
Published as a conference paper at ICLR 2025

AGENTTREK : AGENT TRAJECTORY SYNTHESIS
VIA GUIDING REPLAY WITH WEB TUTORIALS

Yiheng Xu∗♠ Dunjie Lu∗♠ Zhennan Shen∗♠ Junli Wang♠ Zekun Wang♠

Yuchen Mao♠ Caiming Xiong♣ Tao Yu♠
♠University of Hong Kong ♣Salesforce Research
♠{yhxu,tyu}@cs.hku.hk ♣cxiong@salesforce.com
https://agenttrek.github.io

ABSTRACT

Graphical User Interface (GUI) agents can automate complex tasks across digital
environments, but their development is hindered by the scarcity of high-quality
trajectory data for training. Existing approaches rely on expensive human anno-
tation, making them unsustainable at scale. We propose AgentTrek, a scal-
able data synthesis pipeline that generates web agent trajectories by leveraging
publicly available tutorials. Our three-stage method: (1) automatically harvests
and filters tutorial-like texts from the internet using a specialized classification
model, (2) transforms these texts into structured task specifications with step-by-
step instructions, and (3) employs a visual-language model (VLM) agent to exe-
cute these instructions in real environments, while a VLM-based evaluator verifies
trajectory correctness. The synthesized trajectories encompass multiple modali-
ties, including text-based HTML observations with function-calling API actions,
and vision-based screenshot observations with pixel-level actions. This multi-
modal data, enriched with chain-of-thought reasoning, enables agents to achieve
state-of-the-art performance on both textual web browsing benchmarks (e.g., We-
bArena) and visual web grounding and browsing benchmarks (e.g., ScreenSpot
Web and Multimodal Mind2Web). Furthermore, our fully automated approach
significantly reduces data collection costs, achieving a cost of just $0.55 per high-
quality trajectory without human annotators. Our work demonstrates that guided
replay using web tutorials is a practical and scalable strategy for training advanced
GUI agents, paving the way for more capable and autonomous digital assistants.

1 INTRODUCTION

Figure 1: Our Agent Trajectory Schema

Graphical User Interfaces (GUIs) serve as the
primary medium for human-computer interaction
across digital platforms. Automating these inter-
faces through intelligent agents promises significant
productivity gains by enabling autonomous tasks
completion using human-centric tools. This automa-
tion also creates opportunities for AI systems to
learn from interactive digital environments.

Recent advancements in large language models
(LLMs) have demonstrated remarkable capabilities
in understanding, reasoning, and decision-making
skills for GUI agents operating across web (Zheng
et al., 2024), desktop (Xie et al., 2024), and mo-
bile applications (Zhang et al., 2023). Despite these
breakthroughs, GUI agents still perform subopti-
mally in real-world scenarios. This limitation stems from a fundamental mismatch: contemporary

∗Equal contribution

1

https://agenttrek.github.io


Published as a conference paper at ICLR 2025

Figure 2: Overview of the AgentTrek Pipeline: Our three-stage approach consists of: (1) Au-
tomatic Tutorial Collection: We extract and filter tutorial data from internet sources using heuristic
methods and a FastText classifier, then transform raw text into structured tutorials using LLMs. (2)
Guided Replay for Trajectory Generation: A VLM agent executes these tutorials in real web en-
vironments while we collect high-quality trajectory data (observations, reasoning, and actions). A
separate VLM evaluator assesses trajectory quality to ensure effectiveness. (3) Model Training: The
collected trajectories are used to train and fine-tune GUI agent models, which demonstrate signifi-
cant performance improvements across standard benchmarks.

LLMs are primarily trained on datasets optimized for generating informative responses (Ouyang
et al., 2022; OpenAI, 2024), not for making the complex, sequential decisions required for GUI in-
teraction. These decisions demand long-term observation, historical context integration, and precise
action grounding—capabilities that require specialized training with multi-step trajectory data.

High-quality agent trajectories comprise several critical elements: a high-level goal, interleaved
observations, natural language reasoning, and grounded actions (as shown in Figure 1). Unlike
text or images, such data is scarce online because it requires complex situational reasoning and
multimodal interactivity. Current approaches predominantly rely on human annotation to collect
these trajectories (Deng et al., 2024; Rawles et al., 2023; Li et al., 2024)—a process that is both
costly and inherently unscalable.

To address this data scarcity challenge, data synthesis has emerged as a vital approach in AI de-
velopment. However, synthesizing agent trajectories presents unique difficulties due to the need
for seamlessly integrated natural language instructions, visual observations, and context-specific ac-
tions that must be accurately grounded in GUI environments. While LLMs have shown promise in
data synthesis pipelines (Ye et al., 2022; Peng et al., 2023; Qin et al., 2023), the multimodal and
interactive nature of GUI trajectory synthesis remains particularly challenging.

In this work, we present AgentTrek, a scalable GUI agent trajectory synthesis pipeline. Our ap-
proach begins by automatically harvesting and filtering tutorial-like text from the web that describes
GUI tasks and workflows. These tutorials are then transformed into structured agent tasks with
high-level objectives and detailed step-by-step instructions. Using a visual-language model (VLM)
agent, we execute these tasks in real environments, guided by the synthesized tutorials. An evaluator
model subsequently verifies goal achievement, ensuring data quality. Through this comprehensive
pipeline, we efficiently generate a large corpus of high-quality web agent trajectories.

Our experimental results demonstrate that models trained with synthesized trajectories significantly
improve performance. Compared to traditional human-annotated data pipelines, our method is more
cost-effective, highlighting the scalability and economic viability of the AgentTrek approach.

• We introduce AgentTrek, a fully automated pipeline that transforms web tutorials into high-
quality agent trajectories at scale, bridging the critical gap between LLM capabilities and the
complex, multi-step training data required for effective GUI agents.

• Our comprehensive experiments demonstrate that agents trained with AgentTrek’s synthe-
sized data significantly outperform those trained on existing datasets across multiple bench-
marks, showing marked improvements in both textual and visualweb browsing capabilities.

• We achieve a cost-per-trajectory of just $0.551 while maintaining high data quality, establishing
a new paradigm for scalable, cost-effective GUI agent training data synthesis.

2



Published as a conference paper at ICLR 2025

Table 1: Comparison of AgentTrek with other trajectory datasets for training. For the calcula-
tion of dataset size and average steps, see Appendix A.

Datasets Size Average
Steps HTML AxTree Intermediate

Reasoning Video Matching
Screenshot Website Task Inst.

Level
RUSS 80 5.4 Yes No No No No 22 Low

ScreenAgent 203 4.3 No No Yes No Yes - High & Low
WebLINX 969 18.8 Yes No No No Yes 155 High & Low

MM-Mind2Web 1009 7.3 Yes No No No No 137 High
GUIAct 2482 6.7 No No No No Yes 121 High

AgentTrek (Ours) 10398 12.1 Yes Yes Yes Yes Yes 127 High & Low

2 METHOD

We present AgentTrek, a comprehensive pipeline for collecting and synthesizing high-quality
agent trajectories from web tutorials. Our approach addresses the critical challenge of training data
scarcity for GUI agents through a systematic three-stage process (Figure 2):

1. Automatic Tutorial Collection and Processing: We harvest web interaction tutorials from
large-scale internet corpora, applying multi-stage filtering and standardization to identify
and structure relevant content.

2. Guided Replay for Trajectory Synthesis: We deploy a VLM agent to execute these struc-
tured tutorials in real web environments, recording multimodal observations, reasoning
chains, and actions to create comprehensive trajectories.

3. Agent Model Training: We leverage the synthesized trajectories to train both text-based
and vision-based web agents, enhancing their ability to navigate and interact with complex
web interfaces.

This end-to-end approach enables efficient, scalable generation of high-quality training data without
extensive human annotation, significantly reducing the cost and effort.

2.1 AUTOMATIC TUTORIALS COLLECTION FROM INTERNET

As illustrated in Figure 3, the first stage of our pipeline transforms vast amounts of web content
into structured, high-quality tutorials suitable for agent training. We extract web interaction tutorials
from the RedPajama dataset (Computer, 2023) through a four-step process: pre-filtering, LLM-
based labeling, FastText classification, and standardization.

Figure 3: Overview of the tutorial filtering and classification pipeline. Starting with RedPajama,
the data undergoes pre-filtering based on keywords and structural features. A subset is then anno-
tated by an advanced LLM to create training data for a FastText classifier. This classifier further
refines the dataset, after which the selected tutorials are transformed into a standardized format with
task descriptions, prerequisites, and step-by-step instructions.

3



Published as a conference paper at ICLR 2025

Figure 4: The data flow during the early stages of our pipeline.

2.1.1 PREFILTER FUNCTION

Although GUI tutorials are widespread online, they represent a small fraction of web content, neces-
sitating efficient pre-filtering. We developed a rule-based filter identifying potential tutorials based
on: (1) Keyword Matching of action verbs (e.g., ”click,” ”type”), UI elements (e.g., ”button,”
”menu”), and platform terms (e.g., ”macOS,” ”Windows”); (2) Length Analysis with thresholds
(200-5000 words) to exclude overly brief or lengthy content; and (3) URL Format Evaluation
prioritizing domains with tutorial-related patterns (e.g., ”how-to,” ”guide”).

To validate effectiveness, we tested against 285 manually labeled samples. The pre-filter achieved
92.69% recall on positive samples while maintaining reasonable precision, reducing the dataset from
20.8 billion to 68.8 million entries as illustrated in Figure 4.

2.1.2 LLM LABELER

While the pre-filter significantly reduces the data volume, the resulting 68.8 million entries still
contain many non-tutorial texts (false positives). To further improve quality, we implemented an
LLM-based labeling approach using GPT-4O MINI. This model analyzes text content and classifies
it as either ”tutorial” or ”non-tutorial” based on structural and semantic features.

We evaluated the LLM labeler against human annotations on the validation set, where it achieved an
F1 score of 88.5%. Interestingly, in cases of disagreement between human and LLM annotations,
manual review revealed that the LLM often correctly identified tutorial content embedded within
longer texts that human annotators had missed. This suggests that GPT-4O MINI may actually out-
perform human annotators in certain aspects of tutorial identification, particularly when dealing with
mixed-content pages. The LLM labeler processed a subset of 90,000 pre-filtered entries, generat-
ing high-confidence labels that served as training data for the next stage of our pipeline. Example
prompts and classification criteria are provided in Appendix G.

2.1.3 FASTTEXT FILTER

To scale our classification approach to the full dataset of 68.8 million entries, we trained a FastText
model (Joulin et al., 2017) on the LLM-labeled data. FastText was selected for its efficiency with
large text corpora and its ability to handle out-of-vocabulary words through n-gram representations.

We constructed a training dataset from the LLM-labeled data, which contains 90,000 samples. Us-
ing a 95:5 train-test split, we trained the FastText model which achieved 89.5% F1 score on the
validation set. The trained FastText classifier processed the entire pre-filtered dataset, identifying
approximately 18.8 million deduplicated entries as likely tutorials. This represents a 72.7% reduc-
tion from the pre-filtered set while maintaining high recall of genuine tutorial content.

2.1.4 TUTORIAL STANDARDIZATION: TAG & PARAPHRASE

Following FastText-based filtering, we implement a structured standardization process to ensure tu-
torial consistency and quality. We employ GPT-4O MINI to perform dual functions of semantic
tagging and content paraphrasing, optimizing for both computational efficiency and standardiza-
tion fidelity. The model extracts and organizes content according to our predefined template struc-
ture: Platform and Target Environment (specifying operating systems and software versions),
Task Description (concise problem statement), Prerequisites (required dependencies and back-
ground knowledge), Step-by-Step Instructions (procedural guidance with command syntax), and
Expected Outcome (verification criteria and success indicators).

4



Published as a conference paper at ICLR 2025

Figure 5: Overview of the Guided Replay Pipeline. The process begins with a VLM agent re-
ceiving step-by-step tutorials. The agent then observes and interacts with real web environments,
generating actions based on both the tutorial instructions and its observations. Throughout execu-
tion, all observations, actions, and intermediate reasoning are recorded as comprehensive trajectory
data. A separate VLM evaluator assesses the final result to ensure trajectory correctness and quality.

To ensure high-quality standardization, we fine-tuned the prompting strategy using gold-standard
examples that exemplify ideal tutorial structure. This approach effectively manages tutorial length
variability while preserving critical instructional content. The standardization pipeline processes
tutorials with GPT-4O MINI at a total cost of approximately $0.89 per 1,000 entries, demonstrating
both computational and economic efficiency for large-scale tutorial processing.

2.2 TRAJECTORY DATA COLLECTION VIA GUIDED REPLAY

2.2.1 TRAJECTORY DATA SCHEMA

The trajectory data generated by our pipeline enhances an agent capabilities by integrating high-level
planning with low-level instructions and grounded operations. Each trajectory instance comprises:
(1) Task Information with comprehensive metadata including platform specifications, task descrip-
tions, prerequisites, step-by-step instructions, and expected outcomes; (2) Screenshots and Video
Recordings capturing the complete interaction sequence; (3) Reproducible Native Trace with de-
tailed technical logs via Playwright, encompassing DOM snapshots, HTML structure, network flow,
and precise action sequences; and (4) Post-processed Trajectory structured as task metadata, ob-
servations, intermediate reasoning, and action sequences for model fine-tuning.

2.2.2 GUIDED REPLAY WITH TUTORIALS

While our pipeline has successfully collected high-quality tutorials, a significant gap remains be-
tween these instructional materials and the rich trajectory data needed to train effective agent mod-
els. To bridge this gap, we implement a guided replay mechanism using BrowserGym (Drouin et al.,
2024), enabling VLM agents to execute tasks based on the standardized tutorials.

BrowserGym provides a flexible environment for web task automation within Chromium, allowing
VLM agents to perform complex web-based operations (Drouin et al., 2024). In our implementation,
agents receive tagged tutorials and a target web url, which serve as comprehensive guides through
multi-step tasks with explicit instructions and success criteria.

During execution, the agent’s observations primarily consist of viewport screenshots and the acces-
sibility tree (AXTree), deliberately excluding the full HTML structure due to its excessive size and
limited relevance for visual agents. The agent performs actions using Playwright’s API functions
such as click, select option, and clear, while our system records comprehensive traces including
target elements, precise coordinates, sequential screenshots, and DOM snapshots—all synchronized
with the agent’s documented reasoning process.

Our analysis shows that token usage averages approximately 8,027 per interaction step and 86,114
per complete task. Executing 1,000 tasks with GPT-4O-08-06 incurs a cost of approximately $215.
Detailed cost analysis is provided in Appendix C.

5



Published as a conference paper at ICLR 2025

Figure 6: Guided replay example. This example demonstrates an agent’s execution of finding the
return policy for men’s football apparel, showcasing its actions alongside the inner thoughts.

2.2.3 EVALUATION OF TRAJECTORY

While our guided replay mechanism generates substantial trajectory data, it is crucial to identify
and extract the segments that most effectively enhance agent performance. Recent research by Pan
et al. (2024) demonstrates that VLMs can effectively evaluate trajectory data by analyzing recorded
images and interaction patterns. These VLM-based evaluators offer significant advantages in scal-
ability, cost-effectiveness, and evaluation transparency. Building on this insight, we developed a
specialized VLM Evaluator to systematically assess and filter our trajectory data.

VLM Evaluator Design. We define trajectory effectiveness according to two primary criteria: (1)
adherence to the specified task instructions and (2) successful completion of all key task compo-
nents. Our evaluator employs GPT-4O as its core engine, assessing trajectories through a carefully
structured prompt. The evaluation process takes as input the task description d, the complete action
history a = {a1, a2, . . . , an}, and the agent’s inner reasoning r = {r1, r2, . . . , rn}. These ele-
ments are organized in a sequential format: {d, r1, a1, r2, a2, . . . , rn, an}, as illustrated in Figure 5.
The VLM evaluator provides a comprehensive assessment at three levels: an overall trajectory-level
evaluation, a step-by-step analysis, and identification of the earliest point of failure when applicable.

Table 2: Evaluator Accuracy Comparison

Trajectory Evaluator Acc.

Replayed Web Tutorials GPT-4o 84.0%

WebArena Results
GPT-4V 80.6%

Cap. + GPT-4 82.1%
Cap. + Mixtral 74.4%

Table 3: Cost Breakdown

Phase Cost/1k ($) Model

T&P 0.89 gpt-4o-mini
Replay 215.36 gpt-4o
Eval 3.10 gpt-4o

Total 219.35 –

Validation on Human-Annotated Set. To rigorously validate our VLM evaluator’s effectiveness,
we conducted a comprehensive human review of 1,081 trajectories, creating a gold-standard valida-
tion set comprising 558 samples with detailed human-annotated justifications.

As shown in Table 2, our VLM evaluator achieved robust performance. Notably, our detailed anal-
ysis in Appendix D reveals that the VLM evaluator frequently applies more stringent evaluation
criteria than human reviewers, demonstrating its reliability in identifying truly effective trajectories
while maintaining a conservative filtering approach.

2.3 TRAINING WITH TRAJECTORY DATA

AgentTrek autonomously collects thousands of multimodal trajectories, including screenshots,
accessibility trees, reasoning chains, and detailed actions. This comprehensive data is particularly
well-suited for fine-tuning both text-based LLMs and vision-based VLMs for web agent tasks.

6



Published as a conference paper at ICLR 2025

2.3.1 VISION-BASED WEB AGENT

The vision-based agent operates solely on visual input, eliminating dependency on underlying UI
source code. This approach offers significant efficiency advantages: high-resolution models like
Qwen2-VL process a 720p screenshot using only 1,200 tokens, compared to approximately 4,000
tokens required for HTML representation. The agent’s action space is implemented through pyau-
togui commands, which directly interact with visual UI elements based on pixel coordinates. We
develop a systematic mapping from playwright actions to pyautogui commands and implement a
pluggable action system to handle specialized interactions such as select option operations,
ensuring comprehensive coverage of web interaction patterns.

2.3.2 TEXT-BASED WEB AGENT

Our text-based agent leverages the accessibility tree (AXTree) as its primary observation source, pro-
viding a semantic understanding of web element relationships and properties. This representation
enables the agent to comprehend hierarchical structures and element attributes without processing
raw HTML. The agent executes actions through playwright commands, which offer precise control
over web elements identified within the accessibility tree. This approach excels in scenarios re-
quiring structured interaction with complex web components such as forms, dropdown menus, and
nested navigation elements, where semantic understanding of element relationships is crucial.

2.3.3 MODEL ARCHITECTURE AND TRAINING

For vision-based agents, we employ Qwen2-VL (Wang et al., 2024) with NaViT as the image en-
coder, which provides dynamic resolution support (Dehghani et al., 2023). This architecture effi-
ciently processes visual information at varying resolutions, making it particularly well-suited for
GUI tasks that require mapping user intents directly to visual elements. We fine-tune the model
using 10,000 trajectories from the AgentTrek dataset, focusing on enhancing visual grounding
capabilities and multi-step planning for complex web navigation tasks.

For text-based agents, we fine-tune Qwen2.5 LLMs (Qwen et al., 2025) at various parameter scales
(7B and 32B) using 6,000 agent trajectories from the AgentTrek dataset. These trajectories
pair accessibility tree observations with corresponding playwright actions, creating a comprehen-
sive training signal for web interaction. The fine-tuning process significantly enhances the model’s
ability to interpret structured web representations, reason about element relationships, and gener-
ate contextually appropriate actions based on textual cues, resulting in improved task planning and
execution capabilities across diverse web environments.

3 EXPERIMENTS

We demonstrate the effectiveness of our approach by evaluating agents trained on AgentTrek data
across multiple established benchmarks.

3.1 EXPERIMENTAL SETUP

Text-based Web Agent Evaluation. To assess our text-based agent’s capabilities, we use We-
bArena (Zhou et al., 2023) as our primary benchmark. WebArena simulates realistic web environ-
ments based on actual websites, providing a comprehensive evaluation framework with multiple
virtual environments and diverse assessment methods. This benchmark is particularly suitable for
evaluating real-world task completion capabilities due to its focus on practical web interactions.

Vision-based Web Agent Evaluation. To validate the effectiveness of our dataset for vision-based
agents, we evaluate performance improvements on two benchmarks. First, ScreenSpot (Cheng
et al., 2024) provides a GUI visual grounding benchmark containing 1,200 instructions with target
element bounding boxes across mobile, desktop, and web environments. We focus specifically
on web-based performance to align with our dataset’s domain. Second, Multimodal-Mind2Web
(Deng et al., 2024; Zheng et al., 2024) extends the Mind2Web benchmark to evaluate generalization
across three increasingly challenging settings: cross-task, cross-website, and cross-domain.

7



Published as a conference paper at ICLR 2025

3.2 MAIN RESULTS

Table 4: Comparison of task success rate on We-
bArena

Model WebArena
LLaMa3-chat-8B (Ou et al., 2024) 3.32
Qwen2.5-7B-Instruct 3.80
LLama3-chat-70B (Ou et al., 2024) 7.02
GPT-4o (Zhou et al., 2023) 13.10
GPT-4 (Ou et al., 2024) 14.41
Synatra-CodeLlama-7B (Ou et al., 2024) 6.28
AutoWebGLM (OOD SFT) (Lai et al., 2024) 8.50

Qwen2.5-7B-Instruct w/ AgentTrek 10.46
Qwen2.5-32B-Instruct w/ AgentTrek 22.40

WebArena Results. As shown in Table 4,
fine-tuning with AgentTrek’s textual tra-
jectories yields substantial performance im-
provements. Models trained on AgentTrek
data significantly outperform both open-source
baselines and GPT-4o, demonstrating the high
quality of our synthesized trajectories. The
strong performance on WebArena—an out-of-
distribution benchmark featuring self-hosted
websites not seen during training—confirms
that AgentTrek data enables robust general-
ization to novel domains.

ScreenSpot Results. Fine-tuning Qwen2-VL with the AgentTrek dataset significantly im-
proved visual grounding capabilities. Performance more than doubled across both text-based and
icon-based tasks compared to the baseline model. The fine-tuned model surpassed several competi-
tive baselines on the ScreenSpot benchmark, highlighting AgentTrek’s effectiveness in enhancing
GUI element localization and interaction.

Table 5: Comparison of grounding performance on ScreenSpot Web Grounding

Model Text Icon/Widget Average
GPT-4 (Cheng et al., 2024) 9.2 8.8 9.0
GPT-4o (Cheng et al., 2024) 12.2 7.8 10.1
Qwen2-VL-7B 35.2 25.7 30.7
SeeClick (Cheng et al., 2024) 55.7 32.5 44.7
CogAgent (Cheng et al., 2024) 70.4 28.6 50.7
GPT-4 + OmniParser (Lu et al., 2024) 81.3 51.0 67.0

Qwen2-VL-7B w/ AgentTrek 81.7 51.5 67.4

Mind2Web Results. Our experiments on the Mind2Web reveal several important findings. The
baseline Qwen2-VL-7B model was excluded from comparison due to its insufficient grounding ca-
pabilities, which are essential for visual web agent tasks. Training with AgentTrek data sig-
nificantly enhanced model performance and the combination of AgentTrek with Mind2Web
training data yielded the strongest results across all metrics, demonstrating complementary ben-
efits: AgentTrek provides grounded interaction data, while Mind2Web contributes specialized
resources for complex web tasks. Additional details on result sources are in Appendix J.2.
Table 6: Performance comparison across different methods and evaluation settings. ’H’, ’I’, ’AT’,
’M2W’ stand for HTML, Image, AgentTrek, Mind2Web

Obs Model Method Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

HTML GPT-3.5 Choice 19.4 59.2 16.8 14.9 56.5 14.1 25.2 57.9 24.1
GPT-4 Choice 40.8 63.1 32.3 30.2 61.0 27.0 35.4 61.9 29.7

H + I GPT-4 Choice 46.4 73.4 40.2 38.0 67.8 32.4 42.4 69.3 36.8
GPT-4 SoM 29.6 - 20.3 20.1 - 13.9 27.0 - 23.7

Image

Qwen2-VL
+ AT Vision 45.5 84.9 40.9 40.8 82.8 35.1 48.6 84.1 42.1
+ M2W Vision 54.8 89.5 50.9 52.9 83.9 44.9 51.8 86.8 47.7
+ AT + M2W Vision 60.8 88.9 55.7 57.6 88.1 51.4 56.0 87.5 52.6

4 ANALYSIS

The AgentTrek pipeline produces high-quality trajectory data distinguished by three core
strengths: diversity, realism, and comprehensiveness. These attributes collectively enhance the
dataset’s utility for training GUI agents capable of handling complex, long-horizon tasks. Below,
we analyze these strengths in detail and compare our approach with existing methods.

8



Published as a conference paper at ICLR 2025

Diversity and Scale Our dataset exhibits significant diversity, encompassing a wide range of do-
mains and task types. Starting with the RedPajama corpus, we filter 23,430 tutorials, ultimately
yielding 10,398 successful trajectories across 127 websites and 11 task categories (e.g., e-commerce,
productivity, and knowledge navigation). This breadth ensures that agents trained on AgentTrek
data encounter varied scenarios, fostering robust generalization. Figure 8 illustrates the distribution
of websites and domains, highlighting the dataset’s extensive coverage.

20% 40% 60% 80% 100%

36

38

40

42

44

46

48

50

39.5%

42.5% 42.8%

44.3%
45.0%

47.7%

Data Amount (%)

St
ep

Su
cc

es
s

R
at

e
(%

)

Cross-Domain Performance Scaling

Synthesized Trajs (AgentTrek)
Human Annotated Trajs (Mind2Web)

Figure 7: Scaling performance comparison
with human-labeled data.

Effectiveness of Data Scaling To further explore
the benefits of scaling up synthetic data, we system-
atically assessed performance gains using increasing
proportions of the AgentTrek dataset. Evaluation
on the challenging Multimodal-Mind2Web bench-
mark showed steady improvements with data scal-
ing, as shown in Figure 7. In particular, the cross-
domain step success rate improved from 39.5%
(20% data) to 45.0% (100% data), clearly demon-
strating that additional synthetic trajectories enhance
model generalization to novel domains. Importantly,
when compared against the human-annotated trajec-
tory of the Mind2Web training split, which achieved
a cross-domain metric of 47.7%, our fully automated
AgentTrek dataset, even without human annota-
tion, approaches similar levels of performance as it
scales. This finding underscores that automated synthetic data generation is a viable strategy for
closing the performance gap with human-labeled data, highlighting substantial potential for future
scalability.

Realism through Authentic Environments A key advantage of AgentTrek is its reliance on
real web environments during data collection. Unlike synthetic or simplified settings, our pipeline
replays tutorials on live websites, capturing authentic interactions that mirror real-world complex-
ities. This realism is critical for training agents that must navigate dynamic, unpredictable GUIs.
Moreover, the use of internet-sourced tutorials enhances execution quality. In a controlled experi-
ment with 400 tasks, agents following detailed tutorial instructions achieved a 52% success rate (208
effective trajectories), compared to a 15.78% success rate (63 effective trajectories) when guided
only by high-level goals—a 23% improvement. This underscores the value of structured guidance
in producing actionable, high-fidelity trajectories (see Appendix B for details).

Comprehensiveness and Cost-Efficiency The AgentTrek dataset captures both strategic and
operational details, including DOM/HTML structures, AXTree snapshots, video recordings, screen-
shots, and intermediate reasoning chains. With an average of 12.1 steps per trajectory, this multi-
modal data supports training on complex, multi-step tasks. Despite its richness, our fully automated
pipeline achieves exceptional efficiency at $0.551 per trajectory. Table 3 provides a detailed cost
breakdown, with further analysis in Appendix C.

Comparison with Existing Datasets Table 1 benchmarks AgentTrek against prior work (Niu
et al., 2024; Lù et al., 2024; Deng et al., 2024; Yao et al., 2022; Song et al., 2024; Wornow et al.,
2024). Our dataset, with nearly 5,000 verified trajectories, surpasses most in scale and step complex-
ity. Its comprehensive modalities—spanning text, vision, and reasoning—set it apart from datasets
like Mind2Web (Deng et al., 2024) and WebShop (Yao et al., 2022), which focus on narrower
observation-action pairs. While fully automated, AgentTrek maintains diversity and realism, ad-
dressing scalability limitations of human-annotated datasets at a fraction of the cost.

Research Challenges Generating large-scale trajectory data poses challenges, including ensuring
data quality, handling noisy web content, and adapting to evolving GUIs. AgentTrek mitigates
these through robust filtering (FastText and LLM classification), structured standardization, and
VLM-based evaluation. However, future work could explore dynamic adaptation to website changes
and broader task coverage beyond the current 11 categories.

9



Published as a conference paper at ICLR 2025

Figure 8: Distribution of websites and domains in the AgentTrek dataset, showcasing its diversity
across 127 websites and 11 task categories.

5 RELATED WORK

5.1 LLM-BASED AGENTS

Large language models (LLMs) have driven significant progress in autonomous GUI agents, en-
abling them to interpret natural language instructions and execute complex tasks across web (Nakano
et al., 2021), desktop, and mobile environments (Zheng et al., 2024; He et al., 2024). Projects like
SeeAct (Zheng et al., 2024) and WebVoyager (He et al., 2024) exemplify efforts to generalize agent
behavior to real-world interfaces. However, these agents often struggle with sequential decision-
making due to a lack of specialized trajectory data. AgentTrek addresses this gap by synthesizing
multimodal trajectories that enhance LLM-based agents’ navigation and interaction capabilities, ad-
vancing their practical utility.

5.2 AGENT TRAJECTORY DATA

The growing adoption of GUI agents has intensified the need for scalable training data. Existing
datasets and benchmarks, such as WebArena (Zhou et al., 2023), Mind2Web (Deng et al., 2024), and
WebShop (Yao et al., 2022) rely heavily on human annotation, limiting their scale and adaptability.
Recent efforts like BAGEL (Murty et al., 2024) and NNetNav (Murty et al., 2025) propose synthetic
trajectory generation to overcome these constraints. AgentTrek builds on this trend, offering
a fully automated pipeline that produces diverse, realistic trajectories at a low cost ($0.551 per
trajectory), outperforming human-dependent approaches in scalability and efficiency.

5.3 AUTOMATED EVALUATION OF DIGITAL AGENTS

Automated evaluation is increasingly critical for assessing agent performance. Vision-language
models (VLMs) and LLMs have emerged as powerful tools, analyzing trajectories at the task
level (Pan et al., 2024) and step-by-step adherence to instructions (Wornow et al., 2024). These
methods span diverse environments, including web platforms and mobile OS (Pan et al., 2024). In
AgentTrek, we leverage GPT-4o as a VLM evaluator, assessing trajectories based on task descrip-
tions, actions, and reasoning chains. This approach ensures scalable, transparent quality control,
aligning with state-of-the-art practices while supporting our pipeline’s automation goals.

6 CONCLUSION

In this work, we introduce AgentTrek, an efficient pipeline designed to automatically generate
comprehensive and cost-effective agent trajectory data. Additionally, we present a large and diverse
dataset generated using this approach, which we validate by training models and evaluating their
performance with promising result.Our research establishes a novel and promising direction for the
future development of LLM agent, particularly in the automatic and low-cost synthesis of trajectory
data. AgentTrek serves as a strong standard for agent data generation, setting the stage for future
advancements in this field.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This paper’s authors received support from the ECS (27212023) provided by the RGC of Hong
Kong.

REFERENCES

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. ArXiv preprint,
abs/2401.10935, 2024. URL https://arxiv.org/abs/2401.10935.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver,
Piotr Padlewski, Alexey Gritsenko, Mario Lučić, and Neil Houlsby. Patch n’ pack: Navit, a
vision transformer for any aspect ratio and resolution, 2023. URL https://arxiv.org/
abs/2307.06304.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam Hadj Laradji, Manuel Del Verme, Tom
Marty, L’eo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks? ArXiv preprint, abs/2403.07718, 2024. URL https://arxiv.org/abs/2403.
07718.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
ArXiv preprint, abs/2401.13919, 2024. URL https://arxiv.org/abs/2401.13919.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. In Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 2, Short Papers. Association for Computational
Linguistics, 2017. URL https://aclanthology.org/E17-2068.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based
web navigating agent, 2024. URL https://arxiv.org/abs/2404.03648.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents, 2024. URL https:
//arxiv.org/abs/2406.03679.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue, 2024.

Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel: Boot-
strapping agents by guiding exploration with language, 2024. URL https://arxiv.org/
abs/2403.08140.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsupervised
learning of browser agents through environment interaction in the wild, 2025. URL https:
//arxiv.org/abs/2410.02907.

11

https://arxiv.org/abs/2401.10935
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2307.06304
https://arxiv.org/abs/2307.06304
https://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2401.13919
https://aclanthology.org/E17-2068
https://arxiv.org/abs/2404.03648
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2408.00203
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2410.02907


Published as a conference paper at ICLR 2025

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-
assisted question-answering with human feedback. ArXiv preprint, abs/2112.09332, 2021. URL
https://arxiv.org/abs/2112.09332.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. 2024.

OpenAI. Gpt-4v(ision) system card, 2024. URL https://openai.com/research/
gpt-4v-system-card.

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale, 2024. URL https://arxiv.org/abs/2409.
15637.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv preprint, abs/2203.02155, 2022. URL https://arxiv.org/abs/2203.02155.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. ArXiv preprint, abs/2404.06474, 2024. URL https:
//arxiv.org/abs/2404.06474.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. ArXiv preprint, abs/2304.03277, 2023. URL https://arxiv.org/abs/2304.
03277.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/
abs/2307.10088.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error:
Exploration-based trajectory optimization for llm agents. 2024.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Ke-Yang Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. ArXiv preprint, abs/2409.12191, 2024. URL https:
//arxiv.org/abs/2409.12191.

Michael Wornow, Avanika Narayan, Ben Viggiano, Ishan S. Khare, Tathagat Verma, Tibor Thomp-
son, Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla,
Rongfei Lu, Justin Shen, Divya Nagaraj, Joshua Martinez, Vardhan Agrawal, Althea Hud-
son, Nigam H. Shah, and Christopher Re. Do multimodal foundation models understand en-
terprise workflows? a benchmark for business process management tasks. ArXiv preprint,
abs/2406.13264, 2024. URL https://arxiv.org/abs/2406.13264.

12

https://arxiv.org/abs/2112.09332
https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2406.13264


Published as a conference paper at ICLR 2025

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. ArXiv preprint, abs/2404.07972,
2024. URL https://arxiv.org/abs/2404.07972.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun yue Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. ArXiv preprint, abs/2310.11441,
2023. URL https://arxiv.org/abs/2310.11441.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35, 2022.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng
Kong. ZeroGen: Efficient zero-shot learning via dataset generation. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics, 2022. URL https://aclanthology.org/2022.emnlp-main.801.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. ArXiv preprint, abs/2401.01614, 2024. URL https://arxiv.org/abs/
2401.01614.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. ArXiv preprint, abs/2307.13854, 2023. URL https://arxiv.org/
abs/2307.13854.

13

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2310.11441
https://aclanthology.org/2022.emnlp-main.801
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854


Published as a conference paper at ICLR 2025

Table of Contents in Appendix

A Calculation of Other Trajectory Datasets 15

B Analysis of the Effectiveness of Tutorials 15

C Cost Details 15

D Evaluator Alignment 15

E Action Mapping 16

F Experimental Results on Textual Data 16

G Details in Collecting Tutorials 16

G.1 Prefilter Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

G.2 LLM Labeler Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

G.3 Tagging & Paraphrasing Prompt and Format . . . . . . . . . . . . . . . . . . . . . 18

H Examples of Failed Guided Replay Trajectories 20

I Scaling up AgentTrek 21

J Evaluation Benchmarks 21

J.1 GUI Grounding Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

J.2 Offline GUI Agent Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

K Detailed Description of guided replay 21

14



Published as a conference paper at ICLR 2025

A CALCULATION OF OTHER TRAJECTORY DATASETS

• RUSS: Cited based on the data provided in the table from WebLINX (Lù et al., 2024).
• ScreenAgent: Statistics obtained from the dataset available at https://github.com/
niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train.

• WebLINX: Calculated based on the train set information from Table 8 in (Lù et al., 2024)
and data on HuggingFace (excluding the ”say” actions), resulting in a total of 18,249 non-
say actions with 969 demos.

• Mind2Web: Statistics derived from https://huggingface.co/datasets/
osunlp/Mind2Web, specifically from the training subset.

• Webshop (agent-eto): Data statistics sourced from https://huggingface.co/
datasets/agent-eto/eto-sft-trajectory.

• WonderBread: Calculations based on data presented in (Wornow et al., 2024).

B ANALYSIS OF THE EFFECTIVENESS OF TUTORIALS

Key factors contributing to this improvement include:

1. Direct Access to Target URL: Tutorials provide the target URL, allowing direct access to the
initial task state, reducing errors in locating the correct webpage.

2. Assisted Planning with Human Expertise: Tutorials aid in planning by providing steps in-
formed by human experience, which tend to be reliable, thereby reducing the likelihood of
errors during task execution and bridging the gap in the agent’s knowledge for unknown tasks.

3. Navigating Multi-Level Menus: Tutorials offer clear paths to hidden elements, preventing the
agent from failing due to incorrect navigation through complex menus.

C COST DETAILS

In this part we provide the details of our cost in generating trajectory data with via our pipeline:

Phase Cost per 1,000 Entries (USD) Model Used
Tag and Paraphrase 0.886 gpt-4o-mini
Replay 215.359 gpt-4o-2024-08-06
Evaluator 3.104 gpt-4o-2024-08-06

Table 7: Cost breakdown for each phase in the process

Another two important factors are the ratio of web-related tutorials (0.275) and the Replay Success
Rate (39.9%). Using these, we can calculate the cost per verified effective trajectory as follows:

Cost per trajectory =
Tag and Paraphrase price

Web ratio
+

Replay price + Evaluate price
Replay Success Rate

The cost per 1,000 verified effective trajectories is 550.75 $.

D EVALUATOR ALIGNMENT

In this part, we provide the details of metrics between the human and automatic evaluator.

Trajectory Evaluator Accuracy
Web Tutorials VLM Evaluator 84.0%

Webarena
GPT-4V 80.6%

Captioner + GPT-4 82.1%
Captioner + Mixtral 74.4%

15

https://github.com/niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train
https://github.com/niuzaisheng/ScreenAgent/tree/main/data/ScreenAgent/train
https://huggingface.co/datasets/osunlp/Mind2Web
https://huggingface.co/datasets/osunlp/Mind2Web
https://huggingface.co/datasets/agent-eto/eto-sft-trajectory
https://huggingface.co/datasets/agent-eto/eto-sft-trajectory


Published as a conference paper at ICLR 2025

Figure 9: Confusion Matrix of our VLM evaluator’s performance on the human-annotated validation
set, compared with evaluators across different scenarios.

E ACTION MAPPING

Table 8: Mapping between Playwright and PyAutoGUI Action Spaces.

Category Playwright Action PyAutoGUI Action

Basic Actions

page.click() pyautogui.click()
page.type() pyautogui.write()
page.press() pyautogui.press()
page.hover() pyautogui.moveTo()
page.scroll() pyautogui.scroll()

Advanced Actions

page.fill() pyautogui.write() (clearing)
page.dblclick() pyautogui.doubleClick()
page.dragAndDrop() pyautogui.dragTo()

page.clear() pyautogui.click()
pyautogui.hotkey(ctrl, A)
pyautogui.press(delete)

Plugin playwright.select option() browser.select()

F EXPERIMENTAL RESULTS ON TEXTUAL DATA

To provide further supports for the effective of our AgentTrek data, we conducted an experiment to
evaluate the performance of a pure textual agent using the textual version data of our AgentTrek
trajectories. This allow us to study the contribution of textual modalities of AgentTrek.

We fine-tuned the Qwen2.5-7B-Instruct model using AgentTrek trajectories that included
accessibility tree as observations and playwright actions as the agent’s action space. We then
evaluated the model on WebArena, an OOD web agent benchmark featuring self-hosted websites.
These websites are entirely out-of-domain (OOD) from the AgentTrek dataset, ensuring that the
evaluation reflects the model’s generalization capability.

We fine-tuned Qwen2.5-7B-Instruct on AgentTrek’s textual data and achieved the following
results on WebArena and Miniwob++ as shown in Table 4. We observe that our fine-tuned model
achieves the highest performance among open-source web agents and approaches the performance
of GPT-4o, demonstrating the effectiveness of AgentTrek data in improving real-world web agent
capabilities and generalization across modalities.

G DETAILS IN COLLECTING TUTORIALS

G.1 PREFILTER FUNCTION

• Keyword Density: The web content must contain a minimum of 20 common keywords,
ensuring sufficient topic coverage.

• Keyword Diversity: The text must incorporate at least 4 distinct common keywords.

16



Published as a conference paper at ICLR 2025

System Prompt
You are an expert in evaluating the performance of a web navigation
agent. The agent is designed to help a human user navigate a website
to complete a task. Given the user’s task goal, the agent’s
trajectory, your goal is to decide whether the agent’s execution is
successful or not.

*Evaluation Criteria*
Whether the agent’s trajectory is effective and corresponding to the
goal

*Instructions*
1. Review the agent’s actions and reasoning processes step by step.
2. if the agent is stuck in the very first login stage, which means
it fails to log into target website at the beginning, that’s a
failure.
3. Determine if the agent has achieved the task goal based on the
trajectory. A task can be considered successful if most trajectory
is effective.
4. the agent sometimes can’t stop after finishing a task and
continue doing repeated actions. these actions may be some failed
attempt after a series of correct actions. the task should be
regarded as successful if the correct actions are effective and
almost reach the goal.
5. if the agent is stuck in the loop at the early stage of the task,
which means they don’t even get close to the goal before they get
stuck in the loop, that’s a failure. for example, the agent begin to
get stuck before third step.
6. when the task is to change the google account password, it can’t
be regarded as successful when agent finish at trying to click
"manage your account".
7. if there are over 8 correct action in the trajectory, it can be
regard as a successful agent.
8. final saving action is not a must. the task is successful if the
agent does most things right and just forget to save the change at
last.
9. if the original task has 2 subtasks, the agent only complete one
of them, that’s still a success. e.g. the task is to update name
and birthday, but agent only update name, that’s fine.
10. if the task is to post a review, the agent can be considered
successful when it finish writing the review and reach the step to
post it, don’t have to click the post button.
11. Since we don’t have a printer, some printing related task can be
considered successful if the agent reach the step to click print
button.
12. if the task is finished at the initial state and the agent do
nothing because of it, it should also be regarded as successful.

*IMPORTANT*
1. in the trajectory, an action always follows a corresponding
reasoning, which shows the observation and thought of the agent.
2. your response should be contain:
Thoughts: <your thoughts and reasoning process>
Status: "success" or "failure"

User Prompt
The goal of the task: {task des}
trajectory: {trajectory}

Figure 10: Prompts to query the VLM Autonomous Evaluator.

• Essential Keyword Frequency: At least one mandatory keywords must appear multiple
times (minimum twice) within the content, demonstrating topic relevance.

17



Published as a conference paper at ICLR 2025

G.2 LLM LABELER PROMPT

To achieve more precise and context-aware labeling, we designed the following prompt to guide the
LLM in further assessing whether the given URL and context meet our requirements, as illustrated
in Fig 11.

System Prompt
You are an assistant that classifies content based on specific
criteria. Your task is to evaluate whether a given piece of content
serves as a tutorial specifically related to graphical user
interfaces (GUI), such as for web applications, desktop applications,
or operating systems.

Classification Criteria
The content qualifies as a GUI-related tutorial if it meets the
following conditions:
1. It includes a task description outlining what needs to be
achieved.
2. It provides clear step-by-step instructions for interacting with
a GUI, such as:

- Step 1: Open the application
- Step 2: Navigate to the settings menu

Given the URL and context, determine if the content is a GUI-related
tutorial or not. Output ’1’ if it is a GUI-related tutorial and ’0’
if it is not. Provide only the number as the output.

User Prompt
- URL: {url}
- Context: {context}

Figure 11: User Prompt for Classifying GUI Tutorials

G.3 TAGGING & PARAPHRASING PROMPT AND FORMAT

Here we present the prompt designed to utilize LLM to help do the tagging & paraphrasing of the
identified GUI-tutorial related context.

18



Published as a conference paper at ICLR 2025

User Prompt
The following is a tutorial from the website. It may contain several
tutorials. Please extract the first tutorial only and format the
first tutorial according to the specified schema:

Text: {context}
Schema:
{

"platform":
"Platform category (choose from: macOS, Windows (Default if not

specified in the tutorial), Linux, Android, iOS)",
"target type":
"Type of platform (choose from: Web browser, PC app, Mobile app,

PC operating system, Mobile operating system, where the tutorial’s
steps are performed). Tutorials that involve interacting with the
browser software itself, such as ’opening Chrome settings,’ should be
classified as a PC app type.",

"target object":
"Specific name of the web browser or (non web browser)

applications or operating system where the tutorial’s steps are
performed (e.g., Chrome browser (Default for browser and web
tutorial), Microsoft Excel (app name), Windows system settings)",

"target web URL":
"The exact URL of the web page where the tutorial’s actions take

place, applicable only if the target object is a web browser (e.g.,
None, https://mail.google.com, https://www.amazon.com,
https://github.com). Be careful, the URL provided at the beginning
is always not the URL where the tutorial’s actions are about. For
example, a tutorial from
https://abidakon.com/how-to-make-google-slide-vertical/ about
changing Google Slides, its target web URL should be
https://docs.google.com/presentation.",

"task description":
"Task description text (Provide a concise summary in one

sentence, including essential details)",
"prerequisites":
"Prerequisite text describing necessary conditions before

starting the task",
"instructions":
[
"Step 1: Instruction text describing the action to be taken",
// Following instructions
]
"instructions steps":
"Total number of instructions steps",
"expected result":
"Text describing the expected result after following the

instructions"
}

Figure 12: User Prompt for Extracting and Formatting GUI Tutorials

19



Published as a conference paper at ICLR 2025

H EXAMPLES OF FAILED GUIDED REPLAY TRAJECTORIES

Thought:I have successfully navigated 
to https://resy.com. Now, I need to 
follow the instructions to find and 
reserve a table at a top restaurant in 
Boston for April 22. The first step is to 
click on the location field and type 
'Boston'.




Action: 

click('52')

Thought: I have successfully clicked on 
the location field button (bid 52). Now, I 
need to enter 'Boston' into this field as 
per Step 2 of the instructions. The 
location field should now be active and 
ready for input.





Action: 

fill('61', 'Boston')

Task Find and reserve a table at a top restaurant in Boston for April 22.

Step 1

**FAIL**

Step 9

Step 2

Thought: I have successfully entered 
'Boston' into the location field. The next 
step is to select the date for the 
reservation, which should be April 22. I 
need to find and click on the date field to 
open the calendar picker.






Action: 

click('159')

Step 3

Thought: I have clicked on the date field 
button (bid '159') to open the calendar 
for selecting the reservation date. The 
calendar should now be visible and 
expanded. I need to locate the button for 
April 22 and click on it to set the desired 
date for the reservation.




Action: 

click('523')

Thought: I have opened the date 
selection calendar, but it's currently 
showing October 2024. I need to 
navigate back to April 2024 to select 
April 22 for the reservation. The calendar 
doesn't seem to have a direct way to 
jump to a specific month, so I'll need to 
use the \"Previous month\" button 
multiple times to reach April 2024.



Action: 

click('517')

Step 4 Step 5

Thought: I previously clicked the \"Next 
month\" button to navigate through the 
calendar. However, I need to go back 18 
months from October 2024 to reach 
April 2024. Clicking the \"Next month\" 
button was not the correct action. I 
should look for a \"Previous month\" 
button instead.




Action: 

click('606')

Step 6

Thought: The previous action to click 
the \"Previous month\" button with bid 
\"606\" resulted in an error, indicating 
that the element could not be found. 
This suggests that the button's bid may 
have changed or the calendar view has 
been updated. I need to reassess the 
current state of the page and find an 
alternative way to navigate to April 
2024.




Action: 

click('516')

Step 7

Thought: Based on the error message, it 
seems that the \"Previous month\" 
button with bid \"516\" is not available 
on the current page. This could be 
because the calendar view has changed 
or the button's bid has been updated. I 
need to reassess the available elements 
and find an alternative way to navigate 
to April 2024.





Action: 

click('510')

Step 8

Figure 13: Replay agent was unable to complete booking before the actual date due to the tutorial
expiration.

20



Published as a conference paper at ICLR 2025

Table 9: Multimodal Mind2Web Step SR across varying amounts of training data from AgnetTrek
(AT).

Data Amount Cross-Task Cross-Website Cross-Domain

20% 36.1 35.5 39.5
40% 41.0 35.8 42.5
60% 41.6 37.2 42.8
80% 42.6 38.0 44.3
100% 42.6 37.5 45.0

I SCALING UP AGENTTREK

In this section, we further scale up the data amount of AgnetTrek (more than 10K trajectories) to
explore the effectiveness of AgentTrek in large-scale size. We trained the model using varying
proportions of the dataset (20% to 100%) and assessed its performance on Multimodal-Mind2Web
across three splits. The results are presented in Table 9. We observe that the performance improves
steadily as more data is used, with the best results achieved when using the full dataset. This
underscores the value of scaling up AgentTrek in improving model effectiveness.

J EVALUATION BENCHMARKS

In this section, we introduce more details of evaluation benchmarks used in our work.

J.1 GUI GROUNDING EVALUATION

ScreenSpot. ScreenSpot (Cheng et al., 2024) is a benchmark developed specifically for GUI
visual grounding tasks, featuring 1.2K single-step instructions along with the coordinates of target
elements. The dataset includes diverse grounding instructions tailored for mobile, desktop, and
web platforms and categorizes elements into text and icons/widgets. Two distinct assessment
scenarios are utilized: (1) Original Instructions, where models directly execute grounding actions
as per the provided instructions; and (2) Self-plan, where models are expected to formulate plans in
natural language based on the original instructions before carrying out the grounding actions.

J.2 OFFLINE GUI AGENT EVALUATION

Multimodal-Mind2Web. We evaluated the offline planning capabilities of GUI agents on
websites using the Multimodal-Mind2Web benchmark (Zheng et al., 2024), which is an extension
of the original Mind2Web benchmark (Deng et al., 2024). Performance was measured using
Element Accuracy (Ele.Acc), Operation F1 (Op.F1), and Step Success Rate (Step SR).

The GPT-3.5 and GPT-4 results for the HTML and HTML+Image observation are derived from the
SeeAct (Zheng et al., 2024) method. For the Choice method, it employs a DeBERTa-base
cross-encoder to rank the interactive elements on the current HTML page. The top 50 elements are
selected as options, and the GPT-3.5/GPT-4 model then chooses one of these elements as the
answer. For the SoM method (Yang et al., 2023; Zheng et al., 2024), it renders a new webpage
image by adding red bounding boxes and labels to every HTML node in the source code, allowing
GPT-4 to understand the webpage screenshot and identify the target action object by referring to
the labels. For the Image observation, as detailed in Section ??, we use Qwen2VL (Wang et al.,
2024) within a pure vision framework. Specifically, Qwen2VL processes only the webpage
screenshots and specifies the target action object by generating its coordinates.

K DETAILED DESCRIPTION OF GUIDED REPLAY

In this section, we detailedly describe an example of model execution in guided replay.

21



Published as a conference paper at ICLR 2025

Observation Prior to Execution Before executing any actions in the task execution process, the
model observes the current webpage within the BrowserGym environment. Each webpage provides
rich data, including its HTML structure, accessibility tree (AXTree), and screenshots. The model
uses the AXTree as the primary observation source, with each element in the AXTree uniquely
identified by a [bid]. This structured observation ensures accurate and consistent interaction:

Axtree with Element bid

[119] link ’Magento Admin Panel’
[120] image ’Magento Admin Panel’

[121] navigation ’’
[122] menubar ’’, orientation=’horizontal’
[124] link ’\ue604 DASHBOARD’
[127] link ’\ue60b SALES’
...

[614] banner ’’
[617] heading ’Dashboard’
[620] link ’\ue600 admin’
...

Figure 14: Observation Prior to Execution in Guided Replay

the information in tutorial the tutorial may provide a detailed textual description of the target
element. The model realize that the target element is menubar, which associates with bid(122)

Axtree with Element bid

Step 1: click the menubar to see the sales

Figure 15: Observation Prior to Execution in Guided Replay

the action executed When the model performs an action, it does not need to provide fine-grained
target element information such as coordinates, only the action type and the target object’s bid as
follows:

Axtree with Element bid

click(’119’)

Figure 16: Observation Prior to Execution in Guided Replay

We can retrieve the target elements in the webpage through the bid and perform corresponding
operations through playwright action.

22


	Introduction
	Method
	Automatic tutorials collection from Internet
	Prefilter Function
	LLM Labeler
	FastText Filter
	Tutorial Standardization: Tag & Paraphrase

	Trajectory Data Collection via Guided Replay
	Trajectory Data Schema
	Guided Replay with Tutorials
	Evaluation of Trajectory

	Training with Trajectory Data
	Vision-based Web Agent
	Text-based Web Agent
	Model Architecture and Training


	Experiments
	Experimental Setup
	Main Results

	Analysis
	Related Work
	LLM-Based Agents
	Agent Trajectory Data
	Automated Evaluation of Digital Agents

	Conclusion
	Calculation of Other Trajectory Datasets
	Analysis of the Effectiveness of Tutorials
	Cost Details
	Evaluator Alignment
	Action Mapping
	Experimental Results on Textual Data
	Details in Collecting Tutorials
	Prefilter Function
	LLM Labeler Prompt
	Tagging & Paraphrasing Prompt and Format

	Examples of Failed Guided Replay Trajectories
	Scaling up AgentTrek
	Evaluation Benchmarks
	GUI Grounding Evaluation
	Offline GUI Agent Evaluation

	Detailed Description of guided replay

