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A BACKGROUNDS

Deep Deterministic Policy Gradient Incorporating a parameterized actor function µ✓(s), Deep
Deterministic Policy Gradient uses the following actor and critic and loss to train the agent:

J⇡(✓) = Êst⇠D[�Q�(st, at)|at=µ✓(st)],

JQ(�) = Êst⇠D[(Q�(st, at)� Q̂(st, at))
2|at=µ✓(st)],

(16)

where Q̂(st, at) = rt + �Q�̄(st+1, µ✓̄(st+1)), which is the target Q-value defined from a target
network, ✓ and � represents the parameters of the actor and the critic respectively, ✓̄ and �̄ represents
the parameters of the target actor and the target critic respectively, and D represents the replay
buffer. The weights of a target network are the exponentially moving average of the online network’s
weights.

Soft Actor-Critic Maximum entropy RL tackles an RL problem with an alternative objective func-
tion, which favors more random policies: J = Ê⇡[

P1
t=0 �

t
rt + ↵H(⇡(· | st))], where � is the dis-

count factor, ↵ is a trainable coefficient of the entropy term and H(⇡(· | st)) is the entropy of action
distribution ⇡(· | st). The Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) optimizes it by
training the actor ⇡✓ and critic Q� with the following respective losses:

J⇡(✓) = Êst⇠D,a⇠⇡[↵ log ⇡✓(a | st)�Q�(st, a)],

JQ(�) = Êst,at⇠D[(Q�(st, at)� Q̂(st, at))
2],

(17)

where Q̂(st, at) = rt+�Q�̄(st+1, at+1)�↵ log ⇡✓(at+1|st+1), which is the target Q-value defined
from a target network and at+1 ⇠ ⇡✓(· | st+1), ✓ ,� and �̄ represents the parameters of the actor, the
critic and the target critic respectively, and D represents the replay buffer. The weights of a target
network are the exponentially moving average of the online network’s weights.

Reinforcement Learning with Augmented Data Reinforcement Learning with Augmented Data
(RAD) (Laskin et al., 2020) applies data augmentation in SAC by replacing the original observation
with augmented observations in the training of the actor and critic. Given image transformation f⌫ ,
the actor and critic losses are

J⇡(✓) = Êst⇠D,a⇠⇡[↵ log ⇡✓(a | f⌫(st))�Q�(f⌫(st), a)],

JQ(�) = Êst,at⇠D[(Q�(f⌫(st), at)� Q̂(f⌫(st), at))
2],

(18)

Data-Regularized Q Data-regularized Q (DrQ) (Kostrikov et al., 2020) extends RAD by using
data augmentation in the training of the critic in two new ways. Given a type of image transformation
f parameterized by ⌫, data augmentation is first applied in the calculation of the target Q-value for
every transition (s, a, r, s0):

y = r + �
1

K

KX

k=1

Q�̄(f⌧k(s
0), a0), where a

0 ⇠ ⇡(· | f⌧k(s0)). (19)

Q�̄ is the slowly updated target network. Then the critic is updated with different augmented s and
this averaged target:

`Q(�) =
1

NM

NX

i=1

MX

m=1

⇣
Q�(f⌧m(s), a)� y

⌘2
. (20)

Note that DrQ recovers RAD when M = 1 and K = 1.

SVEA In order to avoid non-deterministic Q-target and over-regularization, Hansen et al. (2021)
propose using state without complex augmentation for calculating the target. Let T1 and T2 be a set
of random shift and a set of random shift plus one of the data augmentation mentioned in the paper
such as random convolution (Lee et al., 2019). The critic loss used for training is

LQ(�) =
1

N

NX

i=1

↵svea(Q�(f⌧1,i(s), a)� yi)
2 + �svea(Q�(f⌧2,i(s), a)� yi)

2
, (21)
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where ↵svea and �svea are constant coefficients for naively and complexly augmented data respec-
tively, ⌧1,i 2 T1 and ⌧2,i 2 T2, yi = r + �Q�̄(⌧1,i(s

0), a0) + ↵ log ⇡(a0 | f⌧1,i(s0)), where
a
0 ⇠ ⇡(· | ⌧1,i(s0)).

DrAC Instead of directly replacing the original samples with augmented samples in the training,
Raileanu et al. (2021) use two regularization terms in the training of the actor and critic to explicitly
enforce the invariance. When applying it in the PPO algorithm (Schulman et al., 2017) to learn a
state-value estimator V�(s) and a policy ⇡✓(s), the regularization terms are

GV = (V̂ (s)� V�(f⌫(s)))
2
,

G⇡ = DKL[⇡✓(a | s) | ⇡✓(a | f⌫(s)].
(22)

where V̂ (s) is the sum of rewards collected by the agent after state s and ⌫ is the random variable
for parameterizing the image transformation.

Tangent Prop Regularization Tangent prop (Simard et al., 1991) is a regularization term used for
learning invariance for a function G(s) with respect to a small image transformation parameterized
by ↵ on s:

X����
@G(s,↵)

@↵

����
2

= 0 (23)

B EXPECTED LOSS UNDER DATA AUGMENTATION

B.1 ACTOR LOSS

SAC as base algorithm For image-based control tasks, a data augmentation f parameterized by
µ over T is applied on the observations. The actor loss with implicit regularization for the state s in
a transition is

`
I
✓(s, µ) = Êµ

h
↵ log ⇡✓(â | fµ(s))�Q�(fµ(s), â) |â⇠⇡✓(·|fµ(s))

i

= Êµ

h
DKL

⇣
⇡✓(·|fµ(s))|| exp(

1

↵
Q�(fµ(s), ·)� logZ(fµ(s)))

⌘i (24)

Let g(fµ(s), ·) = exp( 1
↵Q�(fµ(s), ·)� logZ(fµ(s))).

`
I
✓(s, µ)

= Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||g(fµ(s), ·)

⌘i

= Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||g(fµ(s), ·))

⌘
�DKL

⇣
⇡✓(·|fµ(s))||g(s, ·)

⌘

+DKL

⇣
⇡✓(·|fµ(s))||g(s, ·)

⌘i

= Êµ

h Z

a
⇡✓(a|fµ(s)) log

⇡✓(a|fµ(s))
g(a|fµ(s))

�
Z

a
⇡✓(a|fµ(s)) log

⇡✓(a|fµ(s))
g(a|s)

i

+ Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||g(s, ·)

⌘i

= Êµ

h Z

a
⇡✓(a|fµ(s)) log

g(a|s)
g(a|fµ(s))

i
+ Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||g(s, ·)

⌘i

= Êµ

h Z

a
⇡✓(a|fµ(s)) log

g(a|s)
g(a|fµ(s))

i
+ Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||g(s, ·)

⌘

�DKL

⇣
⇡✓(·|fµ(s))||⇡✓,sg(·|s)

⌘
+DKL

⇣
⇡✓(·|fµ(s))||⇡✓,sg(·|s)

⌘i

= Êµ

h Z

a
⇡✓(a|fµ(s)) log

g(a|s)
g(a|fµ(s))

i
+ Êµ

h Z

a
⇡✓(a|fµ(s)) log

⇡✓,sg(a|s)
g(a|s)

i

+ Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||⇡✓,sg(·|s)

⌘i
.

(25)
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If the invariance in the critic has been learned:

Q(fµ(s), a) = Q(s, a) for all a 2 A, (26)

the actor loss with implicit regularization becomes

`
I
✓(s, µ) = Êµ

h Z

a
⇡✓(a|fµ(s)) log

⇡✓,sg(a|s)
g(a|s)

i
+ Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||⇡✓,sg(·|s)

⌘i
, (27)

because
g(a|fµ(s)) = g(a|s) for all a 2 A. (28)

If the actor is well learned for state s, this actor loss become

`
I
✓(s, µ) = Êµ

h
DKL

⇣
⇡✓(·|fµ(s))||⇡✓,sg(·|s)

⌘i
, (29)

because
g(a|s) = ⇡✓,sg(a|s) for all a 2 A. (30)

DDPG as base algorithm For image-based control tasks, a data augmentation f parameterized
by µ over T is applied on the observations. Considering that the Q-invariant transformation is
also ⇡

⇤-invariant, training all policies of the transformed states to get close to the same optimal
policy is equivalent to training the policy of original state and enforce the invariance in the policy.
Considering actor loss with implicit regularization, we can apply a Taylor expansion with respect to
the optimal action ⇡

⇤(fµ(s)) = ⇡
⇤(s) = argmaxa Q�(s, a):

`
I
✓(s, µ)

= Êµ

h
�Q�(fµ(s), â) |â=⇡✓(fµ(s))

i

= �Êµ

h
Q�(fµ(s),⇡

⇤(fµ(s)) + J(â� ⇡
⇤(fµ(s)))

+
1

2
(â� ⇡

⇤(fµ(s)))
T
H(â� ⇡

⇤(fµ(s))) + o(kâ� ⇡
⇤(fµ(s))k2)|â=⇡✓(fµ(s))

i

⇡ �1

2
Êµ

h
(â� ⇡

⇤(fµ(s)))
T
H(â� ⇡

⇤(fµ(s)))|â=⇡✓(fµ(s))

i

= �1

2
Êµ

h
(â� ⇡✓,sg(s) + ⇡✓,sg(s)� ⇡

⇤(fµ(s)))
T
H

(â� ⇡✓,sg(s) + ⇡✓,sg(s)� ⇡
⇤(fµ(s)))|â=⇡✓(fµ(s))

i

= �1

2
Êµ

h
(â� ⇡✓,sg(s))

T
H(â� ⇡✓,sg(s))

+ (⇡✓,sg(s)� ⇡
⇤(fµ(s)))

T
H(⇡✓,sg(s)� ⇡

⇤(fµ(s)))

+ 2(â� ⇡✓,sg(s))
T
H(⇡✓,sg(s)� ⇡

⇤(fµ(s)))|â=⇡✓(fµ(s))

i
.

(31)

The first term above is enforcing the invariance of the actor with respect to the transformation.

B.2 CRITIC LOSS

B.2.1 LINEAR MODEL

According to the analysis by Balestriero et al. (2022), the expected Mean Squared Error (MSE)
under data augmentation for a linear regression model can be expressed by the expectation and
variance of the transformed images. Now we want to derive a similar regularization term from the
critic loss.

If we use linear model for the critic and actor:

Q(s, a) = Ws ⇤ s+Wa ⇤ a+ b0 (32)

Q̄(s, a) = W̄s ⇤ s+ W̄a ⇤ a+ b̄0 (33)
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⇡(s) = W⌧ ⇤ s+ ✏W� ⇤ s+ b1, ✏ ⇠ N (0, 1) (34)
in which Ws 2 R1⇤|S|, Wa 2 R1⇤|A|, W⌧ 2 R1⇤|S|, W� 2 R1⇤|S| and b0, b1 are parameters for
the model. Q̄ is the exponential moving average of Q.

The critic loss for a transition (s, a, r, s0) under data augmentation ⌫ ⇠ P and µ ⇠ P 0 for state s

and next state s
0 is

`� = E⌫

h⇣
Q(f⌫(s), a)� Êµ[y]

⌘2i

= E⌫

⇥
Q(f⌫(s), a)

2
⇤
� 2E⌫

⇥
Q(f⌫(s), a)

⇤
Êµ[y] + Êµ[y]

2)
(35)

in which
y = r + �Q̄(fµ(s

0), a0)� ↵ log ⇡(a0|fµ(s0))|a0⇠⇡(·|fµ(s0)). (36)

Considering the last term is not used to update Q, we only need to focus on the first two terms.

Expectation

E⌫

⇥
Q(f⌫(s), a)

⇤
= E⌫ [Wsf⌫(s) +Waa+ b0]

= WsE⌫ [f⌫(s)] +Waa+ b0

= Q(E⌫ [f⌫(s)], a)

(37)

Variance

E⌫

⇥
Q(f⌫(s), a)

2
⇤

= E⌫

h
(Wsf⌫(s) +Waa+ b0)

2
i

= E⌫

h
f
T (s, ⌫)WT

s Wsf⌫(s) + (Waa+ b0)
2 + 2(Waa+ b0)

�
Wsf⌫(s)

�i

= E⌫

h
Tr

⇣
WT

s Wsf⌫(s)f
T (s, ⌫)

⌘i
+ (Waa+ b0)

2 + 2(Waa+ b0)
�
WsE⌫ [f⌫(s)]

�

= Tr

⇣
WT

s WsE⌫

⇥
f⌫(s)f

T (s, ⌫)
⇤⌘

+ (Waa+ b0)
2 + 2(Waa+ b0)

�
WsE⌫ [f⌫(s)]

�

= Tr

⇣
WT

s Ws

�
E⌫

⇥
f⌫(s)f

T (s, ⌫)
⇤
� E⌫

⇥
f⌫(s)

⇤
E⌫

⇥
f
T (s, ⌫)

⇤�⌘

+ Tr

⇣
WT

s WsE⌫

⇥
f⌫(s)

⇤
E⌫

⇥
f
T (s, ⌫)

⇤⌘
+ (Waa+ b0)

2 + 2(Waa+ b0)
�
WsE⌫ [f⌫(s)]

�

= Tr

⇣
WT

s WsV⌫ [f⌫(s)]
⌘
+Q(E⌫ [f⌫(s)], a)

2

(38)

Whole loss

`� =
NX

i=1

E⌫

⇥
Q(f⌫(s), a)

2
⇤
� 2E⌫

⇥
Q(f⌫(s), a)

⇤
Êµ[y] + Êµ[y]

2

=
NX

i=1

Tr

⇣
WT

s WsV⌫ [f⌫(s)]
⌘
+Q(E⌫ [f⌫(s)], a)

2 � 2Êµ[y]Q(E⌫ [T⌫(s)], a) + Êµ[y]
2

=
NX

i=1

⇣
Q
�
E⌫ [f⌫(s)], a

�
� Êµ[y]

⌘2
+ Tr

⇣
WT

a WaV⌫ [f⌫(s)]
⌘

(39)

B.2.2 NON-LINEAR MODEL

According to the analysis by Balestriero et al. (2022), the expected loss of transformed state has an
upper bound related to the variance of the transformed state:

E[(` �Q)(f(x))]  (` �Q)(E[f(x)]) + (x)kJQ(E[f(x)])H(x)⇤(x)
1
2 k2F , (40)

in which variance of the transformed image can be decomposed into
V[f(x)] = H(x)⇤(x)H(x)T . (41)

The second term in the RHS of Equation 40 recovers tangent prop regularization.
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C EXPLICIT VS IMPLICIT REGULARIZATION

C.1 CRITIC LOSS IN EXPLICIT REGULARIZATION

For ⌧ = (s, a, s0, r) sampled from the replay buffer D, given current estimation Q� and true estima-
tion Q

⇤ without error, the bias of the target Ea0⇠⇡(s0)y(s
0
, a

0) is smaller than the target Q�,sg(s, a):

E⌧⇠D

h
(Ea0⇠⇡(·|s0)[y(s

0
, a

0)]�Q
⇤(s, a))2

i

=E⌧⇠D

h⇣
Ea0⇠⇡(·|s0)[r + �Q�̄(s

0
, a

0)� ↵ log ⇡(a0|s0)]

� (r + �Ea0⇠⇡(·|s0)[Q
⇤(s0, a0)� ↵ log ⇡(a0|s0)]

⌘2i

=E⌧⇠D

h⇣
�Ea0⇠⇡(·|s0)[Q�̄(s

0
, a

0)�Q
⇤(s0, a0)]

⌘2i

⇡�
2E⌧⇠D

h⇣
Ea0⇠⇡(·|s0)[Q�,sg(s

0
, a

0)�Q
⇤(s0, a0)]

⌘i

<E⌧⇠D

h⇣
Ea0⇠⇡(·|s0)[Q�,sg(s

0
, a

0)�Q
⇤(s0, a0)]

⌘2i

<E⌧⇠D,a0⇠⇡(·|s0)

h⇣
Q�,sg(s

0
, a

0)�Q
⇤(s0, a0)

⌘2i

=E⌧⇠D

h⇣
Q�,sg(s, a)�Q

⇤(s, a)
⌘2i

(42)

The bias of using a target ȳ in the explicit regularization is

✏(ȳ) =E⌧

h⇣⇣
Q�(f⌫(s), a)� ȳ

⌘2
�
⇣
Q�(f⌫(s), a)�Q

⇤(s, a)
⌘2⌘2i

=E⌧

h⇣
2Q�(f⌫(s), a)(Q

⇤(s, a)� ȳ) + ȳ
2 �Q

⇤(s, a)2
⌘2i

.

(43)

We only need to consider the first term 2Q�(f⌫(s), a)(Q⇤ � ȳ), considering that other terms is
constant with respect to �. So the bias of using different targets in the regularization term is decided
by the bias of the target compared to the true estimation. The bias of using Ea0⇠⇡(s0)[y(s

0
, a

0)] in
the explicit regularization term is smaller than using Q�,sg(s, a) according to the equations above:

✏(ȳ = Ea0⇠⇡(·|s0)[y(s
0
, a

0)]) < ✏(ȳ = Q�,sg(s, a)), (44)

In practice, we use the sampled value y(s0, a0) as the target, which leads to a smaller bias and
relatively larger variance.

C.2 CRITIC LOSS CONNECTION

Assume given `
E
� (s, a, r, s

0
, ⌫), by appropriately setting the random variables in Equations 5, it

recovers the critic loss in explicit regularization (Equation 7), as shown below. If the distributions
of ⌫̂ and µ̂ are defined as follows:

P(⌫̂ = ⌧) =

( P(⌫=⌧)↵Q+1
↵Q+1 , if ⌧ = ⌧0

P(⌫=⌧)↵Q

↵Q+1 , if ⌧ 6= ⌧0

P(µ̂) =
⇢

1, if µ̂ = ⌧0

0, if µ̂ 6= ⌧0
, (45)

then we have for any sample (s, a, r, s0):

(↵Q + 1)`I�(s, a, r, s
0
, ⌫̂, µ̂) = `

E
� (s, a, r, s

0
, ⌫)

C.3 ACTOR LOSS

Considering that the policy is parameterized as normal distribution in SAC, we first define:

⇡✓,sg(· | f⌘(s)) = N (�⌘,�
2
⌘),⇡✓(· | fµ(s)) = N (�µ,�

2
µ) (46)
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For simplicity, we consider µ and ⌘ are defined over discrete set T with probability P (µ = ⌧i) =
P (⌘ = ⌧i) = Pi, ⌧i 2 T . The derivation can be easily extended to using a continuous set.

⇡avg(· | s) = Ê⌘[⇡✓,sg(· | f⌘(s))] = N (�avg,�
2
avg) = N (

X

i

Pi�⌧i ,

X

i

P
2
i �

2
⌧i) (47)

Ê⌘

⇥
DKL(⇡✓,sg(· |f⌘(s)) k⇡✓(· |fµ(s))

⇤

=Ê⌘

⇥
log

�µ

�⌘
+

�
2
⌘

2�2
µ

+
(�⌘ � �µ)2

2�2
µ

� 1

2

⇤

= log �µ �
X

i

Pi log �⌧i +

P
i Pi�

2
⌧i

2�2
µ

+

P
i Pi(�⌧i � �µ)2

2�2
µ

� 1

2

(48)

DKL(⇡avg(· |s) k⇡✓(· |fµ(s))

= log
�µ

�avg
+

�
2
avg

2�2
µ

+
(�avg � �µ)2

2�2
µ

� 1

2

= log �µ � 1

2
log

X

i

P
2
i �

2
⌧i +

P
i P

2
i �

2
⌧i

2�2
µ

+
(
P

i Pi�⌧i � �µ)2

2�2
µ

� 1

2

(49)

Comparing the two equations above, the first term and the last term are the same, and the second
term is a constant with respect to the parameter ✓ of the actor. For the third term, it is obvious thatP

i Pi�
2
⌧i

2�2
µ

�
P

i P
2
i �

2
⌧i

2�2
µ

because Pi � P
2
i , for any i. For the forth term, we have:

P
i Pi(�⌧i � �µ)2

2�2
µ

�
(
P

i Pi�⌧i � �µ)2

2�2
µ

=

P
i Pi(�2

⌧i + �
2
µ � 2�⌧i�µ)

2�2
µ

�
�
2
µ + (

P
i Pi�⌧i)

2 � 2�µ
P

i Pi�⌧i

2�2
µ

=
�
2
µ +

P
i Pi�

2
⌧i � 2�µ

P
i Pi�⌧i

2�2
µ

�
�
2
µ + (

P
i Pi�⌧i)

2 � 2�µ
P

i Pi�⌧i

2�2
µ

=

P
i Pi�

2
⌧i � (

P
i Pi�⌧i)

2

2�2
µ

=
V[�⌘]

2�2
µ

� 0

(50)

So the loss of using the policy of a transformed state as the target is an upper bound of using the
average policy as the target:

Ê⌘

⇥
DKL(⇡✓,sg(· |f⌘(s)) k⇡✓(· |fµ(s))

⇤
� DKL(⇡avg(· |s) k⇡✓(· |fµ(s)) (51)

D KL DIVERGENCE

Given a transformation f⌫(s) on state s, considering that the KL divergence is not symmetric, we
discuss the differences between two kinds of KL regularization here:

DKL

�
⇡✓,sg(s))||⇡✓(f⌫(s))

�
and DKL

�
⇡✓(f⌫(s))||⇡✓,sg(s)

�
, (52)

Detach First

DKL

�
⇡✓,sg(s))||⇡✓(f⌫(s))

�
=

Z

a
⇡✓,sg(a|s) log

⇡✓,sg(a|s)
⇡✓(a|f⌫(s))

=

Z

a

⇣
⇡✓,sg(a|s) log ⇡✓,sg(a|s)� ⇡✓,sg(a|s) log ⇡✓(a|f⌫(s))

⌘

= �H(⇡✓,sg(s))�
Z

a
⇡✓,sg(a|s) log ⇡✓(a|f⌫(s))

(53)
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Detach Second

DKL

�
⇡✓(f⌫(s))||⇡✓,sg(s)

�
=

Z

a
⇡✓(a|f⌫(s)) log

⇡✓(a|f⌫(s))
⇡✓,sg(a|s)

,

=

Z

a

⇣
⇡✓(a|f⌫(s)) log ⇡✓(a|f⌫(s))� ⇡✓(a|f⌫(s)) log ⇡✓,sg(a|s)

⌘

= �H(⇡✓(f⌫(s)))�
Z

a
⇡✓(a|f⌫(s)) log ⇡✓,sg(a|s),

(54)

in which H represent the entropy for a distribution.

”Detach second” introduces an entropy term for the policy of the transformed state. This regulariza-
tion not only makes the policy of the augmented state and the original state close, but also maximizes
the entropy of the policy of the transformed state. However, in ”detach first”, the entropy term with
the sign sg is not used to update the policy.

E VARIANCE UNDER DATA AUGMENTATION

E.1 MORE AUGMENTED SAMPLES REDUCE THE VARIANCE OF THE CRITIC LOSS

Considering one transition (s, a, r, s0) and M transformations {f⌧m | m = 1, ...,M}, K transfor-
mation {(f⌧ 0

k
| k = 1, ...,K} respectively on s and s

0, the Q-values and target Q-values for the
transformed samples are

Qm = Q(f⌧m(s), a),

yk = r + �Q�̄(f⌧ 0
k
(s0), a0)� ↵ log ⇡(a0|f⌧ 0

k
(s0))|a0⇠⇡(·|f⌧0

k
(s0)),

(55)

where m 2 {1, ...,M}, k 2 {1, ...,K}.

RAD+ loss becomes

`RAD+ =
1

M
·

MX

m=1

(Qm � yk)
2 (56)

DrQ loss becomes

`DrQ =
1

M
·

MX

m=1

(Qm � 1

K

KX

k=1

yk)
2

=
1

M
·

MX

m=1

⇣
Q

2
m + (

1

K

KX

k=1

yk)
2 � 2Qm · 1

K

KX

k=1

yk

⌘

=
1

M
·

MX

m=1

Q
2
m +

1

M
·

MX

m=1

(
1

K

KX

k=1

yk)
2 � 1

M
·

MX

m=1

2Qm · 1

K

KX

k=1

yk

=
1

M
·

MX

m=1

Q
2
m +

1

K2
(

KX

k=1

yj)
2 � 2

M ·K ·
MX

m=1

KX

k=1

Qm · yk

(57)

18



Under review as a conference paper at ICLR 2024

If all the combinations of above Q and y values are used for estimation, the loss becomes:

`all =
1

M ·K ·
MX

m=1

KX

k=1

(Qm � yk)
2

=
1

M ·K · (
MX

m=1

K ·Q2
m +

KX

k=1

M · y2k � 2
MX

m=1

KX

k=1

Qm · yk)

=
1

M
·

MX

m=1

Q
2
m +

1

K
(

KX

k=1

yk)
2 � 2

M ·K ·
MX

m=1

KX

k=1

Qm · yk

(58)

The second terms in both Equation 57 and 58 can be ignored because the gradients of target values
yj with respect to critic parameters are stopped.

Obviously, `all and `DrQ have same gradients with respect to trainable parameters of the critic. The
comparison between `DrQ and `RAD+ is exactly the comparison between `all and `RAD+. For one
transition in one gradient step, M ·K pairs of Qm and yk are used to formulate `all while only M

pairs of Qm and yk are used to formulate `RAD+. Therefore, we can find out that DrQ outperforms
RAD by leveraging more augmented samples and the averaged target. These operations indeed
reduce the variance of the estimated critic loss.

E.2 KL REDUCES THE VARIANCE OF ACTOR LOSS

SAC actor loss Given data augmentation f⌫ |⌫ ⇠ P on state s, if Q(f⌫(s), a) is invariant with
respect to ⌫ for all a 2 A, the variance of the actor loss V⌫ [`I✓(s, ⌫)] is bounded by a term that
depends on the KL divergence D⌘,⌫ = DKL(⇡(· | f⌘(s))k⇡(· | f⌫(s))) for ⌫, ⌘ ⇠ P:

V⌫ [`
I
✓(s, ⌫)] 

1

n
E⌫

h⇣
E⌘[D⌘,⌫ + c(f⌫(s))

p
2D⌘,⌫ ]

⌘2i
, (59)

where c(f⌫(s)) > 0, n is the number of samples to estimate the empirical mean `
I
✓(s, ⌫).

Proof. For image-based control tasks, a data augmentation f parameterized by ⌫ ⇠ P is applied on
the observations. The actor loss of SAC becomes

`
I
✓(s, ⌫) = Ê⌫

h
DKL

⇣
⇡✓(·|f⌫(s))|| exp(

1

↵
Q�(f⌫(s), ·)� logZ(f⌫(s)))

⌘i
(60)

Let g(f⌫(s), ·) = exp( 1
↵Q�(f⌫(s), ·)� logZ(f⌫(s))).

The variance of empirical mean can be derived as the true variance divided by the number of samples
n.

V[Ê[x]] = E[(Ê(x)� E[x])2]

= E[( 1
n
(x1 � E[x] + x2 � E[x] + ...+ xn � E[x]))2]

=
1

n2
n · V[x]

=
1

n
V[x]

(61)

The variance of `I✓(s, ⌫) with respect to ⌫ for a given number of samples n is
V⌫ [`

I
✓(s, ⌫)]

=
1

n
V⌫ [DKL(⇡✓(·|f⌫(s))||g(f⌫(s), ·))]

=
1

n
E⌫

h⇣
DKL(⇡✓(·|f⌫(s))||g(f⌫(s), ·))� E⌘[DKL(⇡✓(·|f⌘(s))||g(f⌘(s), ·))]

⌘2i

=
1

n
E⌫

h⇣
DKL(⇡✓(·|f⌫(s))||g(f⌫(s), ·))�

X

⌘

P(⌘)DKL(⇡✓(·|f⌘(s))||g(f⌘(s), ·))
⌘2i

=
1

n
E⌫

h⇣X

⌘

P(⌘)(DKL(⇡✓(·|f⌘(s))||g(f⌘(s), ·))�DKL(⇡✓(·|f⌫(s))||g(f⌫(s), ·)))
⌘2i

(62)
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For the term inside the above equation, we can further derive:

DKL(⇡✓(·|f⌘(s))||g(f⌘(s), ·))�DKL(⇡✓(·|f⌫(s))||g(f⌫(s), ·))

=

Z

a
⇡✓(·|f⌘(s)) log

⇡✓(·|f⌘(s))
g(f⌘(s), ·)

� ⇡✓(·|f⌫(s)) log
⇡✓(·|f⌫(s))
g(f⌫(s), ·)

=

Z

a
⇡✓(·|f⌘(s)) log ⇡✓(·|f⌘(s))� ⇡✓(·|f⌘(s)) log g(f⌘(s), ·)

� ⇡✓(·|f⌫(s)) log ⇡✓(·|f⌫(s)) + ⇡✓(·|f⌫(s)) log g(f⌫(s), ·)

=

Z

a
⇡✓(·|f⌘(s)) log

⇡✓(·|f⌘(s))
⇡✓(·|f⌫(s))

� ⇡✓(·|f⌘(s)) log g(f⌘(s), ·)

� (⇡✓(·|f⌫(s))� ⇡✓(·|f⌘(s))) log ⇡✓(·|f⌫(s)) + ⇡✓(·|f⌫(s)) log g(f⌫(s), ·)

=

Z

a
⇡✓(·|f⌘(s)) log

⇡✓(·|f⌘(s))
⇡✓(·|f⌫(s))

� ⇡✓(·|f⌘(s)) log g(f⌫(s), ·) + ⇡✓(·|f⌘(s)) log
g(f⌫(s), ·)
g(f⌘(s), ·)

� (⇡✓(·|f⌫(s))� ⇡✓(·|f⌘(s))) log ⇡✓(·|f⌫(s)) + ⇡✓(·|f⌫(s)) log g(f⌫(s), ·)
= DKL(⇡✓(·|f⌘(s))||⇡✓(·|f⌫(s)))

+

Z

a

⇣
⇡✓(·|f⌘(s))� ⇡✓(·|f⌫(s))

⌘
·
⇣
log ⇡✓(·|f⌫(s))� log g(f⌫(s), ·)

⌘

+

Z

a
⇡✓(·|f⌘(s)) log

g(f⌫(s), ·)
g(f⌘(s), ·)

(63)

Then plug the above results into the equation of V⌫ [`I✓(s, ⌫)].

V⌫ [`
I
✓(s, ⌫)]

=
1

n
E⌫

h⇣X

⌘

P(⌘)(DKL(⇡✓(·|f⌘(s))||g(f⌘(s), ·))�DKL(⇡✓(·|f⌫(s))||g(f⌫(s), ·)))
⌘2i

=
1

n
E⌫

h⇣X

⌘

P(⌘)DKL(⇡✓(·|f⌘(s))||⇡✓(·|f⌫(s)))

+
X

⌘

P (⌘)

Z

a
(⇡✓(·|f⌘(s))� ⇡✓(·|f⌫(s)))(log ⇡✓(·|f⌫(s))� log g(f⌫(s), ·))

+
X

⌘

P (⌘)

Z

a
⇡✓(·|f⌘(s)) log

g(f⌫(s), ·)
g(f⌘(s), ·)

⌘2i

=
1

n
E⌫

h⇣X

⌘

P(⌘)DKL(⇡✓(·|f⌘(s))||⇡✓(·|f⌫(s)))

+
X

⌘

P (⌘)

Z

a
(⇡✓(·|f⌘(s))� ⇡✓(·|f⌫(s))) · (log ⇡✓(·|f⌫(s))� log g(f⌫(s), ·))

+
1

↵

X

⌘

P (⌘)

Z

a
⇡✓(·|f⌘(s))(Q�(f⌫(s), a)�Q�(f⌘(s), a))

+
X

⌘

P (⌘)

Z

a
⇡✓(·|f⌘(s)) log

Z(f⌫(s))

Z(f⌘(s))

⌘2i

(64)
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For the second term on the right hand side of Equation 64, by applying Pinsker’s inequality, we get

X

⌘

P (⌘)

Z

a
(⇡✓(·|f⌘(s))� ⇡✓(·|f⌫(s))) · (log ⇡✓(·|f⌫(s))� log g(f⌫(s), ·))


X

⌘

P(⌘)

Z

a
|⇡✓(a|f⌘(s))� ⇡✓(a|f⌫(s))| ·max

a
| log ⇡✓(a|f⌫(s))� log g(f⌫(s), a)|


X

⌘

P(⌘)

r
2DKL

⇣
⇡✓(·|f⌘(s))||⇡✓(·|f⌫(s))

⌘
·max

a
| log ⇡✓(a|f⌫(s))� log g(f⌫(s), a)|

(65)

For the third and fourth terms of Equation 64, given data augmentation f⌫ |⌫ ⇠ P on state s, if
Q(f⌫(s), a) is invariant with respect to ⌫ for all a 2 A, both the third and the fourth terms of
V̂⌫ [`I✓(s, ⌫)] are zero.

Therefore, if Q(f⌫(s), a) is invariant with respect to ⌫ for all a 2 A, the variance of the augmented
actor loss V⌫ [`I✓(s, ⌫)] is bounded by the KL divergence D⌘,⌫ = DKL(⇡(· | f⌘(s)) | ⇡(· | f⌫(s)))
for ⌫, ⌘ ⇠ P:

V⌫ [`
I
✓(s, ⌫)] 

1

n
E⌫

h⇣
E⌘[D⌘,⌫ + c(f⌫(s))

p
2D⌘,⌫ ]

⌘2i
(66)

where c(f⌫(s)) = maxa | log ⇡✓(a|f⌫(s)) � log g(f⌫(s), a)| > 0, n is the number of samples to
estimate the empirical mean.

DDPG actor loss Based on Equation 31, the DDPG actor loss `I✓(s, µ) becomes,

`
I
✓(s, µ) ⇡ �1

2
Êµ

h
(⇡✓(fµ(s))� ⇡

⇤(fµ(s)))
T
Hµ(⇡✓(fµ(s))� ⇡

⇤(fµ(s)))
i
. (67)

The variance of the actor loss is reduced if we minimize the mean squared error between two deter-
ministic actions ||⇡✓(f⌘(s0))� ⇡✓(f⌫(s0))||2, where ⌘, ⌫ ⇠ P.

Proof. Let Mµ = ⇡✓(fµ(s)) � ⇡
⇤(fµ(s)). Assuming that the Hessian matrix Hµ have a a lower

bound and upper bound:

lµI � Hµ � LµI, (68)

we have

lµkMµk2  `
I
✓(s, µ)  LµkMµk2. (69)
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V⌫ [`
I
✓(s, ⌫)]

=
1

n
E⌫ [(`

I
✓(s, ⌫)� E⌘[`

I
✓(s, ⌘)])

2] =
1

n
E⌫ [(

X

⌘

P(⌘)`I✓(s, ⌫)�
X

⌘

P(⌘)`I✓(s, ⌘))
2]

=
1

n
E⌫ [(

X

⌘

P(⌘)(`I✓(s, ⌫)� `
I
✓(s, ⌘)))

2]  1

n
E⌫ [(

X

⌘

P(⌘)(`I✓(s, ⌫)� `
I
✓(s, ⌘))

2)]

=
1

n
E⌫,⌘[(`

I
✓(s, ⌫)� `

I
✓(s, ⌘))

2]  1

n
· (max

⌫
`
I
✓(s, ⌫)�min

⌘
`
I
✓(s, ⌘))

2

 1

n
· (max

⌫
L⌫kM⌫k2 �min

⌘
l⌘kM⌘k2)2 =

1

n
· (L⌫maxkM⌫maxk2 � l⌘minkM⌘mink2)2

Let ⌫max = argmax
⌫

`
I
✓(s, ⌫), ⌘min = argmin

⌘
`
I
✓(s, ⌘).

V⌫ [`
I
✓(s, ⌫)]

 1

n
· ((L⌫max � l⌘min)kM⌫maxk2 + l⌘min(kM⌫maxk2 � kM⌘mink2))2

=
1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min(k⇡✓(f⌫max(s))� ⇡
⇤(s)k2 � k⇡✓(f⌘min(s))� ⇡

⇤(s)k2)2

=
1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min(
X

i

(⇡✓(f⌫max(s))i � ⇡
⇤(s)i)

2 �
X

i

(⇡✓(f⌘min(s))i � ⇡
⇤(s)i)

2)2

=
1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min(
X

i

⇣
(⇡✓(f⌫max(s))i � ⇡

⇤(s)i)
2 � (⇡✓(f⌘min(s))i � ⇡

⇤(s)i)
2
⌘
)2

 1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min

X

i

⇣
(⇡✓(f⌫max(s))i � ⇡

⇤(s)i)
2 � (⇡✓(f⌘min(s))i � ⇡

⇤(s)i)
2
⌘2

=
1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min

X

i

⇣
⇡✓(f⌫max(s))i + ⇡✓(f⌘min(s))i � 2⇡⇤(s)i

⌘2⇣
⇡✓(f⌫max(s))i � ⇡✓(f⌘min(s))i

⌘2

=
1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min

X

i

⇣
⇡✓(f⌫max(s))i + ⇡✓(f⌘min(s))i � 2⇡⇤(s)i

⌘2⇣
⇡✓(f⌫max(s))i � ⇡✓(f⌘min(s))i

⌘2

=
1

n
· ((L⌫max � l⌘min)kM⌫maxk2

+ l⌘min

X

i

⇣
⇡✓(f⌫max(s))i + ⇡✓(f⌘min(s))i � 2⇡⇤(s)i

⌘2⇣
⇡✓(f⌫max(s))i � ⇡✓(f⌘min(s))i

⌘2

(70)
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Since
(a� b)2(a+ b� 2c)2

 (a� b)4 + (a+ b� 2c)4

2

=
(a� b)4 + ((a� c+ b� c)2)2

2

 (a� b)4 + (2(a� c)2 + 2(b� c)2)2

2

=
(a� b)4 + 4((a� c)2 + (b� c)2)2

2

 (a� b)4 + 8(a� c)4 + 8(b� c)4

2

(71)

we have
V⌫ [`

I
✓(s, ⌫)]

 1

n
· (L⌫max � l⌘min)kM⌫maxk2

+ l⌘min

X

i

⇣
⇡✓(f⌫max(s))i + ⇡✓(f⌘min(s))i � 2⇡⇤(s)i

⌘2⇣
⇡✓(f⌫max(s))i � ⇡✓(f⌘min(s))i

⌘2

 1

n
· (L⌫max � l⌘min)kM⌫maxk2

+
1

2
l⌘mink⇡✓(f⌫max(s))� ⇡✓(f⌘min(s))k4

+ 4l⌘mink⇡✓(f⌫max(s))� ⇡
⇤(s))k4

+ 4l⌘mink⇡✓(f⌘min(s))� ⇡
⇤(s))k4

(72)

In Equation 72, the third and fourth terms are minimized by the actor loss. If we minimize the
second term of Equation 72 by minimizing the mean squared error between two deterministic actions
||⇡✓(f⌘(s0))� ⇡✓(f⌫(s0))||2 in the case of DDPG, the variance of the actor loss is reduced.

E.3 KL REDUCES THE VARIANCE OF THE TARGET Q-VALUE

DDPG target values For DDPG, when we compute target values, we add Ornstein-Uhlenbeck
noise to deterministic actions for exploration. Then the policy can be regarded as a probability
distribution ⇡.

For image-based control tasks, a data augmentation f parameterized by µ ⇠ P is applied on the
observations. Then the target value y for a given transition (s, a, r, s0) is

y(fµ(s
0), a0) = r + �Q�̄(fµ(s

0), a0),where a
0 ⇠ ⇡(·|fµ(s0)). (73)

The expectation of y(fµ(s0), a0) with respect to a
0 ⇠ ⇡(·|fµ(s0)) is

Ea0 [y(fµ(s
0), a0)] = r + �Ea0 [Q�̄(fµ(s

0), a0)]

= r + �

X

a0

⇡(a0|fµ(s0))Q�̄(fµ(s
0), a0) (74)

The expectation of y(fµ(s0), a0) with respect to µ ⇠ P and a
0 ⇠ ⇡(·|fµ(s0)) is

Eµ,a0 [y(fµ(s
0), a0)]

= r + �Eµ,a0 [Q�̄(fµ(s
0), a0)]

= r + �

X

µ

P(µ)
X

a0

⇡(a0|fµ(s0))Q�̄(fµ(s
0), a0)

(75)
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We create two tables to better illustrate the meanings of Ea0 [y(fµ(s0), a0)] and Eµ,a0 [y(fµ(s0), a0)].

a
0

µ ... f⌧m(s0)
with P(µ = ⌧m)

...

a0
1 ...

y(f⌧m(s0), a0
1)

with
P(µ = ⌧m) · ⇡✓(a

0
1|f⌧m(s0))

...

a0
2 ...

y(f⌧m(s0), a0
2)

with
P(µ = ⌧m) · ⇡✓(a

0
2|f⌧m(s0))

...

... ... ... ...

a
0
n ...

y(f⌧m(s0), a0
n)

with
P(µ = ⌧m) · ⇡✓(a

0
n|f⌧m(s0))

...
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The first term of Equation 76 is the expectation of squared advantage.

The second term of Equation 76 is 0 because
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(77)

The third term of Equation 76 is the variance of Ea0⇠⇡(·|fµ(s0))[y(fµ(s
0), a0)] with respect to

µ. Both the variance Vµ[Ea0⇠⇡(·|fµ(s0))[y(fµ(s
0), a0)]] and the variance of the empirical mean
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Vµ[Êµ[Ea0⇠⇡✓(·|fµ(s0))[y(fµ(s
0), a0)]]] are bounded by the KL divergence D⌘,µ = DKL(⇡(· |

f⌘(s0)) | ⇡(· | fµ(s0))) for µ, ⌘ ⇠ P if Q�̄(fµ(s
0), a0) is invariant with respect to µ for all a0 2 A.

Proof.

Vµ[Ea0⇠⇡(·|fµ(s0))[y(fµ(s
0), a0)]] = Eµ

h
(Ea0 [y(fµ(s

0), a0)]� E⌘,a0 [y(f⌘(s
0), a0)])2

i
(78)
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The second term of Equation 79 �
P

⌘ P(⌘)
P

a0 ⇡(a0|f⌘(s0))(Q�̄(fµ(s
0), a0) � Q�̄(f⌘(s

0), a0)) is
related to the difference of Q�̄(f⌘(s

0), a0) and Q�̄(fµ(s
0), a0), which is governed by the critic loss.

When Q�̄(fµ(s
0), a0) is invariant with respect to µ for all a0 2 A, this term is zero.

For the first term of Equation 79,
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(80)

where in the first inequality absolute values |⇡(a0|fµ(s0))� ⇡(a0|f⌘(s0))| are applied, in the second
inequality Q�̄(fµ(s

0), a0) is replaced with maxa0 Q�̄(fµ(s
0), a0) and Pinsker‘s inequality is applied

in the third inequality.

Similarly, a lower bound can be derived.
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Therfore,
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25



Under review as a conference paper at ICLR 2024

Let Ŷ (s0, µ) = Êµ[Ea0⇠⇡✓(·|fµ(s0))[y(fµ(s
0), a0)]].

From Equation 61,

Vµ[Ŷ (s0, µ)] =
1

n
Vµ[Ea0⇠⇡✓(·|fµ(s0))[y(fµ(s

0), a0)]],

where n is the number of samples to estimate the empirical mean Ŷ (s0, µ).
(83)

Therefore, if Q�̄(fµ(s), a
0) is invariant with respect to µ for all a0 2 A, the variance of Ŷ (s0, µ)

with respect to µ is bounded by the KL divergence D⌘,µ = DKL(⇡(· | f⌘(s0)) | ⇡(· | fµ(s0))) for
µ, ⌘ ⇠ P .
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(84)

For DDPG, minimizing the KL divergence between policy distributions of two augmented states
DKL(⇡(· | f⌘(s0)) | ⇡(· | fµ(s0))) is equivalent to minimizing the mean squared error between two
deterministic actions ||⇡̄(f⌘(s0))� ⇡̄(fµ(s0))||2.

SAC target value with the entropy term If the entropy term is added to the target value, the
variance of the empirical mean Vµ[Êµ[Ea0⇠⇡✓(·|fµ(s0))[y(fµ(s

0), a0)]]] is still bounded by the KL
divergence D⌘,µ = DKL(⇡(· | f⌘(s0)) | ⇡(· | fµ(s0))) for µ, ⌘ ⇠ P if Q�̄(fµ(s

0), a0) is invariant
with respect to µ for all a0 2 A.
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(85)

where n is the number of samples to estimate the empirical mean, r is the reward of this transition
and ↵ is the entropy coefficient.

Proof. After we add the entropy term, the target value becomes

y(fµ(s
0), a0) = r + �Q�̄(fµ(s

0), a0)� ↵ log ⇡(a0|fµ(s0)), (86)

where a
0 ⇠ ⇡(·|fµ(s0)) and ↵ is the entropy coefficient.

Let

y1(fµ(s
0), a0) = y(fµ(s

0), a0)� r = �Q�̄(fµ(s
0), a0)� ↵ log ⇡(a0|fµ(s0)) (87)

Since r is a constant value, we can drop r when calculating the variance.
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Similar to Equation 80 and Equation 81, we apply Pinsker’s inequality and obtain the lower and the
upper bounds for the first term of Equation 89.
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The second term of Equation 89 �
P

⌘ P(⌘)
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0), a0) and Q�̄(fµ(s
0), a0), which is governed by the critic loss.

When Q�̄(fµ(s
0), a0) is invariant with respect to µ for all a0 2 A, this term is zero.
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Therefore,
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Plug the above inequalities into Equation 88, we obtain
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If Q�̄(fµ(s), a
0) is invariant with respect to µ for all a0 2 A, the variance of Ŷ (s0, µ) with respect

to µ is bounded by the KL divergence D⌘,µ = DKL(⇡(· | f⌘(s0)) | ⇡(· | fµ(s0))) for µ, ⌘ ⇠ P .
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F CALCULATING TARGET WITH COMPLEX DATA AUGMENTATION

In this section, we experimentally analyze using complex image transformations in calculating the
target and show that cosine similarity of the augmented features at the early training stage can be
used as a criteria for judging if an image transformation is complex or not. Sufficient updates is the
key condition for good performance when using complex image transformations in calculating the
target.

In contrast to the analysis in SVEA (Hansen et al., 2021), we observe that even using complex
image transformation such as random conv in the target does not induce a large variance in the
target. Instead, a much larger bias is observed for the trained agent, as shown in the Table 5. This
can be solved by increasing the number of updates, as shown in Figure 4.

Furthermore, we test with other image transformations which are regarded as complex image trans-
formations in SVEA (Hansen et al., 2021). In order to show whether it’s easy to enforce the in-
variance of a image transformation, we record the cosine similarities of encoder outputs for two
augmented images transformed by this image transformation, as shown in Table 4. For image trans-
formations such as random overlay or gaussian blur, the invariance is easy to enforce and the cosine
similarities are large. When using this kind of image transformation in calculating the target values,
it won’t hurt the performance. Otherwise, for image transformations such as random convolution or
random rotation, the invariance is relatively harder to enforce during training and the cosine similar-
ities are small. Then directly applying this kind of image transformations in calculating the target
values will decrease the learning efficiency. To resolve this issue, we need more updates for each
training step. The evaluation results for SVEA with random overlay, random convolution, random
rotation and gaussian blur are shown in Figure 5.

G HYPERPARAMETERS

Hyperparameters used in experiments on DMControl (drq), DMControl (drqv2) and DMGB can
be found in Table 6, Table 7 and 8. For experiments in DMControl(drqv2) and DMGB, when
applicable, we adopt hyperparameters from the official implementation of drqv2 by Yarats et al.
(2021) and SVEA by Hansen et al. (2021) respectively.

H ADDITIONAL RESULTS

H.1 ABLATION STUDY

The performance profile is shown in Figure 6 and the training curves in different environments are
shown in Figure 7.
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Statistics svea(DA=blur) svea(DA=overlay) svea(DA=conv) svea(DA=rotation)

actor sim (shift) 0.919±0.007 0.911±0.005 0.910±0.011 0.936±0.006

actor sim (DA) 0.998±0.001 0.906±0.006 0.854±0.019 0.536±0.069

critic sim (shift) 0.938±0.010 0.942±0.003 0.922±0.010 0.962±0.005

critic sim (DA) 0.998±0.001 0.939±0.003 0.883±0.014 0.660±0.057

Table 4: Recorded cosine similarity for latent features at 100k steps in walker walk environment
for SVEA trained with different complex image transformations. Here, each column corresponds to
SVEA with different image transformations and each row corresponds to a cosine similarity recorded
at 100k steps. For example, the first number is calculated by the cosine similarity between the latent
features E⇡(fshift(s)), in which E⇡ is the encoder of the actor in SVEA trained with gaussian
blur and fshift is the random shift. Considering that random shift is always applied in SVEA, the
cosine similarity with respect to it is recorded as the baseline for comparisons. For gaussian blur
and random overlay (second and third column), the cosine similarities of latent features are higher
or similar to the cosine similarities between the latent features from two randomly shifted images
which means they are not complex image transformations. In contrast, random conv and random
rotation (last two columns) leads to smaller cosine similarities of latent features which indicates that
they are relatively complex image transformations in this environment.

Statistics Step 100k Step 200k Step 300k Step 400k Step 500k

Mean (w/ conv) 64.05 112.44 140.78 166.42 185.92
Mean (w/o conv) 84.96 148.46 197.10 221.67 239.35

Variance (w/ conv) 1.228 1.109 1.148 1.323 1.306
Variance (w/o conv) 0.882 0.812 0.885 0.757 0.795

Bias (w/ conv) 52.88 67.44 54.20 63.89 55.36
Bias (w/o conv) 77.40 60.48 50.40 43.22 28.75

Table 5: Mean, variance and bias of the target Q-values for the agent trained with/without using
random conv in calculating the target. Here, the mean and variance are calculated by the mean and
variance of a set of sampled target Q values and the bias is calculated by the mean-squared error
between the targets used in the training and the true targets estimated by the sum of discounted
rewards from sampled trajectories. At the end of the training, the increase in the variance when
using random conv is not significant compared to the mean of the target. However, the bias is much
larger at the end.
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Figure 4: Performance of increasing the number of updates with/without using random conv in
calculating the targets.

Figure 5: Performance of increasing the number of updates in walker walk environment when using
complex image transformation in calculating the targets. For random convolution and random rota-
tion, ”update more” stands for doing 4 updates for each training step.

Figure 6: Performance profile of different methods.
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Table 6: Hyperparameters used in experiments on DMControl (drq)

Hyperparameter Value on DMControl

frame rendering 84 ⇥ 84 ⇥ 3
stacked frames 3
action repeat 2

replay buffer capacity 100,000
seed steps 1000

environment steps
250,000 in reacher easy
250,000 in finger spin

250,000 in ball
500,000 in others

batch size N 256
discount � 0.99

optimizer (�, ✓) Adam
(�1 = 0.9,�2 = 0.999)

optimizer (↵ of SAC) Adam
(�1 = 0.9,�2 = 0.999)

learning rate (�,✓) 1e-3
learning rate (↵ of SAC) 1e-3

target network update frequency 2
target network soft-update rate 0.01

actor update frequency  2
actor log stddev bounds [-10,2]

init temperature ↵ 0.1
tangent prop weight ↵tp 0.1
actor KL weight ↵KL 0.1

Table 7: Hyperparameters used in experiments on DMControl (drqv2)

Hyperparameter Value on DMC

frame rendering 84 ⇥ 84 ⇥ 3
stacked frames 3
action repeat 2

replay buffer capacity 106

seed frames 4000
exploration steps 2000

n-step returns 3
batch size N 256
discount � 0.99

optimizer (�, ✓) Adam
learning rate (�,✓) 1e-4

agent update frequency 2
target network soft-update rate 0.01

exploration stddev clip 0.3
exploration stddev schedule linear(1.0, 0.1, 500000)

tangent prop weight ↵tp 0.1
actor KL weight ↵KL 0.1

H.2 CASE STUDY

The measures for invariance in the latent space are shown in Figure 8.
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Figure 7: Full results of validating our propositions.

Figure 8: The figure shows the learned invariance in the feature space of the actor and critic. Two
measures of the invariance are provided in this figure: the distances between projected points of the
augmented features by t-SNE and the cosine similarities between augmented features.
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Table 8: Hyperparameters used in experiments on DMControl Generalization Benchmark (DMGB)

Hyperparameter Value on DMGB

frame rendering 84 ⇥ 84 ⇥ 3
stacked frames 3

action repeat
2(finger)

8(cartpole)
4(otherwise)

replay buffer capacity 500,000 / action repeat
seed steps 1000

environment steps 500,000
batch size N 128
discount � 0.99

optimizer (�, ✓) Adam
(�1 = 0.9,�2 = 0.999)

optimizer (↵ of SAC) Adam
(�1 = 0.5,�2 = 0.999)

learning rate (�,✓) 1e-3
learning rate (↵ of SAC) 1e-4

target network update frequency 2

target network soft-update rate 0.01(critic)
0.05(encoder)

actor update frequency  2
actor log stddev bounds [-10,2]

init temperature ↵ 0.1
tangent prop weight ↵tp 0.5
actor KL weight ↵KL 0.1

H.3 MORE EVALUATIONS

Here, we include more evaluations of our proposition. The results of comparing our proposition
with DrQ are shown in Figure 9. The results of comparing our proposition with DrQv2 are shown
in Figure 10.

H.4 RESULTS OF GENERALIZATION ABILITY IN DMCONTROL GENERALIZATION
BENCHMARK (DMGB)

The comparison of generalization performance in DMGB between SVEA and our method using
random overlay as data augmentation is shown in Figure 11.

H.5 RESULTS OF RECORDED STATISTICS

The curves for the recorded statistics, including standard deviation of the empirical critic loss, stan-
dard deviation of the target Q-values, and empirical mean of KL divergence between policies for
two augmented samples along the training are shown in Figure 12 and Figure 13.

I LIMITATIONS

We try to provide some recommendations on how to apply theoretically-sound data augmentation
method in DRL. However, the analysis can still be further refined to be more comprehensive such
as including the theoretical analysis of using different distributions for the image transformation
and providing a thorough analysis on tangent prop regularization. Moreover, our method naturally
requires the knowledge of some effective image transformations for a given task. Without such
knowledge, the invariant transformations for a problem would need to be learned, which is currently
an active research direction. Finally, image transformation may rely on some implicit assumptions,
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Figure 9: Comparison between different methods in DMControl with normal background.

Figure 10: Results of running experiments with DDPG as base algorithm.
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Figure 11: Comparison between SVEA and our method in DMControl with normal and video-
hard backgrounds. Both methods use random overlay as image transformation. We can see the
improvement in generalization ability especially in environments such as ball in cup catch, finger
spin and walker walk. Since the evaluation curves are not stable even at the end of training, the
recorded score in Table 2 is the average over the last 15 evaluation scores.
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Figure 12: Some important statistics recorded along the training. The variance of critic loss and
target values decreased after using more augmented samples in the training of the critic. Adding the
KL divergence term to the loss can quickly enforce the invariance of the actor even at the beginning
of the training.

which may lead to lower/bad performance if they are not satisfied in the real application domain. For
instance, random shift/crop, which has been shown to be very effective in DMControl tasks, may
yield worse performance if the agent is not well-centered in the image, according to the empirical
results from Tomar et al. (2022). A better understanding of why a data augmentation transformation
works in DRL is needed.

36



Under review as a conference paper at ICLR 2024

Figure 13: Some important statistics recorded along the training of SVEA and our method. With
the help of KL loss and tangent prop loss, the variance of critic loss and target values are lower.
Applying KL loss can quickly enforce the invariance of the actor.
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