
Unsupervised Learning of Shape Programs with
Repeatable Implicit Parts
Supplementary Materials

Boyang Deng1,∗ Sumith Kulal1,∗ Zhengyang Dong1 Congyue Deng1

Yonglong Tian2 Jiajun Wu1

1Stanford University, 2MIT, ∗equal contributions

This document contains additional materials for our proposed method, ProGRIP, including additional
details of our implementation (Sec. A), two demonstrative applications in semantic shape editing
(Sec. B) and shape compactness (Sec. C), our study on using repeatable parts instead of posed parts
for segmentation (Sec. D), a comparison on reconstruction quality between our box abstractions and
our posed implicit functions (Sec. E), a comparison on reconstruction quality between repeatable
parts and nonrepeatable parts both using implicit shape representations (Sec. F), more baselines
(Sec. G), more qualitative visualizations (Sec. H), and some representative failure cases of our method
(Sec. I). Please visit our project webpage, progrip-project.github.io, for additional visualizations.

A Additional Implementation Details

Architecture. We use an auto-encoding architecture for generating ProGRIP programs. The encoding
network uses an identical architecture as in [12], which takes in a pointcloud of 4096 points and
predicts a 512-d feature vector as the global feature of the input. Then this global feature vector is feed
into a geometry transformer to predict as set of repeatable parts, specified by their scale si and part
latent zi. The geometry transformer is constructed by stacking 4 self-attention blocks [11], each with
8 attention head, 256-d hidden features, and 2048-d feed-forward features. Note that this architecture
is the same as the transformer used in [1]. Further, to predict the occurrences of each repeatable
part, we use another pose transformer with the same architecture as the geometry transformer to
transform the part latent zi to a set of posed occurrences parameterised by the translation ti,j ,
rotation Ri,j , and existence probability δi,j . At program generation, we set the maximum number
of repeatable parts N = 10 and the maximum number of occurrences for each repeatable part
M = 6. So far, the architecture is already capable of predicting a ProGRIP composed of posed parts
{(si, zi, ti,j ,Ri,j , δi,j)}. To further model the fine geometric details of the object, we execute each
posed part as a pose implicit function that can answer occupancy queries for any point x. Particularly,
given x, we first inverse transform it by x′ =

(
R−1

i,j (x− ti,j) /si
)
. Then we concatenate it with zi

and feed it into an implicit part decoder P . We use the same architecture for P as in [6] except that
we use 50-d latent features instead of 512-d for efficiency purpose. The output of P is multiplied by
the binary existence δ̂i,j to get the occupancy of x regarding posed part (i, j), oi,j(x). The object
occupancy O is the maximum of all oi,j .

Optimization. We train our model in 2 stages. At the first stage, we optimize the parameters for
generating ProGRIP. Specifically, we use stochastic gradient descent to minimize Lm. The ground
truth non-repeatable box abstraction is obtained by running the officially released pretrained models
from [12]. We use an AdamW [5] optimizer with a learning rate of 0.0001 and a batch size of 32. We
train the model for 75 epochs which is ~2 hours on an Nvidia Titan RTX. At the second stage, to train
the implicit functions, we use the sample points preprocessed by [6] and [3]. In particular, for each

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://progrip-project.github.io/



