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1 APPENDIX

1.1 EXPERIMENTAL DETAILS

We performed all RL-crossover and RL-mutation training on a single NVIDIA GeForce RTX 3090
GPU (24 GB). The remaining components of our framework (excluding RL) were executed on an
Intel® Xeon® Gold 6230 CPU @ 2.10 GHz with 256 GB of RAM. The RL policies utilized the
AdamW optimizer Loshchilov & Hutter with a learning rate of 3e− 4.

The code of RL-GFM is builded upon the codebase provided by Verhellen et al. Verhellen (2022).
The code of fragment-masked part follows the code outlined by Li et al. Li et al. (2024), while our
experimental scripts are adapted from Lee et al. Lee et al. (2022; 2023) and Gao et al. Gao et al.
(2022). The RL policies use the AdamW optimizer Loshchilov & Hutter with a learning rate of
3e− 4.

1.2 HYPERPARAMETER SENSITIVITY ANALYSIS

To validate the robustness of key hyperparameters and provide guidance for practical adoption, we
analyze their impacts.

Grid Partition Settings. For the grid partition count in the grid-based crossover operator of RL-
GFM, we adopt the configuration of 5M , where M denotes the number of optimization objectives.
This design is primarily supported by the experimental insights reported by Yang et al. (Yang et al.,
2013), which indicate that the number of grid partitions exhibits a strong correlation with the number
of objectives. Specifically, when the number of objectives is set to 3, the performance discrepancies
observed across partition counts ranging from 5 to 20 are negligible—a finding that is consistent with
the results of our own experimental validation. Furthermore, a critical drawback of adopting 10-way
or higher partitioning strategies must be emphasized: such configurations tend to result in sparse
grid structures. This sparsity not only compromises the diversity of parent selection and pairing (a
key factor influencing the exploration capability of evolutionary algorithms) but also significantly
increases the computational overhead associated with the parent pairing process. To balance opti-
mization performance, population diversity, and computational efficiency, we ultimately determine
5-way partitioning as the optimal choice for the grid-based crossover operator.

Decay Coefficient k. The sigmoid-type decay coefficient k = 0.001 (see Equation 3) acts as a
critical regulatory parameter to achieve balanced optimization between the PMO score and SA. Es-
sentially, the value of k directly determines the weight of SA in the evaluation function, presenting
a negative correlation between the magnitude of k and the priority of SA in the overall optimization
objectives. Specifically, when users demand enhanced SA performance, the k value can be adjusted
to a smaller scale (e.g., k = 0.0005. This adjustment accelerates the decay rate of the weight fac-
tor λ in the sigmoid function: as λ decays rapidly, its contribution to the PMO score’s weight in the
evaluation function is effectively reduced, thereby proportionally enhancing the relative contribution
of SA to the overall objective function. This mechanism ensures the optimization process prioritizes
SA improvement without compromising the basic structural properties reflected by the PMO score.
Notably, this tunable design of k endows the proposed evaluation function with significant flexibility.
It allows adaptive adjustment of molecular property priorities to match diverse application scenarios
oriented tasks. Such flexibility effectively expands the applicability of the evaluation framework in
multi-objective molecular optimization.
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Table 1: Statistical analysis of top-10 PMO AUC scores: mean ± standard deviation over three
independent runs (best in bold).

Oracle RL-GFM (ours) f-RAG Genetic-GFN Mol-GA REINVENT

albuterol similarity 0.995 ± 0.000 0.977 ± 0.002 0.949 ± 0.010 0.896 ± 0.035 0.882 ± 0.006
amlodipine mpo 0.788 ± 0.003 0.749 ± 0.019 0.761 ± 0.019 0.688 ± 0.039 0.635 ± 0.035
celecoxib rediscovery 0.811 ± 0.018 0.778 ± 0.007 0.802 ± 0.029 0.567 ± 0.083 0.713 ± 0.067
deco hop 0.951 ± 0.001 0.936 ± 0.011 0.733 ± 0.109 0.649 ± 0.025 0.666 ± 0.044
drd2 0.995 ± 0.000 0.992 ± 0.000 0.974 ± 0.006 0.936 ± 0.016 0.945 ± 0.007
fexofenadine mpo 0.866 ± 0.002 0.856 ± 0.016 0.856 ± 0.039 0.825 ± 0.019 0.784 ± 0.006
gsk3b 0.980 ± 0.001 0.969 ± 0.003 0.881 ± 0.042 0.843 ± 0.039 0.865 ± 0.043
isomers c7h8n2o2 0.947 ± 0.000 0.955 ± 0.008 0.969 ± 0.003 0.878 ± 0.026 0.852 ± 0.036
isomers c9h10n2o2pf2cl 0.949 ± 0.025 0.850 ± 0.005 0.897 ± 0.007 0.865 ± 0.012 0.642 ± 0.054
jnk3 0.793 ± 0.007 0.904 ± 0.004 0.764 ± 0.069 0.702 ± 0.123 0.783 ± 0.023
median1 0.398 ± 0.000 0.340 ± 0.007 0.379 ± 0.010 0.257 ± 0.009 0.356 ± 0.009
median2 0.357 ± 0.001 0.323 ± 0.005 0.294 ± 0.007 0.301 ± 0.021 0.276 ± 0.008
mestranol similarity 0.939 ± 0.000 0.671 ± 0.021 0.708 ± 0.057 0.591 ± 0.053 0.618 ± 0.048
osimertinib mpo 0.878 ± 0.007 0.866 ± 0.009 0.860 ± 0.008 0.844 ± 0.015 0.837 ± 0.009
perindopril mpo 0.682 ± 0.013 0.681 ± 0.017 0.595 ± 0.014 0.547 ± 0.022 0.537 ± 0.016
qed 0.943 ± 0.000 0.939 ± 0.001 0.942 ± 0.000 0.941 ± 0.001 0.941 ± 0.000
ranolazine mpo 0.716 ± 0.002 0.820 ± 0.016 0.819 ± 0.018 0.804 ± 0.011 0.760 ± 0.009
scaffold hop 0.628 ± 0.018 0.576 ± 0.014 0.615 ± 0.100 0.527 ± 0.025 0.560 ± 0.019
sitagliptin mpo 0.642 ± 0.000 0.601 ± 0.011 0.634 ± 0.039 0.582 ± 0.040 0.021 ± 0.003
thiothixene rediscovery 0.642 ± 0.001 0.584 ± 0.009 0.583 ± 0.034 0.519 ± 0.041 0.534 ± 0.013
troglitazone rediscovery 0.527 ± 0.008 0.448 ± 0.017 0.511 ± 0.054 0.427 ± 0.031 0.441 ± 0.032
valsartan smarts 0.979 ± 0.003 0.627 ± 0.058 0.135 ± 0.271 0.000 ± 0.000 0.178 ± 0.358
zaleplon mpo 0.591 ± 0.008 0.486 ± 0.004 0.552 ± 0.033 0.519 ± 0.029 0.358 ± 0.062

Sum 18.007 16.928 16.213 14.708 14.196

Oracle Graph-GA SELFIES-
REINVENT GP-BO STONED LSTM-HC

albuterol similarity 0.838 ± 0.016 0.826 ± 0.030 0.898 ± 0.014 0.745 ± 0.076 0.719 ± 0.018
amlodipine mpo 0.661 ± 0.020 0.607 ± 0.014 0.583 ± 0.044 0.608 ± 0.046 0.593 ± 0.016
celecoxib rediscovery 0.630 ± 0.097 0.573 ± 0.043 0.723 ± 0.053 0.382 ± 0.041 0.539 ± 0.018
deco hop 0.619 ± 0.004 0.631 ± 0.012 0.629 ± 0.018 0.611 ± 0.008 0.826 ± 0.017
drd2 0.964 ± 0.012 0.943 ± 0.005 0.923 ± 0.017 0.913 ± 0.020 0.919 ± 0.015
fexofenadine mpo 0.760 ± 0.011 0.741 ± 0.002 0.722 ± 0.005 0.797 ± 0.016 0.725 ± 0.003
gsk3b 0.788 ± 0.070 0.780 ± 0.037 0.851 ± 0.041 0.668 ± 0.049 0.839 ± 0.015
isomers c7h8n2o2 0.862 ± 0.065 0.849 ± 0.034 0.680 ± 0.117 0.899 ± 0.011 0.485 ± 0.045
isomers c9h10n2o2pf2cl 0.719 ± 0.047 0.733 ± 0.029 0.469 ± 0.180 0.805 ± 0.031 0.342 ± 0.027
jnk3 0.553 ± 0.136 0.631 ± 0.064 0.564 ± 0.155 0.523 ± 0.092 0.661 ± 0.039
median1 0.294 ± 0.021 0.355 ± 0.011 0.301 ± 0.014 0.266 ± 0.016 0.255 ± 0.010
median2 0.273 ± 0.009 0.255 ± 0.005 0.297 ± 0.009 0.245 ± 0.032 0.248 ± 0.008
mestranol similarity 0.579 ± 0.022 0.620 ± 0.029 0.627 ± 0.089 0.609 ± 0.101 0.526 ± 0.032
osimertinib mpo 0.831 ± 0.005 0.820 ± 0.003 0.787 ± 0.006 0.822 ± 0.012 0.796 ± 0.002
perindopril mpo 0.538 ± 0.009 0.517 ± 0.021 0.493 ± 0.011 0.488 ± 0.011 0.489 ± 0.007
qed 0.940 ± 0.000 0.940 ± 0.000 0.937 ± 0.000 0.941 ± 0.000 0.939 ± 0.000
ranolazine mpo 0.728 ± 0.012 0.748 ± 0.018 0.735 ± 0.013 0.765 ± 0.029 0.714 ± 0.008
scaffold hop 0.517 ± 0.007 0.525 ± 0.013 0.548 ± 0.019 0.521 ± 0.034 0.533 ± 0.012
sitagliptin mpo 0.433 ± 0.075 0.194 ± 0.121 0.186 ± 0.055 0.393 ± 0.083 0.066 ± 0.019
thiothixene rediscovery 0.479 ± 0.025 0.495 ± 0.040 0.559 ± 0.027 0.367 ± 0.027 0.438 ± 0.008
troglitazone rediscovery 0.390 ± 0.016 0.348 ± 0.012 0.410 ± 0.015 0.320 ± 0.018 0.354 ± 0.016
valsartan smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon mpo 0.346 ± 0.032 0.333 ± 0.026 0.221 ± 0.072 0.325 ± 0.027 0.206 ± 0.006

Sum 13.751 13.471 13.156 13.024 12.223

1.3 NSGA-II SELECTOR

The NSGA-II (Deb et al., 2002) selector operates through three synergistic components to navigate
multi-objective optimization landscapes:

• Fast non-dominated sorting (Algorithm 1) establishes hierarchical Pareto frontiers by itera-
tively categorizing solutions based on dominance relationships. Each solution’s domination
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count—the number of solutions superior in all objectives—and dominated set—solutions
it outperforms—determine frontier membership. Solutions with zero domination counts
form the first Pareto front, after which the algorithm recursively updates domination counts
to construct subsequent fronts. This stratification prioritizes solutions closer to the true
Pareto front while maintaining hierarchical selection pressure.

• Crowding distance computation (Algorithm 2) preserves diversity within each front by
quantifying solution density in objective space. After sorting solutions along each objec-
tive axis, the metric calculates normalized distances between adjacent neighbors, assigning
infinite values to boundary solutions. This ensures retention of extreme performers while
promoting exploration of sparsely populated regions. Solutions with larger crowding dis-
tances receive priority during selection, effectively balancing convergence and diversity.

• The evolutionary workflow integrates these mechanisms through elitist population manage-
ment. Parent and offspring populations merge before non-dominated sorting categorizes all
solutions into Pareto fronts. Selection progresses front-by-front, starting with the highest-
ranked solutions. When a front exceeds remaining population slots, crowding distance
resolves the overflow by retaining the most spatially dispersed solutions. This dual strat-
egy simultaneously advances the population toward optimality and prevents clustering in
local optima, particularly crucial for molecular optimization where competing objectives
like bioactivity and synthesizability require careful trade-offs.

Algorithm 1 Fast Nondominated Sorting Approach of NSGA-II
Input: Population P
Output: Ranking nondominated solution set F

1: for each q ∈ P
2: Sp = ∅
3: np = 0
4: for each q ∈ P
5: if (p < q) then If p dominates q
6: Sp = Sp ∪ {q} Add q to the set of solutions

dominated by p
7: else if (q < p) then
8: np = np + 1
9: if np = 0 then p belong to the first front

10: prank = 1
11: F1 = F1 ∪ {p}
12: i = 1 Initialize the front counter
13: while Fi ̸= ∅
14: Q = ∅ Used to store the member of the next front
15: for each p ∈ Fi

16: for each q ∈ Sp

17: nq = nq − 1
18: if nq = 0 then q belongs to the next front
19: qrank = i+ 1
20: Q = Q ∪ {q}
21: i = i+ 1
22: Fi = Q

1.4 DETAILED PMO AUC SCORE RESULTS

This section provides the complete numerical data1 that supports the analysis presented in the main
text. Table 1 lists the detailed statistical results for the top-10 PMO AUC scores. The values are
reported as the mean± standard deviation over three independent runs. To facilitate comparison, the
best-performing score for each case is highlighted in bold.

1The results are taken from (Lee et al., 2024).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 2 Crowding-distance Calculation of NSGA-II
Input: Population P
Output: Ranking nondominated solution set F

1: l = |P | number of solutions in P
2: for each i ∈ {1, 2, . . . , l}
3: set Ci = 0 initial distance
4: for each objective fm
5: P = sort (P , fm) sort using each objective value
6: C1 = Cl = ∞ so that boundary points are always selected
7: for i = 2 to (l − 1) for all other points
8: Ci = Ci +

fm(Pi+1)−fm(Pi−1)
fmax
m −fmin

m
fmax
m and fmin

m denote the
maximum and minimum
values of the fm

Figure 1: Operator Contribution and AUC Top 10 Performance on the Albuterol Similarity Task
Across Generations. The x-axis represents the generation number, ranging from 0 to 200. The y-axis
(left) represents the count of the different operators applied to the population: grid-based fragment-
masked crossover (Grid), RL-based crossover (Crossover), RL-based mutation (Mutation). The
y-axis (right) measures the Top-10 AUC score.

1.5 OPERATOR CONTRIBUTION ANALYSIS

The Figure 1 illustrates the results of the Albuterol Similarity task, showing the evolution of the
population of molecules over 200 generations. The selection of offspring after each iteration is based
on the NSGA-II selector, with various genetic operators contributing differently to the population.
The plot tracks the frequency of each genetic operator used (Grid-based fragment-masked crossover,
RL-based Mutation, and RL-based Crossover) as well as the corresponding AUC Top 10 score for
the top candidates at each generation.

In the first few generations, the grid-based operator dominates (blue line), possibly helping to di-
versify the population. As the algorithm progresses, the mutation operator (green line) takes a
more prominent role, indicating that introducing genetic variation is essential for the ongoing search
for optimal solutions. During the mid-to-late stages, mutation and crossover operators continue to
dominate, with the frequency of the grid-based operator tapering off. This shift suggests that as
the population becomes more refined, the mutation and crossover operators are more effective in
fine-tuning the candidates, improving the overall fitness of the population. The AUC Top 10 score
steadily improves throughout the generations, reflecting the effectiveness of the applied operators in
refining the population’s performance. This suggests that the combination of mutation, crossover,
and initial diversity from the grid operator facilitates the evolution of high-quality candidates over
time.
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1.6 TIME COMPLEXITY ANALYSIS

In each generation, the computational complexity of RL-GFM can be decomposed into three prin-
cipal components. The foremost contributor is the NSGA-II backbone—comprising fast non-
dominated sorting and subsequent crowding-distance assignment—whose cost scales as O(MN2),
with N denoting population size and M the number of objectives. The second component is the
grid-based ideal-point pairing module, which projects each of the N individuals into a 5M -cell
hyper-grid to identify both local and global ideal points, incurring O(NM) complexity. Finally,
the RL-guided variation operators introduce only constant overhead per individual: crossover poli-
cies are trained over a fixed candidate pool of size N , while mutation evaluates candidate solutions
against a static library of R = 89 SMART reaction rules. Moreover, the RL component serves
solely to accelerate the evolutionary algorithm’s search process and does not engage in modeling the
molecular distribution space; consequently, unlike many deep-learning–based methods, it does not
require large-scale pretraining datasets (e.g., ZINC250k, comprising 250 000 molecules), thereby
achieving substantially higher efficiency. Consequently, the dominant per-generation cost remains
O(MN2), and over G generations the total computational cost is O(GMN2), thus retaining the
asymptotic efficiency of vanilla NSGA-II while embedding policy-driven operators at negligible
extra expense.
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