
A Auditing Multiple Groups495

Here we consider the case when there are more than two groups. Suppose we have J + 1 groups496

{0, 1, . . . , J}. In accordance with Definition 1, the null and alternative become497

H0 : E⇢['(X)|⇠i] = E⇢['(X)|⇠j ], 8i, j 2 {0, . . . , J}, (13)
H1 : 9i, j 2 {0, . . . , J} such that E⇢['(X)|⇠i] 6= E⇢['(X)|⇠j ]. (14)

As before, let µi = E⇢['(X)|⇠i], i 2 {0, . . . , J}. One could derive a sequential test by applying498

Algorithm 1 to each pair of means µi and µj . Game-theoretically, this can be interpreted as splitting499

your initial wealth among multiple games and playing each simultaneously. If you grow rich enough500

in any one game, you reject the null. Of course, one needs to adjust the significance level to account501

for the number of games being played, thus reducing the (nonasymptotic) power of the test.502

Of course, it is not necessary to test each mean against all others. We need only test whether503

µb = µb+1 for all b 2 {0, . . . , J}. That is, we can play J games instead of ⌦(J2) games. In order to504

ensure this constitutes a level-↵ test, we reject when the wealth process of any game is at least (↵J)�1.505

The union bound then ensures that the type-I error of this procedure is bounded by ↵. Moreover,506

the asymptotic power remains one since, if µi 6= µj for some i, j then µb 6= µb+1 for some b. The507

guarantees we’ve provided on Algorithm 1 ensure that the wealth process for this particular game508

will eventually grow larger than (↵J)�1, thus our test will reject. We summarize this discussion with509

the following proposition, which is the equivalent of Proposition 1 for auditing multiple groups.510

Proposition 4. Let ↵ 2 (0, 1). Consider running Algorithm 1 on groups b, b+1, for b 2 {0, 1, . . . , J}511

in parallel with input parameter ↵/K. This constitutes a level-↵ sequential test for (13) with512

aymptotic power one against (14). If we receive an audit from each group at each timestep, then the513

expected stopping time ⌧ of this procedure obeys514

E[⌧ ] . min
b2{0,...,J�1}

1

|µb � µb+1|2
log

✓
J

|µb � µb+1|2↵

◆
. (15)

The expected stopping time follows from Proposition 1 after correcting for the significance level and515

the difference between the means. We take the minimum over all b because the procedure rejects as516

soon as any of the wealth processes grow too large. Equivalent versions of Propositions 2 and 3 for517

multiple groups can be obtained similarly.518

B Omitted Proofs519

B.1 Proof of Proposition 1520

We break the proof into three components.521

Level-↵ sequential test. Combining the discussion at the beginning of Section 3 with Ville’s522

inequality demonstrates why our procedure constitutes a level-↵ sequential test. However, let us prove523

it formally here for completeness. Let P 2 H0 and note that EP [bY 0
t
� bY 1

t
] = EP ['(X0

t
)�'(X1

t
)] =524

µ0 � µ1 = 0. Therefore, using the fact that �t is predictable (i.e., Ft�1-measurable)525

EP [Kt|Ft�1] = EP

 tY

j=1

(1 + �j(bY 0
j
� bY 1

j
))

����Ft�1

�
= Kt�1(1 + �tEP [bY 0

t
� bY 1

t
]) = Kt�1,

so (Kt)t�1 is a P -martingale, with initial value 1. Moreover, it is nonegative since |�t|  1/2 for all526

t by definition of ONS. Thus, Ville’s inequality implies P (9t � 1 : Kt � 1/↵)  ↵, meaning that527

rejecting at 1/↵ yields a level-↵ sequential test. Finally, as discussed in the main paper, the last lines528

of Algorithm 1 are justified by the randomized Ville’s inequality of Ramdas and Manole [43], which529

states that, for all stopping times n,530

P (9t  n : Kt � 1/↵ or Kn > U/↵)  ↵,

where U ⇠ Unif(0, 1) is independent of everything else.531
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Asymptotic power. Next, let us demonstrate that Algorithm 1 has asymptotic power one. That is,532

for P 2 H1, P (⌧ < 1) = 1. It suffices to show that P (⌧ = 1) = 0. To see this, define533

gt := bY 0
t
� bY 1

t
, St :=

tX

i=1

gi, Vt :=
tX

i=1

g
2
i
.

We have the following guarantee on the wealth process, which can be translated from results534

concerning ONS from Cutkosky and Orabona [44, Theorem 1]:535

Kt �
1

Vt

exp

⇢
S
2
t

4(Vt + |St|)

�
� 1

t
exp

⇢
S
2
t

8t

�
, 8t � 1. (16)

Since {⌧ = 1} ⇢ {⌧ � t} for all t � 1, we have P (⌧ = 1)  lim inft!1 P (⌧ > t) 536

lim inft!1 P (Kt < 1/↵), where the final inequality is by definition of the algorithm. Using the537

second inequality of (16),538

P (Kt < 1/↵)  P

✓
exp

⇢
S
2
t

8t

�
< t/↵

◆
 P

✓
�

r
8 log(t/↵)

t
<

St

t
<

r
8 log(t/↵)

t

◆
.

By the SLLN, St/t converges to µ0 � µ1 6= 0 almost surely. On the other hand, 8 log(t/↵)/t ! 0.539

Thus, if we let At be the event that exp(S2
t
/8t) < t/↵, we see that 1(At) ! 0 almost surely. Hence,540

by the dominated convergence theorem,541

P (⌧ = 1)  lim inf
t!1

P (At) = lim inf
t!1

Z
1(At)dP =

Z
lim inf
t!1

1(At)dP = 0.

This completes the argument.542

Expected stopping time. Last, let us show the desired bound on the expected stopping time. Fix543

P 2 H1. Let ⌧ be the stopping time of the test. Since it is nonnegative, we have544

E[⌧ ] =
1X

t=1

P (⌧ > t) =
1X

t=1

P (logKt < log(1/↵)) =
1X

t=1

P (Et),

for Et = {logKt < log(1/↵)}. Note that the second equality is by definition of the algorithm.545

Employing the first inequality of (16) yields546

Et ⇢ {S2
t
< 4(Vt + |St|)(log(1/↵)� log(1/Vt)}

⇢
⇢
S
2
t
< 4

✓
Vt +

X

it

|gi|
◆
(log(1/↵)� log(1/Vt)

�
.

To analyze the probability of this event, we first develop upper bounds on Wt :=
P

it
|gi| and Vt.547

We begin with Wt. Since Wt is the sum of independent random variables in [0, 1], we apply the548

multiplicative Chernoff bound (e.g., [57]) to obtain549

P (Wt > (1 + �)E[Wt])  exp(��
2E[Wt]/3).

Setting the right hand side equal to 1/t2 and solving for � gives � =
p

6 log t/EWt. Thus, with550

probability 1� 1/t2, we have551

Wt  EWt +
p
6E[Wt] log t = t+

p
6t log t  2t 8t � 17, (17)

where we’ve used that E[Wt] =
P

it
E[|gi|]  t since |gi|  1. Following a nearly identical process552

for Vt, we have that with probability 1� 1/t2,553

Vt  E[Vt] +
p
6E[Vt] log t  t+

p
6t log t  2t, 8t � 17, (18)

where again we use that |gi|2  |gi|  1. Let Ht = {Vt  2t} \ {Wt  2t}. Then,554

Et \Ht ⇢ {S2
t
< 16t(log(1/↵) + log(2t)} ⇢ {|St| < 4

p
t log(2t/↵)| {z }

:=D

}.
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We now argue that |St| is unlikely to be so small. Indeed, since St is the sum of independent random555

variables in [�1, 1], applying a Chernoff bound for the third time gives P (|St � ESt| � u) 556

2 exp(�u
2
/t). So, with probability 1� 1/t2, by the reverse triangle inequality,557

||St|� |ESt||  |St � ESt| 
p
t log 2t2,

implying that,558

|St| � |ESt|�
p

t log 2t2 � t��
p
2t log 2t.

This final quantity is at least D for all t � 81
�2 log(

162
�2↵

). Now, combining what we’ve done thus far,559

by the law of total probability,560

P (Et) = P (Et \Ht) + P (Et|Hc

t
)P (Hc

t
)  P (|St| < D) + P (Hc

t
)  3/t2,

and so, for t large enough such that (17), (18), and St > D all hold, that is561

T =
81

�2
log

✓
162

�2↵

◆
,

we have562

E[⌧ ] =
X

t�1

P (Et)  T +
X

t�T

3

t2
 T +

⇡
2

2
.

This completes the proof.563

B.2 Proof of Proposition 2564

The proof is similar to that of Proposition 1, so we highlight only the differences.565

The wealth process remains a martingale due to the IPW weights (7). Indeed, since �t and Lt are566

Ft�1 measurable, under the null we have567

E[Kt|Ft�1] = E
 tY

j=1

(1 + �jLj(bY 0
j
!
0
j
� bY 1

j
!
1
j
))

����Ft�1

�

= Kt�1(1 + �tLtE[bY 0
t
!
0
t
� bY 1

t
!
1
t
]) = Kt�1(1 + �tLt(µ0 � µ1)) = Kt�1.

Moreover, as described in the text, multiplication by Lt ensures that Kt is nonnegative, since568

|Lt||bY 0
t
!
0
t
(X0

t
)� bY 1

t
!
1
t
(X1

t
)|  Lt|bY 0

t
!
0
t
(X0

t
)|+ Lt|bY 1

t
!
1
t
(X1

t
)|

 Lt!
0
t
(X0

t
) + Lt!

1
t
(X1

t
)  1,

since569

Lt 
1

2!b
t
(Xb

t
)
,

for each b by definition. Therefore, (Kt)t�1 is a nonnegative martingale and, as before, Ville’s570

inequality implies that rejecting at 1/↵ gives a level-↵ sequential test.571

The asymptotic power follows by replacing gt in Appendix B.1 with572

ht = Lt(bY 0
t
!
0
t
� bY 1

t
!
1
t
).

Under the alternative, ht has non-zero expected value, so identical arguments apply.573

Regarding, the expected stopping time, we again argue about ht instead of gt. Since |ht|  1 (see574

above), the bounds on Vt and Wt remain as they are in the proof of Proposition 1. The bound on575

|E[St]| is where the proof departs that in Appendix B.1. In this case we have576

E[St|Ft�1] = St�1 + LtE[bY 0
t
!
0
t
� bY 1

t
!
1
t
|Ft�1] = St�1 + Lt(µ0 � µ1).

Therefore,577

E[St] = E[E[St|Ft�1]] = E[St�1 + Lt(µ0 � µ1)] = E[St�1] + (µ0 � µ1)E[Lt].

Induction thus yields578

|E[St]| =
����(µ0 � µ1)

X

it

E[Li]

���� = �

����
X

it

E[Li]

���� � �tLinf .

From here, we may replace � in the proof in Appendix B.1 with �Linf and the arithmetic remains579

the same. This yields the desired result.580
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B.3 Proof of Proposition 3581

Again, the proof mirrors that of Proposition 1 so we highlight only the differences.582

First let us ensure that Algorithm 1 yields a level-↵ sequential test. As before, it suffices to demonstrate583

that the wealth process is a nonnegative martingale. The time-varying means do not change this fact584

from before:585

E[Kt|Ft�1] = E
 tY

j=1

(1 + �j(bY 0
j
� bY 1

j
))

����Ft�1

�
= Kt�1(1 + �tE[bY 0

t
� bY 1

t
|Ft�1]) = Kt�1,

since, under the null, E[Y 0
t
|Ft�1] = E['(X)|⇠0,Ft�1] = µ0 = µ1 = E['(X)|⇠1,Ft�1] =586

E[Y 1
t
|Ft�1]. Nonnegativity once again follows from the ONS strategy.587

Asymptotic power follows an identical argument as in Appendix B.1, so we focus on expected588

stopping time. The event Et remains the same as in Appendix B.1. We again apply a Chernoff bound589

to Wt (the values remain independent, even though they are not necessarily identically distributed),590

and obtain591

Wt  EWt +
p
6E[Wt] log t = 2t,

for t � 17 with probability 1 � 1/t2, since again, |gi|  1 for each i. Similarly, EVt  2t with592

probability 1� 1/t2 for t � 17. Let the shift begin at time n, and place � = inft�n |µ0(t)� µ1(t)|.593

Then |ESt| � (t� n)�. As above, we want to find t such that594

|St| � |ESt|�
p
t log 2t2 � (t� n)��

p
t log 2t2 � D.

Rearranging and simplifying this final inequality, we see that it suffices for t to satisfy595

t� n � 6

�

p
t log(2t/↵). (19)

We claim this holds for all596

t � n+max

⇢
n,

108

�2
log

✓
108 · 4
�2↵

◆�
.

To see this, suppose first that n � � where597

� =
108

�2
log

✓
108 · 4
�2↵

◆
.

Then, at t = 2n, the right hand side of (19) is598

6

�

p
2n log(2n/↵)  n,

where the final inequality holds for all n � �, which was assumed. Now suppose that n < �, so that599

(19) should hold for t � n+ �. Since the left hand side of (19) grows faster than the right hand side,600

it suffices to show that it holds at t = n+ �. To this end, write601

6

�

p
t log(2t/↵)

����
t=n+�

 6

�

p
(n+ �) log(2n/↵+ 2�/↵)

 6

�

p
2� log(4�/↵)

=
72

�2

s

log

✓
108 · 4
�2↵

◆
log

✓
108 · 4
�2↵

log

✓
108 · 4
�2↵

◆◆

=
72

�2

s

log

✓
108 · 4
�2↵

◆
log

✓
108 · 4
�2↵

◆
+ log log

✓
108 · 4
�2↵

◆

 108

�2
log

✓
108 · 4
�2↵

◆
= �,

where the final inequality uses the (loose) bound log log(x)  log2(x).602
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C Simulation Details603

Code to recreate all plots and run the simulations is attached. Here we provide more extensive details604

on each figure.605

Figure 1. Given �, we generate the two means µ0 and µ1 as µ0 = 0.5+�/2 and µ1 = 0.5��/2.606

We take '(X)|⇠b to be Ber(µb). (Thus, this simulates a scenario for which we witness the classifcation607

decisions, not e.g., a risk score.) We set ↵ = 0.01, so we reject when the wealth process is at least608

100. We receive a pair of observations each timestep. Each experiment was run 100 times to generate609

the plotted standard deviation around the mean of each wealth process.610

Figure 2. As above, we take the distribution of model observations 't(X)|⇠b to be Ber(µb(t)). For611

the left hand side of Figure 2 we take µ0(t) = µ1(t) = 0.3 for t = 1, . . . , 99. At t = 100, we add a612

logistic curve to µ1. In particular, we let613

µ1(t) = 0.3 +
0.5

1 + exp((250� t)/25)
, t � 100.

We keep µ0 at 0.3. For the right hand side of Figure 2, we let both µ1 and µ0 be noisy sine functions614

with different wavelengths. We take615

µ0(t) =
sin(t/40)

10
+ 0.4 + ✏

0
t
,

for all t, where ✏
0
t
⇠ N(0, 0.01). Meanwhile,616

µ1(t) =
sin(t/20)

10
+ 0.4 +

t

1000
+ ✏

1
t
,

where, again, ✏1
t
⇠ N(0, 0.01). The mean µ1(t) thus has a constant upward drift over time. As617

before, we assume we receive a pair of observations at each timestep and we take ↵ = 0.01. We618

generate the means one, but run the sequential test 100 times in order to plot the standard deviation619

around the mean.620

Figures 3 and 4. For a given sequential test and a given value of ↵, we run (i) the test under the621

null hypothesis, and (ii) the test under the alternative. Repeating 300 times and taking the average622

gives the FPR and average rejection time for this value of ↵. This procedure is how the leftmost two623

columns of Figure 3 were constructed. The final column then simply plots the FPR versus the value624

of ↵.625

We used a random forest for both the credit default dataset and the US census data. For the credit626

default dataset, the model does not satisfy equality of opportunity [39] when Y indicates whether an627

individual has defaulted on their loan, and A indicates whether or not they have any university-level628

education. One can imagine loans being given or withheld on the basis of whether they are predicted629

to be returned; we might wish that this prediction does not hinge on educational attainment. For630

the census data, the model does not satisfy equality of opportunity when A indicates whether an631

individual has an optical issues, and Y indicates whether they are covered by public insurance.632

Admittedly, this example is somewhat less normative than the other. It is unclear whether we should633

expect perfect equality of opportunity in this context. However, we emphasize that our experiments634

are for illustrative purposes only. They are not meant as comments on the actual fairness or unfairness635

of these datasets. We interface with the census by means the folktables package [51].636

For the credit default dataset and random forest classifier, we have � = |µ0 � µ1| = 0.034, and637

� = 0.09 for the census data. To construct the fair model (in order to test the null), we add � to638

the model predictions of the group with the lower mean. Thus, the distributions of predictions are639

different but the means are identical.640

Figure 4 follows similar experimental logic, but we begin with a fair model (i.e., group predictions641

with the same mean), and then switch to the unfair random forest classifier at time t = 400.642
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