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1 DERIVATIONS OF ADAPTIVE TRADE-OFF THEOREM

In this section, we present the derivations for the lower bound of the constrained optimization problem
defined in the paper. The problem is shown as follows:

max I(y′; z|θ,D)

s.t.I(y′, D; θ|x′) ≤ Ic
(1)

where Ic is the constant information constraint.

In the local training, the predictive process can be defined as a Markov chain shown as Y ↔ X ↔ Z,
where Y is the label, X is the input sample and Z is the latent feature. Then, for the problem in Eq 1,
we can rewrite the problem by using Lagrange multiplier as follows:

I(y′; z, |θ,D)− βI(y′, D; θ|x′)
= I(y′; z, |θ) + I(y′;D|θ,z, )− I(y′;D|θ)− βI(y′, D; θ|x′)

(2)

There are mainly three terms in Eq . 2, including I(y′; z|θ), I(y′;D|θ,z), and I(y′, D; θ|x′).

For the first term, we have:

I(y′; z|θ) =

∫
p(z, y|θ)log p(y

′|z, θ)
p(y′|θ)

dy′dz

=

∫
p(z, y′|θ) log p(y′|z, θ)dy′dz −

∫
p(y′|θ) log p(y′|θ)

≥
∫
p(z, y′|θ) log q(y′|z, θ)dy′dz +

∫
p(y′|θ) log

1

p(y′|θ)

≥
∫
p(z, y′|θ) log q(y′|z, θ)dy′dz

(3)

where q(y′|z, θ) is a variational approximation to the target distribution p(y′|z, θ). The first inequality
is obtained by the theorem KL(p(y′|z, θ)|q(y′|z, θ)) ≥ 0 and the second inequality is obtained by
ignoring the

∫
p(y′|θ) log 1

p(y′|θ) which is independent of our optimization procedure.

Then, as
∫
p(z, y′|θ)dy′dz =

∫
p(x′, y′|θ)p(z|x′, θ)dx′dy′dz, we can approximate the lower bound

of I(y′; z, |θ) by using the empirical data distribution of p(x′, y′) on D′. We obtain I(y′; z, |θ) ≥
E
∫
p(z|x′n, θ) log q(yn|z, θ)dz. Utilizing the reparameterization trick, this can be estimated as

Ex′Eε∼N(0,I) [log q(y′|x′, θ, ε)].
For the second term, we follow the proof in Appendix A.2 of the paper Yin et al. (2020) to obtain the
following lower bound:

I(y′;D|θ,z) ≥ I(x′; y′|θ, z) ≥ I(x′; y′|θ)− I(x′; z|θ)
≥ I(x′; y′|θ)− E [KL(p(z|x′, θ)||r(z))]

(4)

where the p(z|x′, θ) can be computed as a deterministic function by using the reparameterization
trick.
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For the last term, we can obtain:

I(y′, D; θ|x′) = E

[
log

p(y′, D, θ|x′)
p(y′, D|x′)p(θ|x′)

]
= E

[
log

p(θ|D,x′, y′)
p(θ|x′)

]
≤ E [KL(p(θ|D,x′, y′)||r(θ)]

(5)

where r(θ) ∼ N(0, I) is a variational approximation to the target distribution of θ.

Following the observation in the paper Finn et al. (2018) that adapting the parameters with gradient
descent is a good way to update them to a given training set D and the testing set D′. Then, we can
get p(θ|D,x′, y′) = N(θu − γOθuL(θu, D)− γOθuL(θu, D

′); θσ).

Finally, combing these terms, we obtain the lower bound as follows:

I(y′; z, |θ,D)− βI(y′, D; θ|x′)
≥ Ex′Eε∼N(0,I) [log q(y′|x′, θ, ε)]
+ I(x′; y′|θ)− E [KL(p(z|x′, θ)||r(z))]
− I(y′;D|θ)
− βE [KL(p(θ|D,x′, y′)||r(θ)]

(6)

2 CONSTRUCTION ALGORITHM FOR NON-IID SCENARIOS USED IN THE
EXPERIMENT

We propose the non-iid data scenario, namely Semi-Consistent non-IID (sc-non-IID) data for the
experiments. Then, non-IID settings are different sc-non-IID data with different construction hyper-
parameters. In this section, we first present definitions and discuss the relation between non-IID and
sc-non-IID.

2.1 DEFINITIONS

The propose of semi-consistent non-IID (sc-non-IID) scenario for devices is motivated by mutually
exclusive tasks in meta-learning Yin et al. (2020). As pointed out in work Jiang et al. (2019), the
tasks in meta-learning have similar meanings to devices in federate learning. Thus, we transplant the
concept of mutual exclusion of tasks in meta-learning to the relationship between devices in federated
learning. That is, for arbitrary two mutually-exclusive devices in the system, they perform similar
classification tasks sampled from a task distribution P (Γ), but the samples, labels, and output of tasks
are different. Therefore, unlike the existing non-IID data with only label distribution and sample
quantity skewness, sc-non-IID introduces the triple heterogeneity of samples, labels, and tasks to
make it highly consistent with the practical heterogeneous scenario required by the personalized FL.
Following the definition of non-IID data, the mathematical definition of the sc-non-IID data is:
Definition 2.1 (Semi-consistent non-IID data). For different devices m and n with corresponding
datasets (X,y)m and (X,y)n, respectively, the sc-non-IID statistics can be formulated as:

(x, y)m ∼ Pm, (x, y)n ∼ Pn
∃i, j ∈ R, p(xmi ,xnj ) 6= p(xmi )p(xni )

(7)

where ym ∈ Ym, yn ∈ Yn, xm ∈ Xm, xn ∈ Xn, and (Ym,Xm) ∼ Γm, (Yn,Xn) ∼ Γn with the
tasks Γm,Γn ∼ p(Γ), .
Definition 2.2 (Non-mutually-exclusive rate). For the decentralized system with C devices, the
non-mutually-exclusive rate ζ is defined as 1− |S

me|
C , where Sme is a group of devices, in which any

two devices meet definition 2.1.

From the definition 2.2, when ζ = 1, the proposed sc-non-IID scenario equals to the standard non-IID
scenario. The basic assumption of sc-non-IID data is the privacy and task heterogeneity enhancement
of the standard non-IID data setup in existing work Kairouz et al. (2019). In real-world devices,
the datasets among devices are not formed by partitioning an existing dataset based on labels or
quantity but are generated by each independent device in an uncontrollable and high cross-device
differences manner. Then, heterogeneity exists in both the data structure (i.e., feature distribution
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skew, label distribution skew, concept shift Li et al. (2020); Kulkarni et al. (2020), and quantity skew)
and the tasks (i.e., the difference in objectives, evaluations, and metrics). Therefore, the intuitive
understanding of sc-non-IID data is a mixture of these heterogeneities. The sc-non-IID data with
a high privacy guarantee gives a better and comprehensive representation of the practical scenario
required by the FL personalization. As it is an enhanced and extended non-IID data, we construct
the sc-non-IID data based on the existing non-IID setup by further integrating the principles of meta
dataset Triantafillou et al. (2019).

Algorithm 1: Construction algorithm of sc-non-IID
input :The dataset (Y,X ); Device-specific classes upper bound T ;

Non-mutually-exclusive rate ζ; P% samples for support set in each device
output :The constructed sc-non-IID data for devices

1 Randomly select |Sme| = ζ × C, and (1− ζ)× C devices for c = 1; c < C; c = c+ 1 do
2 t ∼ Uniform(2, T );
3 Sample yc ∈ Y , | yc |= t;
4 Xc = {Xi ∼ Xi; i ∈ y}; where Xi is a set of samples for class i and Xi ∈ X .
5 if c ∈ Sme then
6 X

c ← DataAugmentation(Xc)
/* Sample heterogeneity */

7 yc ← RelabelCategories(yc)
/* Label heterogeneity */

8 D = (X,y) /* Task heterogeneity */

9 Support set Dc = (X,y)c

10 Query set D′c = (X ′,y′)c, where |D
c|
|D| = P and |Dc|+ |D′c| = |D|

11 else
12 Support set, Dc = (X,y)c,
13 Query set, D′c = (X ′,y′)c, where |D

c|
|D| = P and |Dc|+ |D′c| = |D|

14 end
15 end

2.2 ANALYSIS OF THE SC-NON-IID SCENARIO

The constructed sc-non-IID dataset with mixed heterogeneous is utilized for testing algorithms and
assessing their resilience to different degrees of heterogeneity among devices. When ζ = 1, we
have the existing non-IID scenario. When ζ ∈ (0, 1), the sc-non-IID scenario introduces a challenge
of achieving performance trade-off between optimality and adaptability of the global model for
personalization. When ζ = 0, a global model with high adaptability is perferrable. Thus, each device
can gain a personalized model within a few updates with this global model as the initial model. In
all three conditions, the main objective is to make the learning process adaptively balance the initial
performance and the ability for personalization in local updates and server aggregation.

3 MORE EXPERIMENTAL DETAILS AND RESULTS

In this section, we present more settings and detailed results of our AFML on CIFAR-100 and
Shakespeare datasets under different non-IID settings.

3.1 EXPERIMENTAL SETUP

Datasets. We utilize CIFAR100 and Shakespeare datasets. CIFAR100 has 500K training and 100K
testing samples. The training and testing examples are partitioned across 500 and 100 clients,
respectively. For Shakespeare, there are 16,068 training and 2,356 samples from 715 users. The
dataset is partitioned across 528 clients for training and 52 clients for testing. The construction of
non-IID settings used in experiments is motivated by the work Triantafillou et al. (2019). Then, the
detailed construction procedure of generating the non-IID scenarios under ζ ∈ [0, 1] for these datasets
is shown in Section 2 of the Appendix.
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Table 1: Learning Setting

Datasets CIFAR100 Shakespeare
server clients server clients

Learning rate 0.001 0.01 0.001 0.001
STANDARD Batch - 100 - 20

Optimizer SGD
Learning rate 0.01 0.01 0.1 0.01

META Batch - 20 - 16
Optimizer SGD
Support set P% samples of local training dataset

Table 2: Performance for personalized models on ζ = 0.2, 0.8.

Rate Methods Configurations CIFAR100 Shakespeare
Pers.1 Acc. Pers.5 Acc. Com. Rou. Pers.1 Acc. Pers.5 Acc. Com. Rou.

0.2

FedAvg-FT E=3 NONE NONE NONE NONE NONE NONE
E=10 NONE NONE NONE NONE NONE NONE

FedPer-Meta 20% Support 0.3253(0.0071) 0.3872(0.0063) 1561 0.2501(0.0087) 0.3092(0.0055) 285
80% Support NONE NONE None NONE NONE NONE

FedMAML 20% Support 0.4133(0.0041) 0.4881(0.0065) 1074 0.2679(0.0051) 0.3455(0.0062) 129
80% Support 0.4298(0.0035) 0.4922(0.0042) 1230 0.2874(0.0026) 0.3598(0.0032) 156
20% Support 0.5114(0.0076) 0.5633(0.0081) 1019 0.2961(0.0054) 0.4302(0.0065) 137AFML 80% Support 0.5175(0.0071) 0.5762(0.0079) 963 0.3212(0.0049) 0.4211(0.0054) 119

0.8

FedAvg-FT E=3 0.4677(0.0053) 0.4891(0.0076) 1792 0.3602(0.0039) 0.3776(0.0062) 425
E=10 0.5621(0.0039) 0.5702(0.0065) 1627 0.3688(0.0027) 0.3763(0.0051) 394

FedPer-Meta 20% Support 0.5872(0.0064) 0.6254(0.0069) 1652 0.3709(0.0039) 0.3953(0.0042) 311
80% Support 0.6301(0.0058) 0.6592(0.0061) 1408 0.3856(0.0054) 0.4076(0.0059) 271

FedMAML 20% Support 0.6722(0.0054) 0.6970(0.0066) 1227 0.4218(0.0076) 0.4406(0.0085) 155
80% Support 0.6893(0.0075) 0.7046(0.0084) 1052 0.4323(0.0048) 0.4458(0.0063) 115
20% Support 0.6854(0.0044) 0.7325(0.0049) 884 0.4280(0.0033) 0.4743(0.0042) 126AFML 80% Support 0.6912(0.0051) 0.7571(0.0058) 743 0.4376(0.0018) 0.4880(0.0029) 109

The ”NONE” represents that algorithm cannot converge.

Learning Setting. We cast all evaluation tasks as the classification problem and consider two
settings: MODEL and LEARNING. For the MODEL, the neural network (NN) is the only considered
architecture for both the encoding and classification networks. They are constructed in simple
structures because of the limited computation resources in the clients. Specifically, for CIFAR100,
the encoding network contains three VGG blocks and one dense layer, while the classifier contains
three dense layers. For Shakespeare, the encoding network is a two-dense layer, and the classification
module has two LSTM hidden layers with 100 memory cells following one 100-d dense layer used
for the next word prediction. For the LEARNING, there are two settings, including META for
FedPer-Meta, FedMAML and STANDARD for FedAvg-FT, summarized in Section 3 Table 1. For
coefficient α and β of regularization terms of AFML, we set α = 0.05 and β = 0.01. The learning
rates η1, η2, η for our AFML are 0.0001, 0.0005, 0.001, respectively.

Performance metrics: AFML is compared with three state-of-the-art methods, including FedAvg-
FT Jiang et al. (2019), FedPer-Meta Fallah et al. (2020), and FedMAML Deng et al. (2020) where
FedPer-Meta is an enhancement work of FedPer-Meta Chen et al. (2019). We conduct three metrics
for the performance evaluation. Firstly, we study the number of communication rounds (Com. Rou.)
to reach convergence. The system budget in terms of the number of bytes downloaded/uploaded in
communication and the floating-point operations (Flops) required for a specific accuracy is provided
for further analysis. Secondly, we use the Top1-accuracy to evaluate the personalized model after
performing 1 and 5 personalization epochs (i.e., Pers1. Acc. and Pers5. Acc). Third, we show the
final accuracy distribution of personalized models for all clients and the comparison results with the
locally trained models.

REFERENCES

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning with fast
convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2019.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

4



Under review as a conference paper at ICLR 2022

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy

0

5

10

15

20

25

Nu
m

be
r o

f C
lie

nt
s

Shakespeare, The accuracy distribution of devices
AFML

(a)

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy

0

5

10

15

20

25

Nu
m

be
r o

f C
lie

nt
s

Shakespeare, The accuracy distribution of devices
FedPer-Meta FedMAML AFML

(b)

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy

0

5

10

15

20

25

Nu
m

be
r o

f C
lie

nt
s

Shakespeare, The accuracy distribution of devices
FedAvg-FT FedPer-Meta FedMAML AFML

(c)

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy

0

5

10

15

20

25

Nu
m

be
r o

f C
lie

nt
s

Shakespeare, The accuracy distribution of devices
FedAvg-FT FedPer-Meta FedMAML AFML

(d)

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy

0

5

10

15

20

25

Nu
m

be
r o

f C
lie

nt
s

Shakespeare, The accuracy distribution of devices
FedAvg-FT FedPer-Meta FedMAML AFML

(e)

0.1 0.2 0.3 0.4 0.5 0.6
Accuracy

0

5

10

15

20

25

Nu
m

be
r o

f C
lie

nt
s

Shakespeare, The accuracy distribution of devices
FedAvg-FT FedPer-Meta FedMAML AFML

(f)

Figure 1: Accuracy distributions of devices on Shakespeare dataset under non-mutually-exclusive rate
ζ = [0, 1]. Compare AFML with FedAvg-FT, FedPer-Meta, and FedMAML. (a)ζ = 0, (b)ζ = 0.2,
(c)ζ = 0.4, (d)ζ = 0.6, (e)ζ = 0.8, (f)ζ = 1.
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Figure 2: Accuracy distributions of devices on CIFAR-100 dataset under non-mutually-exclusive rate
ζ = [0, 1]. Compare AFML with FedAvg-FT, FedPer-Meta, and FedMAML. (a)ζ = 0, (b)ζ = 0.1,
(c)ζ = 0.2, (d)ζ = 0.3, (e)ζ = 0.5, (f)ζ = 0.6, (g)ζ = 0.7, (h)ζ = 0.8, (i)ζ = 0.9, (j)ζ = 1.
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