,
given &, we first inverse transform it by @’ = (R; jl (x —t;;) /s;). Then we concatenate it with 2;
and feed it into an implicit part decoder P. We use the same architecture for P as in [6] except that
we use 50-d latent features instead of 512-d for efficiency purpose. The output of P is multiplied by

the binary existence Si, ; to get the occupancy of & regarding posed part (4, j), 0; j(«). The object
occupancy O is the maximum of all o; ;.

Optimization. We train our model in 2 stages. At the first stage, we optimize the parameters for
generating ProGRIP. Specifically, we use stochastic gradient descent to minimize £,,. The ground
truth non-repeatable box abstraction is obtained by running the officially released pretrained models
from [12]. We use an AdamW [5] optimizer with a learning rate of 0.0001 and a batch size of 32. We
train the model for 75 epochs which is ~2 hours on an Nvidia Titan RTX. At the second stage, to train
the implicit functions, we use the sample points preprocessed by [6] and [3]. In particular, for each
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Figure 1: We show an example editing application of ProGRIP where we swap semantic parts. First,
we take 2 chairs reconstructed by ProGRIP with semantic part decomposition (left). Then, one can
select one or multiple semantic parts on the chairs that they want to swap. In this case, we select
chair arms on both chairs (middle). The swapping can be done as simple as swapping the shape
latent of those arms (right). Note that while we only swap one shape latent, the shape changing is
automatically propagated to both arms and the scale and pose are aligned properly to the new chair
thanks to the disentangled shape and pose modeling in ProGRIP.

shape within a batch, we use 1300 points uniformly sampled from the bounding box of the object,
200 points sampled near the object surface, and 100 points sampled on the object surface. We use an
Adam optimizer for parameters within the implicit part decoder P and an AdamW optimizer for all
the other parameters. The learning rate of both optimizers is set to 0.0001 and the batch size is 16.

Evaluation. We validate ProGRIP on 2 tasks, reconstruction and unsupervised part segmentation.
For reconstruction, we measure the quality by computing the IoU and F-Scores. We use the same
100, 000 volume samples with ground truth occupancy as [6] to compute the IoU. To compute the
F-Score, we first extract the meshes for all objects. Then we sample 100, 000 points from both the
predicted mesh and the ground truth mesh and calculate the F-Score at a threshold 7 = 0.01. As
for segmentation, we follow prior works [2, 12] to use the ShapeNet-Part [13] part annotations and
merge the labels for leg and support of tables as 1 semantic label. We further merge the tail and body
labels for we found inconsistent labeling within these 2 parts.

While we believe that we’ve provided all the implementation details to reproduce our results, upon
publication, we will release our code for all the results reported to further assist future research
built on our work.

B Application: Semantic Shape Editing

After training, our ProGRIP can decompose shapes into recurring semantics structures. This enables
more convenient shape editing as one can directly operate at the semantic level such as both arms of
a chair rather than the element level such as each arm alone. In Fig. 1, we demonstration one demo
editing where we swap the arms of 2 different chairs. With the help of ProGRIP, this processing can
be as simple as swapping the shape latent code. Note that the scale, orientation, and location of the
swapped arms are automatically aligned to the new base chair thanks to the 2-level modeling of shape
and pose in ProGRIP. We present additional editing examples in Fig. 2.
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Figure 2: More editing examples. We present some more editing examples enabled by our ProGRIP
representation. Given an input shape (left), we swap latent-codes for a target primitive from a different
shape (middle) to generate the edited output (right).
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Figure 3: We compare ProGRIP with Shape2Prog [10], CubeSeg [12], and BSP-Net [2] on Shape
Compactness, which requires the model to be concise and expressive simultaneously. ProGRIP
possesses significantly better expressivity (measured by F-score) while achieving similar compactness
as Shape2Prog.

C Application: Shape Compactness

Along the development of machine intelligence especially machine learning algorithms, a clear
connection has been made between compactness and learning [8, 9]. An alternative perspective of
understanding machine learning is essentially a process of finding the most succinct representation of
the information in data. In primitive-based shape representations, we pursue a structured intelligent
understanding of object shapes. Hence, being able to represent shapes concisely can effectively
demonstrate a capability of understanding. To this end, we evaluate our method on a simple shape
compactness application. In this task, we ask each primitive-based method to reconstruct the same set
of objects (the test split of ShapeNet) and compute the average number of shapes used to represent



Instance Segmentation Semantic Segmentation
Chair Table Airplane Chair Table Airplane

Shape2Prog [10] 0.549  0.743 N/A 0.493 0.742 N/A
ProGRIP (ours) 0.752 0.857 0.757 0.684 0.850 0.755

Method

Table 1: Unsupervised Part Segmentation by Repeatable Parts. Here we compare the mloU
of part segmentation (higher is better) on either the instance segmentation setup or the semantic
segmentation setup. Note that the semantic segmentation setup makes the task harder as one has to
correctly associate different instances of the same semantic part, e.g. four legs of a chair. We compare
against only Shape2Prog [10] here as other methods such as CubeSeg [12] and BSP-Net [2] is not
capable of modeling any associations among parts.

each object. Note that we focus on the compactness of structure abstraction in this study so that
only the shape count is considered as the compactness measure. This measure is therefore agnostic
to the actual shape representation used. We show the compactness of representation (in # Shapes
/ Object) in Fig. 3 as well as the reconstruction quality (in F-score) as a reference. Our method is
able to achieve the second least average shape counts. Particularly, our shape representation is about
9% more compact than the most complex BSP-Net. Note that Shape2Prog uses structure supervised
pretraining, where the compression heuristics is already manually baked in the ground truth structures.
Since ProGRIP’s shapes are decoded from a latent feature while methods such as CubeSeg [12] and
Shape2Prog [10] only use boxes or voxel grids, we speculate the high fidelity largely comes from
the the implicit shape representation we introduce to our shape programs. Please refer to Tab. 2 and
Tab. 3 for extended comparison when we align the shape representation across methods.

D Part Segmentation by Repeatable Parts

In this section, we extend our evaluation of unsupervised part segmentation from instance segmenta-
tion to semantic segmentation. As most prior works including CubeSeg [12] and BSP-Net [2] only
support non-repeatable parts and do not model any relationships among parts, they are unable to
perform the semantic segmentation task as different instances, e.g. four legs of a chair, of a semantic
class, e.g. chair leg, have to be grouped together. Therefore, we only compare all 4 methods on the
instance segmentation task. In this task setup, despite that our ProGRIP would model 4 legs of a
chair as 4 occurrences of the same repeatable part with different poses, we treat them as different part
labels before assigning semantic labels to them by voting. To further assess the learned geometric
regularities such as symmetry and shape recurrences, we use the repeatable parts from ProGRIP and
Shape2Prog for semantic part segmentation in Tab. 1. Under the semantic segmentation evaluation
setup, we strictly assign the same semantic labels for all occurrences of the same repeatable part, e.g.
4 legs of a chair. We find that while Shape2Prog is pretrained by ground truth shape regularities, our
fully unsupervised ProGRIP consistently outperforms it on both instance segmentation and semantic
segmentation.

E Box Abstraction vs. Implicit Functions

Different from using simple predefined parametric primitives [12] or coarse voxel grids [10] in
prior works, we propose to use posed implicit functions to execute our shape programs. Implicit
representations have demonstrated excellent capability of modeling complicated signals [6, 7].
Consequently, thanks to the introduction of posed implicit function to our framework, we also
observe notable boosts of reconstruction quality. In Tab. 2, we show an ablation study where we
use either the box abstractions defined by the (s;,¢; ;, R; ;,; ;) tuples in our ProGRIP or the posed
implicit functions for shape reconstruction. We find that from box to implicit the performance leap
can be as much as 2.4 better IoU for the Table class. More surprisingly, we find that our box
abstractions are also more geometrically accurate than the CubeSeg baseline, although it is trained on
the boxes from CubeSeg. We claim that the improvement is mostly likely to be the outcome of a more
structured formulation, especially with among-part relationships considered. For example, while
CubeSeg learns 4 legs of a chair independently, our ProGRIP optimizes the shape parameters, s; and



TIoU 1 F-Score@0.01 1

Method

Chair  Table Airplane Chair Table Airplane
CubeSeg [12] 0.315  0.238 0.360 25.56  30.38 42.53
ProGRIP (box) 0.423  0.276 0.376 35.70  36.57 48.81

ProGRIP (implicit) 0.620 0.656 0.680 57.98 72.30 76.84

Table 2: Box vs. Implicits in Reconstruction. We compare the reconstruction quality of our model,
ProGRIP, using either the box abstractions (box) as specified by (s;,t; ;, R; j,d; ;) or the high
fidelity posed implicit functions (implicit). We find clear boost in reconstruction quality from box
to implicit. As a reference, we also report the reconstruction performance o non-repeatable box
abstractions from CubeSeg [12]. We fit our repeatable box abstraction to CubeSeg’s boxes during
the learning of program generation. Yet, due to our program formulation, our model learns more
regularities than CubeSeg, e.g. we require legs of a chair to be identical in shape and likely to be
symmetric as well. Hence, our box abstractions achieve higher reconstruction qualities in both IoU
and F-Score than CubeSeg.

CubeSeg [12] + Implicit Parts ProGRIP
Chair Table Airplane Chair  Table Airplane
IoU 1 0.549 0.599 0.616 0.620 0.656 0.680

Method

Table 3: Repeatable Implicit Parts vs. Nonrepeatable Implicit Parts. We extend CubeSeg [12] to
representing each part predicted by CubeSeg as neural implicit functions. The training of such implicit
parts is identical to ProGRIP. While both CubeSeg and ProGRIP use the same data for training,
ProGRIP differs from CubeSeg in that it enables the modeling of repeatable geometric structure,
thanks to our unsupervised training strategy. Results show that this greatly help the reconstruction
quality.

z;, of these instances simultaneously, resulting in stronger gradients and faster convergence. The
self-attention architecture with our geometry and pose transformers can also help learn regularities
such as symmetric poses.

F Repeatable Implicit Parts vs. Nonrepeatable Implicit Parts

To further investigate the impact of having repeatable parts based on neural implicit functions, we
compare our ProGRIP to an extended baseline where we plug implicit shape representations to the
shape programs generated by CubeSeg [12]. Specifically, we use an identical training of implicit
parts as Sec. 4.2 of the main paper for CubeSeg. The results are shown in Tab. 3. We find that
by having recurring geometric structured accounted for in ProGRIP, enabled by our unsupervised
training strategy, the reconstruction quality are consistently improved across all categories.

G More Baselines

While we select representative baselines from all relevant domains to compare ProGRIP against, we
further extend our study with additional relatively more loosely related baselines (Tab. 4). Specifically,
we compare with OccNet [6] which shares the spirit of using implicit shape representation with
ProGRIP but strives for a different goal of only reconstructing each shape as a whole with high
quality. In other words, any structure such as part-to-whole relationships are ignored in OccNet. We
speculate that OccNet achieves higher reconstruction quality as a results of no constraints put on its
shape modeling. In contrary, ProGRIP has to use strictly identical shapes to reconstruct multiple
elements that may have minor geometric variations. Exploring loosening this hard constraint but still
keeping the similarity relationship for better quality would naturally be an exciting future direction.
Meanwhile, we also compare ProGRIP to SIF [3] that also uses a part-based representation. However,
ProGRIP is capable of representing more complicated structure, i.e. recurring geometry, while SIF
treats each part independently. We find in Tab. 4 that this more advanced structure modeling helps



IoU 1 F-Score@0.01 1
Chair Table Airplane Chair Table Airplane

OccNet [6]  0.739  0.756 0.770 77.20 84.90 87.80
SIF [3] 0.503 0.485 0.660 48.81 60.02 82.07
ProGRIP 0.620 0.656 0.680 57.98 72.30 76.84

Method

Table 4: More Baselines. In addition to the comparison in our main paper, we provide more baselines
as a reference for ProGRIP’s performance on reconstruction. Here we compare ProGRIP against
OccNet [6] and SIF [3]. Note that while OccNet achieves the highest reconstruction quality as its
sole goal, it doesn’t predict any structure such as geometric or semantic parts of objects. Hence, it
stands closer to the shape reconstruction domain instead of shape understanding. SIF is closer to our
method but with nonrepeatable parts in a different representation.

improve the reconstruction quality. Note that we didn’t compare with LDIF [4] for that LDIF is using
a more complex local feature encoding that is vital to their reconstruction quality. While it’s not
within the scope our this work, we enthusiastically encourage the community to carry on investigating
incorporating local feature encoding to ProGRIP.

H More Qualitative Results

In additional to the qualitative examples shown in the main paper, we provide more renderings of our
reconstruction results in Fig. 5 and Fig. 6. As a comparison, we also show results from other state-of-
the-art baselines (Shape2Prog [10], CubeSeg [12], and BSP-Net [2]). We find that reconstructions
from our ProGRIP consistently preserve more geometric details than baseline methods. Moreover,
ProGRIP successfully learned geometric regularities of object shapes, such as recurring geometry
and symmetry (see the “program” rows).

In Fig. 7, we further display the unsupervised part segmentation results from our ProGRIP, as well
as Shape2Prog [10], CubeSeg [12], and BSP-Net [2]. We observe that while baseline methods
occasionally annotate asymmetric semantic labels to symmetric semantic parts (e.g. arms of chairs
and engines of airplanes), ProGRIP reliably maintains the symmetric structures in semantic labeling,
thanks to the formulation of repeatable parts.

I Failure Cases

LS \/ \— =

(a) ProGRIP (ours) (b) GT (c) Boxes from ProGRIP (d) Boxes from CubeSeg

Figure 4: Failure Case Renders. We display in this figure a representative failure case of ProGRIP.
The ground truth shape (b) is extremely irregular. Hence, it’s difficult for ProGRIP to capture the
geometric structure. As a result, the reconstruction is imperfect. We analyze the source of errors and
find that the box-based reconstruction from CubeSeg (d) has relatively low quality. As we train our
program by matching our repeatable boxes (c) to CubeSeg’s non-repeatable boxes, the mistakes are
inherited and further passed on to our posed implicit functions (a).

While ProGRIP is able to learn the structures and repetitions of most shapes in a category, it fails
to reconstruct objects that are extremely irregular. Especially difficult are the cases when the box
abstractions from CubeSeg are incorrect. In Fig. 4 we show a representative example of such failure
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Figure 5: Additional reconstruction results of our ProGRIP and other state-of-the-art shape decompo-
sition methods (Shape2Prog [10], CubeSeg [12], and BSP-Net [2]) on chair and table classes. The
first row of each group shows the ground truth meshes.

cases. When the non-repeatable box-based reconstruction from CubeSeg is wrong, it misleads the
optimization for our program generation. Consequently, the repeatable box abstractions from our
predicted program inherit the mistakes. Even though during fine-tuning the posed implicit functions
learn to partially amend the issues, the overall reconstruction quality still suffers from legacy errors.
We believe that exploring better alternatives to CubeSeg and jointly learn program generation and
shape reconstruction are promising directions to mitigate such failures.
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Figure 7: Comparison of ProGRIP with Shape2Prog [10], CubeSeg [12], and BSP-Net [2] on
unsupervised pointcloud co-segmentation. Top: the chair class. Notice column 2 armrests, column
4 seat (Shape2Prog), column 5 armrests, column 8 legs (Shape2Prog & BSP-Net), and column 9
armrests. Middle: the table class. Notice column 2 top (BSP-Net), column 5 left leg (CubeSeg
and BSP-Net), column 6 legs (Shape2Prog), column 7 & 8 top. Bottom: the airplane class. Notice
column 1, 4, 5 jets (BSP-Net). Shape2Prog results are missing as it can only be trained with synthetic
ground truth programs which are only available for chair and table.



