
A Appendix549

A.1 Dataset Information550

Dataset access and maintenance plan The MinT dataset will be provided via the persistent long-551

term storage service RADAR4KIT (Research Data Repository for KIT), ensuring both uninterrupted552

and machine readable access. Data published by RADAR4KIT is indexed via Metadata following553

the Open Archive Initiative interface which is automatically published to datacite.org and will554

automatically be referable via a DOI. Data is secured according to Open Archival Information System555

standard ISO 14721:2003 and availability is guaranteed for a minimum of 10 years.556

To facilitate the review process and integrate reviewer feedback concerning the data structure557

(RADAR4KIT data can not be changed easily), we provide an intermediate link for direct download558

of our data, which will be exchanged with a RADAR4KIT link for the camera ready version.559

Currently the dataset can be downloaded under this link (2.2 GB, compressed tar file):560

https://s.kit.edu/mint-data561

Our code for motion to muscle estimation can be found here:562

https://github.com/simplexsigil/motion2muscle.git563

License The MinT dataset is build on top of the KIT Whole-Body Human Motion Database,564

BMLmovi, BMLrub, the EyesJapan dataset and TotalCapture. We make use of AMASS to map from565

the motions of these original datasets to virtual marker positions in OpenSim.566

All of these datasets allow usage of their data for non-commercial scientific research:567

• The license of AMASS can be found under https://amass.is.tue.mpg.de/license.html568

• The License of BMLmovi and BMLrub can be found under569

https://www.biomotionlab.ca/movi/570

• The KIT Whole-Body Human Motion Database can be used upon citation of the original571

work as explained here https://download.is.tue.mpg.de/amass/licences/kit.html572

• The license for the EyesJapan dataset can be found under573

http://mocapdata.com/Terms_of_Use.html574

• The license for the Total Capture dataset can be found under575

https://cvssp.org/data/totalcapture/576

The Muscles in Time dataset will be published under a CC BY-NC 4.0 license as defined under577

https://creativecommons.org/licenses/by-nc/4.0/. Researchers making use of this dataset must also578

agree to the licenses mentioned above which can add additional restrictions depending on the579

individual sub-dataset.580

Our data generation pipeline is licensed under Apache License Version 2.0 as defined under581

https://apache.org/licenses/LICENSE-2.0.582

Code for training our muscle activation estimation networks is licensed under the MIT license as583

defined under https://opensource.org/license/mit.584

Author statement The authors of this work bear the responsibility for publishing the MinT dataset585

and related code and data.586

Data structure The structure of the provided MinT data is intentionally kept simple. All data is587

saved in CSV files or pandas DataFrames stored in pickle files. In Listing 1 we display how data for588

an individual sample can be loaded with minimal dependencies (joblib and pandas). We provide589

muscle activations in a range of [0, 1], ground reaction forces and effective muscle forces. Data590

is provided with 50 fps, each dataframe is indexed by fractional timestamps. Columns are named591

meaningfully, the first 80 muscles belong to the lower body model, the following 322 muscels belong592
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to the upper body model. The first and last 0.14 seconds are cut off since the muscle activation593

analysis is unstable towards the beginning and end of data. Since the data is generated in chunks of594

1.4 seconds and muscle activation analysis can fail to succeed due to various factors, the provided595

data may contain gaps identified by missing data for certain time ranges.596

1 >>> # First download and extract the dataset.
2 >>> # Example for sample
3 >>> #’BMLmovi/BMLmovi/Subject_11_F_MoSh/Subject_11_F_10_poses ’
4 >>> import joblib
5 >>> joblib.load("muscle_activations.pkl")
6 LU_addbrev_l ... TL_TR4_r TL_TR5_r
7 0.14 0.016 ... 0.003 0.061
8 0.16 0.028 ... 0.005 0.070
9 0.18 0.033 ... 0.002 0.080

10 ... ... ... ... ...
11 3.74 0.024 ... 0.020 0.028
12 3.76 0.016 ... 0.009 0.004
13 3.78 0.011 ... 0.003 0.000
14

15 [183 rows x 402 columns]
16

17 >>> joblib.load("grf.pkl")
18 ground_force_right_vx ... ground_torque_left_z
19 0.14 15.962 ... 0.0
20 0.16 10.596 ... 0.0
21 0.18 3.422 ... 0.0
22 ... ... ... ...
23 3.72 20.337 ... 0.0
24 3.74 21.572 ... 0.0
25 3.76 22.546 ... 0.0
26

27 [182 rows x 18 columns]
28

29 >>> joblib.load("muscle_forces.pkl")
30 LU_addbrev_l ... TL_TR4_r TL_TR5_r
31 0.14 8.430 ... 0.153 11.652
32 0.16 15.345 ... 0.283 13.240
33 0.18 19.127 ... 0.143 15.240
34 ... ... ... ... ...
35 3.72 14.437 ... 1.320 3.661
36 3.74 13.993 ... 1.270 5.330
37 3.76 9.346 ... 0.577 0.847
38

39 [182 rows x 402 columns]

Listing 1: Simplified loading of MinT samples with joblib and pandas.

The musint package To further facilitate the usage of the MinT dataset, we provide the musint597

package, a Python package that allows data to be loaded into a predefined torch dataset and allows598

simplified cross-referencing with BABEL dataset labels. Additionally, it includes functionality for599

sampling a sub-window of the data at a given framerate as well as identifying and handling any gaps600

in the data. A short example on the musint package usage is displayed in Listing 2.601

The musint package can be installed via pip install musint. Additional insight can be found on602

the musint github page where we also provide a Jupyter notebook for displaying the data as well as603
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additional information on muscle subsets:604

https://github.com/simplexsigil/MusclesInTime605

1 >>> # First download and extract the dataset.
2 >>> import os
3 >>> from musint.datasets.mint_dataset import MintDataset
4

5 >>> md = MintDataset(os.path.expandvars("$MINT_ROOT"))
6

7 >>> md.by_path("TotalCapture/TotalCapture/s1/acting2_poses")
8 MintData(path_id=’s1/acting2 ’, babel_sid =12906 , dataset=’

TotalCapture ’, amass_dur =61.7 , num_frames =1114, fps=50.0,
analysed_dur =22.26 , analysed_percentage =0.36, data_path=’
TotalCapture/TotalCapture/s1/acting2_poses ’, weight =72.1 ,
height =169.2 , subject=’s1’, sequence=’acting2_poses ’,
gender=’male’, has_gap=False , dtype=object))

9

10 >>> md.by_path("TotalCapture/TotalCapture/s1/acting2_poses").
get_muscle_activations(time_window =(0.3 ,1.),
target_frame_count=int (0.7*20.))

11 LU_addbrev_l ... TL_TR4_r TL_TR5_r
12 0.30 0.094 ... 0.000 0.020
13 0.36 0.094 ... 0.003 0.042
14 0.40 0.091 ... 0.000 0.027
15 ... ... ... ... ...
16 0.90 0.093 ... 0.000 0.008
17 0.94 0.093 ... 0.000 0.000
18 1.00 0.094 ... 0.001 0.009
19

20 [14 rows x 402 columns]

Listing 2: Loading the MinT dataset with the python musint package.

A.2 Additional statistics and information606

In Figure 9 we provide additional information on the data analyzed provided with Muscles in Time.607

Total Capture makes up a small part of the dataset with exceptionally long sequences. The Eyes Japan608

Dataset provides the largest contribution with 3.2h of analyzed recordings.609

In Tables 3 and 4, we list larger muscle groups in the lower and upper body model as well as their610

function for human motion. Muscle groups or larger muscles can be represented by multiple simulated611

muscles, e.g. since such muscles are attached to multiple muscle locations or exert forces in varying612

directions. The Gluteus Medius muscle is an example with three simulated activations on each side613

of the body.614

A.3 Design choices and more detailed limitations615

The muscle-driven simulation, based on the approach by Falisse et al. [18], aims to ensure that muscle616

and skeletal dynamics align closely with given kinematic data while minimizing muscle effort. This617

process involves finding a solution within the problem space that satisfies an error tolerance and the618

number of collocation points, which depend on the dynamics of the kinematic data. Collocation619

points are used to discretize the continuous kinematic and dynamic equations into a finite set of points,620

making the optimization problem computationally feasible. To mitigate the risk of nonconvergent621

or nonmeaningful solutions, we implemented safeguards by restricting the deviation between the622

kinematic information before and after the optimization problem converges.623
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Figure 7: Virtual marker placement for transferring motions to OpenSim, enlarged from Figure 2.

Figure 8: Lower body and upper body model, enlarged from Figure 2.
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Figure 9: Average number of labels per sequence, composition of sub datasets and average sequence
length.

Figure 10: Analysis runtime distribution of the optimal trajectory problem described by Falisse et
al. [18]. Subset of 10k runs.

Given the computational complexity, we decided to use 50 collocation points per second and an624

error tolerance of 10−3. On an Intel Xeon Gold 6230 with 96 GB RAM, processing 6 subsequences625

of 1.68 seconds (including 0.14 second buffers at start and end) in parallel took approximately a626

median time of 45 minutes. Figure 10 displays a distribution of sample-wise runtimes in a violin627

plot. Non-converging samples tend to have higher runtimes and can be found on the long tail on628

the right. To manage the impact of unsuccessful simulations on the overall runtime, we limited the629

optimization problem to 2500 iterations and discard a sample if the optimization does not fall within630

error tolerance after this time. The AMASS sequences were divided into 1.4-second segments to631

mitigate a nonlinearly increasing runtime associated with longer motion sequences. After simulation,632

these segments were recombined into the original sequences, with muscle values smoothed at the633

connection points to ensure seamless transitions.634

A challenge arose from minor variable distances between the AMASS body model and the ground,635

since the contact spheres provided by the OpenCap simulation are susceptible to changes in foot-636

ground distance. To provide similar foot-ground distances over all AMASS subjects, our pipeline637

automatically offsets the AMASS model depending on the lowest body marker over the time of the638

sequence.639
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Table 3: List of muscle groups modelled in the model by Lai et al. [33], which are analysed in the
presented approach, and their functions [74].

Muscle Function
Gluteus Maximus Extension and rotation of the hip.

Gluteus Medius Abduction and rotation of the thigh.

Gluteus Minimus Abduction and rotation of the thigh.

Adductor Brevis Adduction, flexion, and rotation of the thigh.

Adductor Longus Adduction and flexion of the thigh.

Adductor Magnus Adduction, flexion and rotation of the thigh.

Gracilis Adduction, flexion and rotation of the thigh.

Semitendinosus Flexion and rotation of the knee, as well as extension of the
hip.

Semimembranosus Flexion and rotation of the knee, as well as extension of the
hip.

Tensor Fasciae Latae Abduction and rotation of the thigh, as well stabilisation of
the pelvis.

Piriformis Rotation and extension of the thigh and abduction of thigh.

Sartorius Flexion, abduction, and rotation of the hip and flexion of the
knee.

Iliacus Flexion of the hip.

Psoas Flexion and rotation of the hip.

Rectus Femoris Flexion of hip and extension of knee.

Biceps Femoris Flexion of knee and extension of hip.

Medial Gastrocnemius Flexion of foot and flexion of knee.

Lateral Gastrocnemius Plantar flexion and knee flexion.

Tibialis Anterior Dorsiflexion and inversion of the foot.

Vastus Extension of the knee.

Extensor Digitorum Longus Extension of toes and dorsiflexion of the foot.

Extensor Hallucis Longus Extension of the big toe and dorsiflexion of the foot.

Flexor Digitorum Longus Flexion of toes, as well as plantar flexion and inversion of
the foot.

Flexor Hallucis Longus Flexion of toes, as well as plantar flexion and inversion of
the foot.

Peroneus (Fibularis) Plantar flexion and eversion of the foot.

Soleus Plantar flexion of the foot.

Mapping AMASS motions to OpenSim models presented difficulties due to the numerous degrees640

of freedom in the Thoracolumbar model, complicating kinematic analysis. To safeguard the ver-641

tebral joints against aberrant movements, we constrained the range of motion for each vertebra,642

approximating the natural degrees of freedom in the vertebrae joints.643

The MinT dataset was restricted to motions involving foot-ground contact only. Motions involving644

ground contact of other body parts or involving objects were excluded, except for motions that645

included throwing and lifting, which are particularly relevant for analyzing back muscle activation. In646
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Table 4: List of muscle groups modelled in the model by Bruno et al. [3], which are analysed in the
presented approach, and their functions [74].

Muscle Function
Longissimus Extension and rotation of the vertebrae.

Iliocostalis Extension and flexion of the neck.

Semispinalis Extension and rotation of the vertebrae.

Splenius Extension and rotation of the vertebrae.

Sternocleidomastoid Flexion and rotation of the head.

Scalenus Elevation of ribs and flexion of the neck.

Longus Colli Flexion of the neck and stabilisation of the cervical spine.

Levator Scapulae Elevation and adduction of the scapula.

Quadratus Lumborum Flexion the vertebral column.

Multifidus Stabilisation cervical vertebrae.

Rectus Abdominis Flexion of the lumbar spine.

External Oblique Flexion and rotation of the trunk.

Internal Oblique Flexion and rotation of the trunk.

Transversus Abdominus Stabilisation of the trunk.

these cases, we assumed the objects’ mass to be negligible, as the AMASS dataset does not provide647

this information.648

A.4 Results for additional muscle subsets649

To facilitate comparability to real world recordings as well as to other datasets, we define two muscle650

subsets of the lower body model, containing either 16 or eight of the most important lower body651

muscles for human locomotion. The subset LAI_ARNOLD_LOWER_BODY_16 contains left gluteus652

medius 1, left adductor magnus ischial part, left gluteus maximus 2, left iliacus, left rectus femoris,653

left biceps femoris long head, left gastrocnemius medial head, left tibialis anterior, right gluteus654

medius 1, right adductor magnus ischial part, right gluteus maximus 2, right iliacus, right rectus655

femoris, right biceps femoris long head, right gastrocnemius medial head and right tibialis anterior656

while the muscle subset LAI_ARNOLD_LOWER_BODY_8 contains left gluteus medius 1, left gluteus657

maximus 2, left rectus femoris, left biceps femoris long head, right gluteus medius 1, right gluteus658

maximus 2, right rectus femoris and right biceps femoris long head. These subsets are also defined659

within the musint package.660

In Table 5 we list the results of our 16 layer transformer model on these subsets.661

Table 5: Human motion-to-muscle activation prediction results for the lower body model.
Motion All muscles Lower Body Subset 16 Subset 8

RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓
overall 0.036 0.55 95.3 0.048 0.54 45.1 0.066 0.56 47.7 0.060 0.56 45.0
jump 0.052 0.64 100.7 0.051 0.71 52.3 0.059 0.71 55.5 0.056 0.70 54.2
kick 0.046 0.64 102.8 0.053 0.62 54.8 0.068 0.63 57.0 0.067 0.67 57.4
stand 0.033 0.56 97.5 0.046 0.58 45.0 0.062 0.61 47.5 0.052 0.59 43.6
walk 0.026 0.65 90.7 0.044 0.77 42.4 0.060 0.77 43.3 0.057 0.77 43.4
jog 0.033 0.71 99.0 0.046 0.71 51.1 0.063 0.75 51.8 0.062 0.71 52.7
dance 0.041 0.60 109.2 0.057 0.65 58.5 0.073 0.66 59.6 0.072 0.67 59.5
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A.5 Training on Muscles in Action662

We evaluate the generalizability of MinT by finetuning our 16-layer transformer architecture exclu-663

sively on the first and last transformer block and comparing the results with full training from scratch664

on Muscles in Action [9]. The motions in MIA were obtained with VIBE [32], a 3D pose estimation665

method performed on 2D images. The resulting motions are very noisy in contrast to the motions in666

AMASS which are the result of motion capture, inducing a significant domain gap. Table 6 shows667

our results. We find that limiting our training to the first and last transformer block results in very668

similar RMSE values compared to full fine-tuning, while PCC and SMAPE clearly displays a small669

but significant advantage of the full fine-tuning strategy. Still, finetuning the first and last layer only670

affects some 8% of all trainable weights, and we see this as an indication for the transferability of the671

knowledge obtained by training on MinT.672

Table 6: Human motion-to-muscle activation prediction results on Muscles in Action [9].
Motion Full Fine-tuning First and last layer

RMSE↓ PCC↑ SMAPE↓ RMSE↓ PCC↑ SMAPE↓
Overall 15.11 0.27 37.0 15.15 0.21 41.6
ElbowPunch 15.66 0.25 43.6 15.48 0.19 48.8
FrontKick 8.49 0.19 34.5 8.20 0.14 41.0
FrontPunch 8.47 0.38 29.8 8.22 0.36 36.3
HighKick 13.09 0.35 37.0 12.94 0.29 39.7
HookPunch 13.18 0.32 37.1 13.28 0.28 44.6
JumpingJack 13.79 0.27 28.5 13.42 0.23 29.5
KneeKick 12.32 0.25 37.3 12.26 0.16 43.0
LegBack 11.70 0.32 37.3 11.91 0.18 44.4
LegCross 13.89 0.17 42.7 13.84 0.11 48.9
RonddeJambe 15.81 0.20 39.5 15.50 0.17 42.6
Running 7.53 0.30 26.3 7.25 0.24 27.4
Shuffle 9.79 0.21 28.0 9.56 0.13 30.5
SideLunges 26.13 0.29 45.9 26.66 0.22 51.7
SlowSkater 20.15 0.26 42.1 20.81 0.19 47.2
Squat 22.68 0.26 44.9 22.76 0.21 48.2

A.6 Additional qualitative examples for MinT673

In Figure 6 we listed two qualitative examples to display the muscle activation estimation quality of674

our best model. In Figures 11 to 17 we display these two test set samples as well es an additional 48675

randomly chosen samples from the test set.676

A.7 Corrections677

In line 266 and 267 we wrote678

In the construction of the dataset, some design choices had to increase simulation679

robustnees, [...]680

while the correct text should be681

In the construction of the dataset, some design choices were made to increase682

simulation robustness, [...]683
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Figure 11: Muscle activation estimation with our 16 layer tranformer model.
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Figure 12: Muscle activation estimation with our 16 layer transformer model.
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Figure 13: Muscle activation estimation with our 16 layer transformer model.
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Figure 14: Muscle activation estimation with our 16 layer transformer model.
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Figure 15: Muscle activation estimation with our 16 layer transformer model.
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Figure 16: Muscle activation estimation with our 16 layer transformer model.
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Figure 17: Muscle activation estimation with our 16 layer transformer model.
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