1000FPS+ Novel View Synthesis from End-to-End Opaque Triangle
Optimization

Supplementary Material

1. Supplementary Video

We include a supplementary video, which contains the
training process visualization of our OTO method, and
a few videos showing the downstream applications men-
tioned in the main paper.

2. Implementation Details
2.1. Initialization

As described in the main paper, one triangle is initialized
for one point in the sparse point cloud. Each triangle ¢
is initialized from a position P;, facing N; and scale S;.
The position P; is the same as the point position. The
facing N is derived from the estimated surface normal of
the point cloud at the point position, using Open3D[61].
For the MipNeRF [2] dataset, we use the hyper-parameter
of radius 1 and maximum nearest neighbor of 300. The
scale S = min(S; n, Si ceir) takes the value of the distance
to the nearest neighbor S; ,,,,, clamped with the maximum
scale Si,ceil = minjetrain,cam(HPi - Pj||2) X STT using
the distance to the closest training camera with focal length
f; and a maximum pixel size Sy, set as the 1/10 of image
width.

After these parameters are calculated for each triangle,
the two control vectors V; ; and 'V, , of the plane per-
pendicular to the triangle facing N; are determined, by
V7T = N7 X [0,0, 1}T and Vi,y = NL X V7T Finally,
the exact vertex positions are determined by

1 1 1

1 1
V= {[—570, i}Vz‘,m [—27\/3’ NN

]V“/} -S;+P;
(6)
2.2. Skybox

Due to the sparse point cloud initialization, the early stage
of OTO training can be unstable due to the lack of back-
ground points. We found that the skybox is essential to pre-
vent the foreground triangles from being overly enlarged,
which can be difficult to restore due to the high overlap be-
tween these large triangles. Hence, a set of skybox triangles
is included in a six-face cube surrounding the scene.

The cube is initialized at the center of the scene, with a
scale of Sskypoe = A(max(P) — min(P)), where X takes
the value of 5 in our experiment to ensure that the entire
scene is enclosed in the skybox. For each face of this cube,
we first cut it into a square grid of pre-determined resolu-
tion, which is of value 50 x 50 in our experiment. Each

square in the grid is cut into two triangles to form the skybox
triangles. Please note that the triangles share the same ver-
tex if their vertex is at the same position, to ensure smooth
color interpolation. All skybox triangles have optimization
diffuse colors, no spherical harmonic parameters for view-
dependent colors, and their vertex positions are fixed, which
are standard for skybox optimization.

2.3. Rendering

As mentioned in the main paper, the image is divided into
tiles of 16 x 16 size for faster parallel rendering, similar to
3DGS [20]. Unlike 3DGS, all tiled triangle parts are ras-
terized in parallel instead of from a front-to-back order. No
sorting is required either since a depth buffer is used. Dur-
ing backpropagation, this tile is dilated beyond the actual
size of the triangle to incorporate the 2D SDF approxima-
tion. Our experiment set the temperature 7 = 10, so one-
pixel dilation is enough.

To calculate the gradient from the two-layer occlusion
approximation, a second-layer depth buffer is used to de-
termine the color of the second layer. Two layers of depth
buffers are calculated in sequence, to ensure atomized oper-
ations are handled without racing.

2.4. Training

Our training uses Adam [21] optimizer for 20,000 iter-
ations. The base learning rate of vertex positions, col-
ors, specular coefficients, and skybox colors are set to
6 x107%,1 x 1073,1 x 1073, 1 x 1072 respectively. The
vertex position learning rate should be scaled based on im-
age size and scene size when adapted to new datasets.

The density control is employed with a predetermined
schedule. Splitting is performed from the start to 15,000
iterations with an interval of 1, 000 iterations before the to-
tal triangle count reaches 60,000. Pruning small triangles
starts at 3, 500 iteration and ends at 20, 000 iterations with
an interval of 1,000 iterations. starts at 3, 500 iteration and
ends at 10,000 iterations with an interval of 1,000 itera-
tions. Insertion starts at 2, 500 iteration and ends at 10, 000
iterations with an interval of 500 iterations before the trian-
gle counts reach 60, 000.

3. Downstream Application Details

We provide two types of export modes of our trained model
to be used in downstream applications, which are model
with vertex color and model with textures. The model with
vertex color can be imported into OpenGL [51], Unity [45],

and UnrealEngine [12] using a standard material that sup-
ports vertex color. The drawback of the vertex color model
is the lack of support for view-dependent colors learned us-
ing spherical harmonics. However, in most downstream ap-
plications, the view-dependent colors are usually a result of
relighting from environment light, so this is not a significant
issue in most cases.

If view-dependent colors need to be exported as well,
we provide the export mode with textures, which contain
both the diffuse color and the spherical harmonic parame-
ters. However, the settings in the graphics engines need to
be handled very carefully to avoid any artifact caused by
mipmaps and texture rescaling. This also requires a simple
shader code to support spherical harmonics, which is very
standard as well.

For better visualizations of the downstream applications,
please refer to the supplementary video, where we imple-
ment some basic scenarios and effects using Unity [45].
We include variable materials and light sources to demon-
strate the capability of relighting. To demonstrate the phys-
ical simulation, we added some objects with collider boxes
and a character that can walk and jump within the scene
freely. We also include a scene with an effect ball that can
“burn through” the reconstructed model while adding fire
and smoke particle effects for it. These are very standard
use cases and special effects and serve as a simple illustra-
tion of how our reconstructed model is natively compatible
with graphics engine applications.

4. Per-Scene Quantitative Results

We report the per-scene quantitative results on the Mip-
NeRF 360 dataset [2], for our full model(Tab. 3), model
without 2D SDF approximation(Tab. 4), model without
two-layer occlusion approximation(Tab. 5), model without
SH view-dependent colors(Tab. 6), model without split-
ting density control(Tab. 7), model without pruning density
control(Tab. 8), and model without insertion density con-
trol(Tab. 9).

Table 3. Per-Scene Quantitative Results of OTO on MipNeRF
Dataset[2]

scene name | PSNR | SSIM | LPIPS
stump 23.72 | 0.592 | 0.387
room 29.44 | 0.879 | 0.210
treehill 21.29 | 0.492 | 0.455
flowers 19.87 | 0469 | 0414
counter 26.95 | 0.824 | 0.214
bonsai 29.85 | 0.890 | 0.187
garden 25.44 | 0.739 | 0.238
bicycle 23.13 | 0.580 | 0.383
kitchen 28.23 | 0.854 | 0.174
average 25.32 | 0.702 | 0.296

Table 4. Per-Scene Quantitative Results of OTO without 2D SDF
approximation on MipNeRF Dataset[2]

scene name | PSNR | SSIM | LPIPS
stump 19.47 | 0.272 | 0.577
room 19.05 | 0.387 | 0.622
treehill 17.14 | 0.211 | 0.602
flowers 15.54 | 0.156 | 0.604
counter 16.75 | 0.248 | 0.643
bonsai 16.12 | 0.230 | 0.651
garden 18.63 | 0.243 | 0.569
bicycle 17.56 | 0.211 | 0.600
kitchen 16.42 | 0.220 | 0.629
average 17.41 | 0.242 | 0.611

Table 5. Per-Scene Quantitative Results of OTO without two-layer
occlusion approximation on MipNeRF Dataset[2]

scene name | PSNR | SSIM | LPIPS
stump 19.02 | 0.321 | 0.551
room 17.52 | 0.460 | 0.579
treehill 14.23 | 0.208 | 0.631
flowers 14.13 | 0.162 | 0.629
counter 1495 | 0.282 | 0.627
bonsai 15.17 | 0.277 | 0.635
garden 17.69 | 0.305 | 0.566
bicycle 15.85 | 0.210 | 0.625
kitchen 15.67 | 0.264 | 0.641
average 16.03 | 0.277 | 0.609

Table 6. Per-Scene Quantitative Results of OTO without SH view-
dependent colors approximation on MipNeRF Dataset[2]

scene name | PSNR | SSIM | LPIPS
stump 24.10 | 0.601 | 0.386
room 29.35 | 0.876 | 0.216
treehill 21.42 | 0486 | 0.471
flowers 20.10 | 0.460 | 0.427
counter 26.05 | 0.792 | 0.252
bonsai 28.59 | 0.874 | 0.203
garden 24.63 | 0.688 | 0.283
bicycle 2291 | 0.558 | 0.404
kitchen 26.96 | 0.807 | 0.216
average 2490 | 0.683 | 0.318

Table 7. Per-Scene Quantitative Results of OTO without splitting
density control approximation on MipNeRF Dataset[2]

scene name | PSNR | SSIM | LPIPS
stump 22.56 | 0.490 | 0.503
room 28.58 | 0.859 | 0.253
treehill 21.63 | 0.494 | 0.523
flowers 1894 | 0.365 | 0.541
counter 26.55 | 0.808 | 0.245
bonsai 28.64 | 0.867 | 0.242
garden 2449 | 0.659 | 0.353
bicycle 22.01 | 0.489 | 0.502
kitchen 27.23 | 0.832 | 0.210
average 2451 | 0.651 | 0.375

Table 8. Per-Scene Quantitative Results of OTO without pruning
density control on MipNeRF Dataset[2]

scene psnr | ssim | Ipips
stump | 23.93 | 0.588 | 0.395

room | 28.73 | 0.859 | 0.247
treehill | 21.30 | 0.477 | 0.487
flowers | 19.97 | 0.445 | 0.439
counter | 26.17 | 0.788 | 0.268
bonsai | 27.77 | 0.855 | 0.239
garden | 24.86 | 0.682 | 0.305
bicycle | 22.81 | 0.542 | 0.428
kitchen | 26.58 | 0.794 | 0.241
average | 24.68 | 0.670 | 0.339

Table 9. Per-Scene Quantitative Results of OTO without insertion
density control on MipNeRF Dataset[2]

scene name | PSNR | SSIM | LPIPS
stump 23.77 | 0.586 | 0.405
room 28.39 | 0.869 | 0.218
treehill 21.20 | 0.472 | 0.496
flowers 19.80 | 0.448 | 0.447
counter 26.71 | 0.820 | 0.221
bonsai 28.29 | 0.874 | 0.209
garden 2541 | 0.734 | 0.242
bicycle 2297 | 0.563 | 0.401
kitchen 28.12 | 0.850 | 0.175
average 2496 | 0.690 | 0.313

	. Implementation Details
	. Training

