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Additional Material
A Proof of Theorem 1
We now prove the Theorem 1, which forms the basis for the dynamic algorithm. Before doing that,
we restate the theorem in its full version:

Theorem. Let (∇�i)
m
i=1 be a series of gradients, and, for any index i ≥ 1, let �Fi = λId +

1
m

�i
j=1 ∇�j ·∇��j be a dampened version of the empirical Fisher, where λ > 0 is a small constant.

Then �F−1
i x can be calculated as:

�F−1
i x = λ−1x−

i�

j=1

cij∇�j and cij =

i�

k=j

�
∇��k �F−1

k−1x
�

m+ [D]kk
[B]kj , (15)

where [D]kk = ∇��k �F−1
k−1∇�k, and [B]kj being defined such that

�F−1
k−1∇�k =

k�

j=1

[B]kj∇�j and [B]11 = λ−1. (16)

Proof. The proof makes use of the following two equalities:

�F−1
i x = λ−1x−

i�

j=1

cij∇�j (17)

�F−1
i x = λ−1x−

i�

j=1

�
�F−1
j−1∇�j

�
�
�F−1
j−1∇�j

��
x

m+ [D]jj
, (18)

which correspond to Equation 6 with m = i and Equation 3 in an unrolled form, respectively. We
begin by setting them equal. Next, we apply (17) again to �F−1

j−1∇�j (naming the corresponding
coefficients aj−1

k ) and reorganize the nested sums to get a new expression of the form (17). Finally,
we simplify the result by using our definition of [B]ij = −ai−1

j for j < i and [B]ii = λ−1 (discussed
at the beginning of Section 3.2). We obtain:

�F−1
i x = λ−1x−

i�

j=1

cij∇�j (19)

= λ−1x−
i�

j=1

�
�F−1
j−1∇�j

�
�
�F−1
j−1∇�j

��
x

m+ [D]jj
(20)

= λ−1x−
i�

j=1

�
λ−1∇�j −

j−1�

k=1

aj−1
k ∇�k

� �
∇��j �F−1

j−1x
�

m+ [D]jj
(21)

= λ−1x−
i�

j=1




�
∇��j �F−1

j−1x
�

m+ [D]jj
λ−1 −

i�

k=j+1

�
∇��k �F−1

k−1x
�

m+ [D]kk
ak−1
j


∇�j (22)

= λ−1x−
i�

j=1




i�

k=j

�
∇��k �F−1

k−1x
�

m+ [D]kk
[B]kj


∇�j . (23)

We can now directly match coefficients between (19) and (23), as they hold for any gradient values.
This completes the proof.

B Efficiently Implementing the Dynamic Algorithm
As mentioned in Section 3.2, directly implementing the various recursive formulas of the dynamic
algorithm will most likely be quite slow in practice. Thus, we now discuss how to develop an efficient
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practical implementation. The reader can also find the full code for this implementation of the
dynamic algorithm (and the corresponding optimizer) in PyTorch, available at [11].

Setup. We begin by vectorizing the calculations of D and B. Algorithm 1 describes the full setup
procedure in PyTorch-like pseudocode.

Algorithm 1 Calculating D and B in O(m3) time and O(m2) memory, assuming that GG� is
already precomputed.

D ← λ−1GG�

B ← λ−1Im×m

for i ← 2, 3, . . . ,m do
Di:,i: ← Di:,i: − 1

m+Di−1,i−1
D�

i−1:,i:Di−1:,i:

end for
D ← triu(D)

for i ← 2, 3, . . . ,m do
Bi,:i ← (−D:i,i/(m+ diag(D):i))

�B:i,:i

end for

Initially, D is the stored scalar product matrix GG� scaled by λ−1. Row 1 already has the correct
final values. The algorithm then goes through m− 1 iterations, each completing one row but also
updating all the rows of higher index. More concretely, in iteration i, we subtract the outer product
of the previous row starting at the element one after the diagonal Di−1,i: with itself, scaled by the
inverse of m plus the previous diagonal element Di−1,i−1, from the square sub-matrix with ii as the
upper left corner, i.e. Di:,i:. This process is also visualized in Figure 2, where the already calculated
elements are shaded in light blue, the ones that are currently being updated in darker blue, and the
irrelevant ones in grey. Since the calculation of D, as given here, will also produce some unnecessary
(and incorrect) values below the diagonal, we delete those after the loop by extracting just the upper
triangular part of D. B starts off as the identity matrix times λ−1 (and row 1 is again already done).
Next, B is calculated row by row, where row i is a negative linear combination of the previous i− 1
rows (up to index i− 1 as B is lower triangular) B:i,:i with the coefficients given by the first i− 1
elements of column i of D, i.e. D:i,i, each divided by m plus the corresponding diagonal element of
D, i.e. m+ diag(D)i. This process is also shown in Figure 2.

Figure 2: Visualized calculation of D and B.

In theory, the algorithm presented so far should be well suited for utilizing the massive parallel
computation capabilities of a GPU. However, a straightforward implementation in e.g. PyTorch,
will not be very fast for larger values of m as it results in thousands of small kernel launches with
overhead that adds up to a very significant overall slow-down. (Concretely, we measured > 7×
overhead for m = 1024). This means that, to achieve good performance, the setup for the coefficient
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computation of the dynamic algorithm needs to be implemented with (custom) CUDA kernels that
merge computations to get rid of the excessive kernel launch overhead.
Carefully studying the calculation process of D reveals that it is actually very similar to a Cholesky
decomposition (concretely, the only difference is that it does not use the square root of the diagonal
element but the element itself plus m). In fact, it is actually exactly equivalent to taking the upper
triangular matrix in the LU-decomposition (with no pivoting) of λ−1GG�+mI and then subtracting
mI again. This means that it is possible to reuse the highly optimized LU-decomposition kernel
provided by PyTorch to calculate D quite efficiently (a custom kernel implementing the modified
Cholesky decomposition would certainly be faster, but we already observed pretty low overheads with
the LU version). For the efficient computation of B, a custom kernel is needed, which we provide
at [11], and describe next.
The main idea is that we can dramatically reduce the number of separate kernel launches by computing
multiple rows of B in a single kernel. In general, we split B into blocks of 32× 32 (this matches the
fact that modern NVIDIA GPUs have 1024 threads per block). Then, we begin by fully computing
all diagonal blocks in parallel. Notice that, due to the lower triangular structure of B, those are fully
independent. Similarly, each block depends exclusively on the blocks above it (up to the diagonal).
Next, we perform an iterative process which will update all remaining blocks with respect to the
new values of the most recently computed diagonal before completing the calculation of the blocks
adjacent to it. This new diagonal is then the reference for the next iteration. Figure 3 visualizes this
process. The calculation within the individual blocks is easy to parallelize. For more details, please
refer to our code for this CUDA kernel. Overall, this way of calculating B is quite fast; e.g. for
m = 1024, it takes < 2 milliseconds to execute on an NVIDIA RTX 3090 GPU.

Figure 3: Visualization of the CUDA kernel for calculating B. In each iteration, all blocks below the previous
diagonal (here denoted as 1) are updated in parallel and those adjacent to the diagonal (here denoted as 2) are
completed to form the reference diagonal for the next iteration.

IHVPs After discussing an efficient implementation of the precomputation steps, we now focus on
actually computing IHVPs. Algorithm 2 presents a vectorized implementation.

Algorithm 2 Computing �F−1
m x in O(dm +m2) time, assuming that D and B have already been

precomputed.
q ← λ−1Gx
q1 ← q1/(m+D11)
for i ← 2, 3, . . . ,m do
qi: ← qi: − qi−1D

�
i−1,i:

end for
q ← q/(m+ diag(D))
return λ−1x− ((q�B)G)�

We note that if x = ∇�i, then q:(i+1) = D:(i+1),i/diag(D:(i+1)), i.e. the first i elements in column i
of D divided element-wise by the corresponding diagonal values. This can be utilized for a more
efficient combined update-multiply operation, which is essential for the M-FAC optimizer, where
we first update our Hessian estimation with a gradient ∇� and then return the IVHP with this same
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∇�. Further, reusing the same p = G∇� for both updating GG� as well as calculating q, saves one
redundant O(dm) matrix-vector-product.

C Efficiently Implementing the Static Algorithm
Although the formulas discussed in the main body of the paper have low theoretical time complexity,
a direct implementation does not make the best use of modern machine learning frameworks and
GPUs. Therefore, we now present more efficient matrix-based versions. We note that a block-wise
version would simply apply the techniques discussed here independently to each block.
Let V = [v1

�;v2
�; . . . ;vm

�] be the m× d row-wise matrix of the vi and q = (q1, q2, . . . , qm)�

the m-vector of the qi. Then, �F−1
m x can be written as follows, where / denotes the element-wise

division:
�F−1
m x = λ−1x−V� ((Vx) /q) . (24)

It is also possible to extract one element of each matrix row simultaneously (in terms of vectorized
operations) with O(dm) cost, for example the entire diagonal. Let π(x) be a mapping such that
π(x)i = xj where j is the column of the element to select in row i, e.g. π(x) = x to get the diagonal,
and eπ a vector such that eπi = 1 if π(x)i = xi and eπi = 0 otherwise. Using these definitions, the
calculation of the desired result y is described below, where � denotes the element-wise product.

y = λ−1eπ −
m�

i=1

1

qk
vi � π(vi) (25)

Our implementation contains several additional optimizations. For instance, we can efficiently
precompute V and q by repeatedly applying (24) to produce the next vi. In the next section, we
additionally discuss several memory-saving optimizations, and in particular explicit page swapping
between CPU and GPU memory for situations where V does not fully fit in the GPU memory.
Finally, Algorithm 3 demonstrates, using a Python-like matrix indexing syntax, how to efficiently
precompute V and q by repeatedly applying (24) to produce the next vi. It should be noted that
the row-wise matrix of gradients G = [∇��1 ;∇��2 ; . . . ;∇��m] is re-purposed as V, a simple way to
halve the peak memory consumption in practice.

Algorithm 3 Precomputation of V and q given G.
V ← G
g ← V�

1,:

V1,: ← λ−1g
q1 ← V1,: g
for i ← 2, 3 . . . ,m do
g ← V�

i,:

Vi,: ← λ−1g� − ((V:i,: g)/q)
�V:i,:

qi ← m+Vi,: g
end for

C.1 Additional Optimizations
As we have seen, obtaining a good Fisher approximation of the Hessian requires a sizable number
of gradients, which means that, for bigger networks, it can easily happen that the collection of all
gradients used for Fisher estimation does not fully fit into GPU memory. We now discuss how to
efficiently handle such situations, with an implementation that performs explicit swapping of gradient
blocks between GPU and CPU memory (RAM). The most important steps of the method to be
discussed are also visualized in Figure 4.
In general, a simple trick to halve the peak memory consumption of the static algorithm is repurposing
the gradient matrix G as V, which is possible as ∇�i is not needed anymore after vi and qi have
been calculated. Now, for the explicit swapping implementation, we first split the collection of m
gradients into k blocks / pages Gi containing at most m/k gradients each. Those are then turned
into the corresponding Vi blocks in increasing order of i. Additionally, we maintain a single buffer
block B of the same size for accumulating intermediate results. All blocks reside in CPU memory
and are only loaded to the GPU as needed, meanwhile q is small enough to be kept in GPU memory
at all times. To compute Vi we first load block V1 fully into GPU memory. Then we load the first
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gradient of Gi denoted by gi
1 and compute the corresponding v1

1 with respect to the loaded V1,
which is afterwards saved in the first index of the buffer b1. After repeating this for all gi

j , block V1

is swapped with block V2 and the whole process starts again, accumulating the resulting v2
j into the

buffer. Eventually, after handling Vi−1, we can load B into GPU memory, finish the calculation of
the vi

j and store them in Vi (reusing the memory of Gi). It should be noted that the loading of gi
j

can be parallelized with the calculation of gi
j−1 and thus costs almost no extra time. Finally, one

wants to choose the number of blocks k to be as small as possible, to minimize the overhead caused
by the O(k2) page swaps.

GPU

V1

V2

G3

G4

B

V1

RAM

load once

repeatedly

accumulate

g compute

v

GPU

V1

V2

G3

G4

B

RAM

B

V3

load

calculate

overwrite

Figure 4: Visualization of the swapping implementation of the static algorithm, grey blocks have already been
fully calculated. Left: g is loaded from block G3, which allows calculating v using the GPU block V1 and then
accumulating it into the buffer B. Right: Calculation of V3 is finished using the completed buffer.

Overall, the implementation described above is effective in practice and allows scaling up our static
algorithm (with only modest overhead over a pure GPU implementation), in its full non-blockwise
version, to a large number of gradients, even for relatively large networks such as ResNet50.
Lastly, we note that, for a block-wise implementation, where a single block and all its corresponding
gradient parts, easily fit into GPU memory (i.e. the opposite of the situation described thus far in this
section), it can be beneficial to handle multiple blocks simultaneously via batch-matrix-multiplies. We
provide an implementation that can do this, leading to very significant speed-ups on lower block-sizes
where otherwise most of the time would be spent constantly loading in new memory from the CPU.

D Additional Experimental Results
D.1 Pruning Update Approximation

As discussed in the main paper, we use the OBS pruning framework but prune multiple weights at
the same time, which as pointed out by [48], in extreme cases, is not guaranteed to be better than
OBD due to not taking into account potential correlations. Thus, we now explore how much of a
problem this is in practice. To do that, we compare three different M-FAC variations: not updating
the non-pruned weights at all (i.e. OBD, but with a better Hessian approximation than the diagonal),
jointly applying the OBS update for all pruned weights (i.e. the OBS approximation) and applying
the correct simultaneous update by solving a large linear system (see [41] for details). We prune a
ResNet20 / CIFAR-10 model in steps of 10% down to 90% sparsity, using three variations of the full
block size M-FAC with m = 1024 while recomputing the inverse Hessian approximation after every
pruning step. The recomputations ensure that we have a reasonably accurate loss approximation at
every pruning step and that the number of weights pruned at each step is small enough to solve the
corresponding linear system. Table 6 provides the results.

Method 10% 20% 30% 40% 50% 60% 70% 80% 90%
No update (OBD) 91.4 91.3 91.0 90.2 88.4 84.8 77.2 50.4 11.5
Simultaneous OBS 91.4 91.4 91.5 91.2 90.8 89.7 86.8 75.6 28.2
Linear solving 91.5 91.4 91.4 91.2 90.7 89.7 87.5 75.7 28.1

Table 6: Comparing ResNet20 / CIFAR-10 accuracies of different M-FAC variations at varying levels of sparsity.

The results show a very clear gap in accuracy between the no-update and the approximate update
version. At the same time, there appears to be almost no difference between the simultaneous OBS
and the true OBS update, which has to solve a (potentially very large) linear system. This suggests

20



that the simultaneous update approximation done for computational tractability is also a reasonable
choice in terms of achieved accuracy.

D.2 Ablation Studies for One-Shot Pruning

To further examine the properties of the local loss approximation, we now present ablation studies
on pretrained ResNet50/ImageNet and MobileNetV1-STR/ImageNet models. Experiments perform
one-shot pruning according to the OBS metric estimated using M-FAC, with varying block size and
number of gradients. The dampening factor λ in these experiments is set to 10−5. Following [41],
we used batched gradients (of size 16) as single samples inside the Fisher approximation. (This does
not alter results, but reduces variance.)
The goal of these experiments is to examine two questions: 1) does larger block size always imply a
better approximation and 2) does higher number of gradients always imply a better approximation?
We will see that neither of these questions have obvious answers.
The numbers presented for our one-shot experiments are the averages over two runs. As the variance
is very small, we omit error bars. We sometimes break the standard convention and “zoom into” the
y axis for visibility.

D.2.1 ResNet50 / ImageNet

The first set of experiments examines the dependency on the number of gradients and block size for
the ResNet50 / ImageNet model. The left subfigure in Figure 5 shows results for block sizes between
2K and all weights, i.e. d, for a fixed number of 1K gradients, while the right subfigure shows the
same, but for 2K gradients. The first graph presents a fairly unintuitive finding, i.e. that lower block
sizes appear to provide better pruning accuracy. We analyze this finding in detail and explain it in
Section D.3: roughly, this is due to the fact that gradient entries are scaled by the gradient norm over
the block. As predicted by our analysis, this effect is mitigated by increasing the number of gradients
used for estimation, in which case block size 10K yields the best results, and the performance of full
block size also improves. Please see Section D.3 for the full analysis.
Figure 6 examines the complementary effect, that of number of gradients for a fixed block size (10K
and 100K, respectively). The results suggest that more gradients help improve the estimation of the
Fisher matrix, although we observe a saturation effect. We also note that, at higher one-shot sparsities
(e.g., 60% in one-shot, not shown for visibility), this effect does not always hold. However, for such
large pruning “perturbations” the pruning assumption that the Hessian is constant along the direction
of pruning is unlikely to hold, which affects the stability of the results.

D.2.2 MobileNetV1-STR / ImageNet

The second set of experiments shows the dependency on the number of gradients and block size
for the MobileNetV1-STR / ImageNet model. We use the implementation and pre-trained weights
from [24]. Figure 7 shows results for block sizes between 2K and all weights, i.e. d, for a fixed
number of gradients (1K in the left subfigure and 2K in the right subfigure). Again, in both cases,
for this model lower block sizes appear to provide an improved approximation. This is most likely
due to the gradient scaling effects which we discuss in Section D.3. However, the results show that
for this compact model these effects are more prevalent than for the ResNet50 model.
Figure 8 examines the opposite effect, that of the number of gradients for a fixed block size (10K
in the left subfigure and 100K in the right subfigure). We show results for the number of gradients
varying between 50 and 4K. The results clearly suggest that more gradients help improve the
accuracy, although the improvement appears to saturate, e.g. between 2K and 4K gradients.

D.2.3 Normalizer-Free Nets

We now examine the “compressibility” of the recently-proposed normalizer-free nets, which have
shown competitive accuracy based on a similar structure to standard residual networks but without
the batch normalization component [6]. We use the PyTorch re-implementation of [49]. In Figure 9a,
we provide a relative comparison in terms of pruned accuracy between a normalizer-free and a
regular version of ResNet50. These two networks have virtually the same number of parameters
(approximately 25M); however, we notice that the normalizer-free variant is significantly “easier” to
prune, in terms of the relative accuracy drop versus the dense baseline. We conjecture that this is
because of the elimination of the BatchNorm layers. Specifically, when performing large one-shot
pruning steps, the BatchNorm statistics become invalid following a pruning step, which can lead to
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Figure 5: An ablation study on the ResNet50 / ImageNet model showing the effect of the block size for a fixed
number of gradients.
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Figure 6: An ablation study on the ResNet50 / ImageNet model showing the effect of the number of gradients
for a fixed block size.
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Figure 7: An ablation study on the MobileNetV1-STR / ImageNet model showing the effect of the block size for
a fixed number of gradients.
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Figure 8: An ablation study on the MobileNetV1-STR / ImageNet model showing the effect of the number of
gradients for a fixed block size.
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a significant loss of accuracy; moreover, their removal may render the Fisher approximation more
accurate, as the model loss is more stable in the local neighborhood.

D.2.4 YOLOv3
Next, we study the effect of one-shot pruning on the YOLOv3-SPP model [39] for object detection
on the COCO dataset [27]. We use the state-of-the-art implementation of [10]. We one-shot prune
this model using global magnitude (the only available baseline) and M-FAC with block size 50K and
1K gradients. (This parameter value would be infeasible for WoodFisher due to storage costs.) The
results in terms of the standard mAP@0.5 metric are provided in Figure 9b, and show that this model
is quite stable under pruning, and that M-FAC provides more accurate pruning for this model as well,
relative to magnitude pruning.
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(a) Comparison between GMP and M-FAC pruning on the stan-
dard ResNet50 and a Normalizer-Free variant (NF-ResNet50).
Observe the significantly better accuracy given by our method
on the normalizer-free variant.
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(b) Comparison between GMP and M-FAC in terms of the
mAP@0.5 metric for a one-shot pruned complex YOLOv3-SPP
/ COCO model.

Figure 9: Left: The effectiveness of M-FAC pruning on Normalizer-Free ResNet50 versus the regular variant.
Right: One-shot pruning comparison for the YOLOv3-SPP model on the large-scale object detection dataset
COCO.

D.2.5 K-FAC Pruning Comparison
In Figure 10a we compare pruning performance against a pruner which uses K-FAC to estimate
second-order statistics (with and without dampening π) on a fully-connected network and the MNIST
dataset. Notice the improved accuracy with M-FAC (and WoodFisher) methods compared to K-FAC,
even in the setting with a small network on a simple task.

D.2.6 Recomputation Effects
As noted before, our one-shot experiments stretch the OBD / OBS theory, as this approach implicitly
assumes that the Hessian stays constant across the direction of pruning, which is unlikely to hold for
very large pruning displacements. We can however examine the impact of this effect, by recomputing
the Hessian along the direction of pruning. Figure 10b shows the effect of recomputation for the
ResNet50 / ImageNet model, for 5 recomputation steps, uniformly across the pruning direction.
Notice the significant increase in accuracy for the resulting sparse models.

D.3 Normalization Effects
We now discuss our finding that, in the case of some models, e.g. MobileNetV1, smaller blocks appear
to yield better accuracy. This can be explained by examining the recursive form of the elements of
the diagonal inverse. Specifically, without blocking, we get that the ith diagonal element has the form

[�F−1]ii �
1

λ


1−

∇�21i
�∇�1�2

−

�
∇�2i −∇�1i

∇��1 ∇�2
�∇�1�2

�2

�∇�2�2 − (∇��1 ∇�2)2

�∇�1�2

− . . .


 , (26)

where ∇�1i and ∇�2i represent the ith element of a gradient. Specifically, notice that, in the case of
“full” block size (“all” or d), the ith gradient entry is divided by the full gradient norm, which may
cause it to become negligible if the norm is large. In turn, this leads to essentially the magnitude
pruning ranking and update. By contrast, in the case of smaller blocks, the entry is only divided by
the norm of the gradient over the block, which mitigates this normalization issue. Similarly, using
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(a) Comparison between K-FAC, WoodFisher and M-FAC in
terms of the Top-1 test accuracy for a one-shot pruned Fully-
Connected network.
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(b) The effect of a recomputation on the accuracy of pruned
ResNet50/ImageNet model. Observe the significantly better ac-
curacy provided by recomputation, especially at highwe number
of gradients.

Figure 10: Left: One-shot pruning comparison for the fully-connected network on the MNIST dataset. Right:
The effect of recomputation along the direction of pruning for ResNet50 / ImageNet.

more gradients also helps, since there are more summands in the above expression, which allows us
to deviate from the magnitude pruning baseline.

D.4 Pruning Experiments Hyperparameters
D.4.1 Gradual Pruning Comparisons
We begin by stating hyperparameters for our gradual pruning runs. For both MobileNetV1-STR and
ResNet50-STR, we employ identical hyperparameter values to WoodFisher [41], so that our results
are fully comparable. The only parameters we change are the ones which pertain to our algorithm, in
particular block size and number of gradients m.
For the MobileNetV1-STR gradual experiments, pruning starts from the fully-trained model used by
STR / WoodFisher, whose Top-1 validation accuracy is 72%. Gradual pruning is then performed over
a total of 24 epochs, pruning additional weights every 4 epochs, followed by fine-tuning until the next
pruning step. Pruning targets are set following the standard polynomial schedule of [55, 12]. Unless
otherwise stated, SGD is used for fine-tuning. The learning rate during pruning is 0.005, momentum
is set to 0.9, and weight decay is 0.0001. Following the last pruning step, fine-tuning is applied until
epoch 100. The initial learning rate value of 0.005 is decayed multiplicatively by a factor of 0.92,
every epoch, starting from the epoch 30.
For ResNet50-STR gradual experiments, pruning starts from the fully-trained model used by
STR/WoodFisher, whose Top-1 validation accuracy is 77.01%. Gradual pruning is then performed
over a total of 40 epochs, pruning additional weights every 5 epochs, followed by fine-tuning until
the next pruning step. Pruning targets are set following the standard polynomial schedule of [55, 12].
Unless otherwise stated, SGD is used for fine-tuning. The learning rate during pruning is 0.005,
momentum is set to 0.9, and weight decay is 0.0001. Following the last pruning step, fine-tuning
is applied until epoch 100. The initial learning rate value of 0.005 is decayed multiplicatively by a
factor of 0.6, every 6 epochs, starting from epoch 40 until epoch 90.

D.4.2 Practical Pruning
In our practical pruning experiments we use a different setup, which is optimized for the particular
capabilities of M-FAC. We note that the high speed of M-FAC also makes more careful parameter
tuning significantly easier.
In general, we always use M-FAC with block size 128 and 64 gradients (from a batch of 32 samples).
Further, each pruning step is performed with 16 recomputations, which always prune the same
fraction of remaining weights. This fraction can be calculated as (i/t)1/k where i is the initial
sparsity, t is the target sparsity and k is the number of recomputations. We immediately prune down
all models to 50% sparsity before epoch 0 (we found that this sparsity is very easy to recover from,
so intermediate steps are unnecessary). Further, we always use SGD without weight decay for a total
of 100 epochs and we reset momentum after each pruning step.
For MobileNetV1 we perform a total of 15 additional pruning steps (not counting the initial pruning)
which are performed with 3 epochs finetuning in between. All pruning steps prune the same fraction
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of remaining weights (calculated by the formula described in the previous paragraph). The 3 epochs
finetuning in between pruning steps all use the following learning rates 0.005, 0.005, 0.0005, there is
no additional decay (we noticed that dropping the learning rate in the last epoch usually results in a
more accurate model as a starting point for the next pruning step). Finally, after the last pruning step
at epoch 45, we finetuning for a total of 55 epochs with learning rate 0.005 with drops by a factor of
10 at epochs 75 and 90.
For Resnet50 we perform a total of 20 additional pruning steps which 4 epochs finetuning at learning
rates 0.005, 0.005, 0.005, 0.0005 in between (due to the higher target sparsities, individual steps are
bigger and the model seemed to need more time to recover well in between steps). We first calculate
a 15-step equal-fraction schedule to the final target sparsity, execute the first 10 steps and then replace
the last 5 with a 10-step equal-fraction schedule from the current to the target sparsity (due to the
very high target sparsities the last steps needed to be smaller). Eventually, we finetune for 20 epochs
with learning rate .005 dropped by a factor of 10 at epochs 90 and 95.

D.5 Optimization Experiment Hyperparameters

ResNet20/32 We now discuss the hyperparameters used for the ResNet20/32 comparison between
M-FAC and various first and second order optimizers. Both models are trained with batch-size 128
for 164 epochs (≈ 64000 steps) while dropping the learning rate by a factor of 0.1 after 50% and 75%
of training. This is exactly the training setup used by [17]. For M-FAC, we use m = 512 gradients,
dampening λ = 10−5 and initial learning rate 10−3, which were determined to be reasonable
default values during development. For the other methods we use tuned initial learning rates from
literature; in particular the value for SGD is from [17] while the values for Adam, AdamW and
AdaHessian are from [52]. Since we found that the exact weight decay value can have a significant
impact on the final test accuracies, we performed grid-searches over the commonly used values
{0, 10−5, 10−4, 5 · 10−4, 10−3, 3 · 10−3, 10−2} for all methods that use weight decay. Table 7
summarizes the final hyper-parameter settings.

Method learning rate momentum weight decay
SGD 0.1 0.9 0.0001
Adam 0.001 (0.9, 0.999) –
AdamW 0.01 (0.9, 0.999) 0.01
AdaHessian 0.015 (0.9, 0.999) 0.003 (RN20), 0.0005 (RN32)
M-FAC (m = 512) 0.001 – 0.003

Table 7: Hyperparameter settings used for the ResNet20 (RN20) and ResNet32 (RN32) experiments.

All experiments were repeated 5 times with different random seeds and we report the median of the
best test accuracy; the standard deviations were generally quite low at around 0.2 percent accuracy.

Hyperparameters for GGT and K-FAC. Unfortunately, GGT and K-FAC did not produce reason-
able results in the setup discussed so far (i.e. achieved poor accuracy or diverged). Thus, for fairness,
we decided to adopt the recommendations of the method authors, even if those were no longer exactly
comparable with the other experiments (e.g. different batch-size, learning rate schedule, etc.). Further,
we also performed considerably more extensive hyper-parameter searches for these methods.
For K-FAC, we use the authors’ carefully-tuned parameters for ResNet20, which they published in
their official repository1. For ResNet32, we adopt the same parameters, but use an initial learning
rate of 0.075 and an initial dampening of ≈ 0.1887, which we identified to work best for this model
via grid search (see Table8 for the grid). The biggest differences of this setup compared to M-FAC
are the batch-size of 1000 and the smoothly exponential decaying learning rate.
For GGT, we use a batch-size of 128 and a gradient window size of r = 100 (which is > 5× lower
than for M-FAC, however we surprisingly found that GGT’s performance, unlike M-FAC’s, did not
improve with larger r and thus kept this as the best value). Further, we use an initial learning rate
of 0.05 and a cosine decaying schedule with T = 40, which we found via grid search. All GGT
experiments were performed with the author’s implementation contributed to TensorFlow. Our GGT
search grid is shown in Table 9.

1https://github.com/tensorflow/kfac
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Init LR 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001
Final LR 10−4, 10−5

Init Dampening 0.3887, 0.2887, 0.1887
Inversion freq. 1, 10

Table 8: ResNet32 K-FAC search grid; parameters not listed here were kept the same as the ResNet20 settings.

Init LR 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001
Window size r 50, 100, 200, 500

Table 9: GGT search grid; parameters not listed here were kept at the author’s recommended settings.

Wide ResNet / MobileNetV1. Next, we list the exact hyperparameters used for optimizing Wide
ResNet (WRN) and MobileNetV1 models. The corresponding experiments were designed to explore
how well M-FAC performs relative to other methods without any parameter tuning, i.e. just using
reasonable default values. In the case of Wide ResNet, all models are trained for 200 epochs with
batch size 256, where the learning rate is dropped by a factor 10 after 50% and 75% of training. SGD
uses an initial learning rate of 0.1 and momentum of 0.9 (as suggested by [53]). Adam runs with
default parameters, i.e. a learning rate of 0.001, β1 = 0.9 and β2 = 0.999. M-FAC uses m = 1024
and the standard learning rate of 0.001 (but no momentum). No method uses any weight decay in
these experiments. For MobileNetV1, we use exactly the same optimizer settings and learning rate
schedule, but we train only for 100 epochs.

Sparse Finetuning. For the sparse fine-tuning experiments, pruning occurs identically for all
methods. However, we fine-tune the models using either SGD or M-FAC with m = 512, for 30
epochs. Both fine-tuning algorithms are run with exactly the same hyperparameter values: initial
learning rate 0.005, reduced every 10 epochs by a factor of 10 and batch-size 256.

D.6 Wall-Clock Time Comparison.
In Figures 11 and 12 we show the test accuracies during the training of Wide ResNet (WRN) on the
CIFAR-100 dataset and MobileNetV1 on the ImageNet dataset with SGD, Adam and M-FAC with
respect to the wall clock time, when executed on a single NVIDIA RTX 3090 GPU. (In the case of
the largest network, WRN 22-4, we use a second GPU’s memory to store gradients, but still use only
a single GPU for computation.) One can see that, in most plots, M-FAC reaches better accuracies
than SGD already after only slightly higher training time. Further, we can see that, for the WRN
model, the early training accuracy increases fastest for M-FAC even with respect to the wall-clock
time, a phenomenon often observed with methods which try to leverage approximate second-order
information.
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(a) Accuracy versus time for WRN 40-2 / CIFAR-100.
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(b) Accuracy versus time for MobileNetV1 / ImageNet.

Figure 11: Optimization results in accuracy-versus-time format for WRN40-2 and MobileNetV1.

D.7 Cosine Similarity of Descent Directions
Finally, in Figure 13, we examine the quality of the sliding window approximation to the Fisher
matrix. We run optimization with M-FAC on ResNet20 / CIFAR-10 (using m = 512 and otherwise
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(a) Accuracy versus time for WRN 22-2 / CIFAR-100.
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(b) Accuracy versus time for WRN 22-4 / CIFAR-100.

Figure 12: Optimization results in accuracy-versus-time format for Wide Residual Networks (WRN).

the same hyperparameters as discussed in the previous section), and every 512 steps we sample
2× 512 gradients to produce 2 static estimates of the Fisher matrix, and then we compare the cosine
similarity of the descent direction given by the dynamic algorithm at this step, �F−1

dynamic ·∇� with
�F−1
static1 ·∇� (denoted as dynamic–static) as well as the cosine similarity between �F−1

static1 ·∇� and
�F−1
static2 ·∇� (denoted as static–static).

The results show that: 1) the cosine similarities between the sliding window approximation and the
“fresh” approximation are extremely close; 2) they tend to improve significantly as we advance in the
optimization process. Overall, this validates the sliding window approximation made by our method.
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Figure 13: Cosine similarities over the course of training a ResNet20 / CIFAR-10 model. The directions are
remarkably close for the dynamic algorithm, suggesting that the sliding window approximation is valid.

E Transformer Natural Language Modelling
In this section, we provide more detailed results of our natural language modelling experiments for
the tiny (t) and mini (m) variants of the BERT Transformer model. As already stated in the main
paper, M-FAC always uses m = 1024 gradients (except if a task has significantly less total training
batches), dampening λ = 10−6, learning rate 10−4 and no weight decay or momentum. We preserve
all other configurations (e.g. batchsize, number of epochs, learning rate schedule) from the baseline.
The SQuADv2 HuggingFace Adam baseline2 uses initial learning rate 3 ·10−5 and trains for 2 epochs,
while for the GLUE tasks, it3 uses initial learning rate 2 · 10−5 and trains for 3 epochs (5 epochs for
MRPC). Table 10 and Table 11 show our detailed (including all task metrics and standard deviations)

2https://github.com/huggingface/transformers/tree/master/examples/pytorch/
question-answering, accessed: 2021-10-26

3https://github.com/huggingface/transformers/tree/master/examples/pytorch/
text-classification, accessed: 2021-10-26
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question answering SQuADv2 and text-classification GLUE results, respectively. At last, in Table 12,
we compare BERT-tiny models optimized with M-FAC against tuned AdamW results (both trained
for 4 epochs) by the BERT authors4, on the GLUE test sets. We find that M-FAC (sometimes with
modest tuning) can also outperform this competitive baseline on most tasks, even without using any
weight decay or momentum.

SQuADv2 (EM) SQuADv2 (F1)

t Adam 48.41± 0.57 49.99± 0.54
t M-FAC 49.80 ± 0.43 52.18 ± 0.20
m Adam 54.80± 0.47 58.13± 0.31
m M-FAC 58.02 ± 0.39 61.35 ± 0.24

Table 10: Comparing the M-FAC optimizer against HuggingFace’s Adam baselines on the SQuADv2 dataset.

SST-2 (Ac) MRPC (F1) MRPC (Ac) STS-B (Pe) STS-B (Sp)
t / Adam 80.11± 0.65 81.68± 0.33 69.90± 0.32 64.39± 5.02 66.52± 5.67
t / M-FAC 81.86 ± 0.76 82.77 ± 0.22 72.94 ± 0.37 80.15 ± 0.52 80.62 ± 0.43
m / Adam 85.46 ± 0.58 84.57± 0.36 76.57± 0.80 82.09± 0.54 82.64± 0.71
m / M-FAC 84.20± 0.58 85.06 ± 1.63 78.87 ± 2.33 84.66 ± 0.30 84.65 ± 0.30

QQP (F1) QQP (Ac) MNLI-m (Ac) MNLI-mm (Ac) QNLI (Ac)
t / Adam 77.58± 0.08 81.09± 0.15 65.36± 0.13 66.78± 0.15 77.85± 0.15
t / M-FAC 79.71 ± 0.13 84.29 ± 0.08 68.28 ± 3.29 68.98 ± 3.05 81.17 ± 0.43
m / Adam 82.43± 0.10 86.45± 0.12 73.30± 0.20 74.85± 0.09 83.85 ± 0.10
m / M-FAC 82.67 ± 0.23 86.75 ± 0.20 74.59 ± 0.41 75.95 ± 0.14 83.70± 0.13

Table 11: Comparing the M-FAC optimizer against HuggingFace’s Adam baselines on the GLUE benchmark
suite (we show scores on the validation set).

SST-2 (Ac) MRPC (F1) MRPC (Ac) STS-B (Pe) STS-B (Sp)

AdamW 83.2 81.1 71.1 74.3 73.6
M-FAC 83.4∗ 81.9∗ 72.7∗ 75.3∗ 73.2∗

QQP (F1) QQP (Ac) MNLI-m (Ac) MNLI-mm (Ac) QNLI (Ac)

AdamW 62.2 83.4 70.2 70.3 81.5
M-FAC 62.8 83.9 71.0 70.5 81.7

Table 12: Comparing M-FAC optimizer (without weight decay) against BERT authors’ tuned BERT-tiny AdamW
baseline on a subset of GLUE benchmark test sets. ∗ Modest tuning of learning rate and dampening because of
the very low number of samples / gradients in the training data.

4https://github.com/google-research/bert, accessed: 2021-10-26
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