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Abstract

The rectified linear unit (ReLU) is a highly successful activation function in neural networks
as it allows networks to easily obtain sparse representations, which reduces overfitting in
overparameterized networks. However, in the context of network pruning, we find that the
sparsity introduced by ReLU, which we quantify by a term called dynamic dead neuron
rate (DNR), is not beneficial for the pruned network. Interestingly, the more the network
is pruned, the smaller the dynamic DNR becomes after optimization. This motivates us
to propose a method to explicitly reduce the dynamic DNR for the pruned network, i.e.,
de-sparsify the network. We refer to our method as Activate-while-Pruning (AP). We note
that AP does not function as a stand-alone method, as it does not evaluate the importance
of weights. Instead, it works in tandem with existing pruning methods and aims to improve
their performance by selective activation of nodes to reduce the dynamic DNR. We conduct
extensive experiments using various popular networks (e.g., ResNet, VGG, DenseNet, Mo-
bileNet) via two classical and three competitive pruning methods. The experimental results
on public datasets (e.g., CIFAR-10, CIFAR-100) suggest that AP works well with existing
pruning methods and improves the performance by 3% - 4%. For larger scale datasets (e.g.,
ImageNet) and competitive networks (e.g., vision transformer), we observe an improvement
of 2% - 3% with AP as opposed to without. Lastly, we conduct an ablation study and a
substitution study to examine the effectiveness of the components comprising AP.

1 Introduction

The rectified linear unit (ReLU) (Glorot et al., 2011), σ(x) = max{x, 0}, is the most widely used activation
function in neural networks (e.g., ResNet (He et al., 2016), Transformer (Vaswani et al., 2017)). The success
of ReLU is mainly due to fact that existing networks tend to be overparameterized and ReLU can easily
regularize overparameterized networks by introducing sparsity (i.e., post-activation output is zero) (Li et al.,
2023; Denil et al., 2014; Wang et al., 2023), leading to promising results in many computer vision tasks (e.g.,
image classification (He et al., 2016), object detection (Dai et al., 2021; Joseph et al., 2021)).
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In this paper, we study the ReLU’s sparsity constraint in the context of network pruning (i.e., a method of
compression that removes weights from the network). Specifically, we question the utility of ReLU’s sparsity
constraint, when the network is no longer overparameterized during iterative pruning. In the following, we
summarize the workflow of our study together with our contributions.

1. Motivation and Theoretical Study. In Section 3.1, we introduce a term called dynamic Dead Neuron
Rate (DNR), which quantifies the sparsity introduced by ReLU neurons that are not completely pruned
during iterative pruning. Through rigorous experiments on existing networks (e.g., ResNet (He et al.,
2016)), we find that the more the network is pruned, the smaller the dynamic DNR becomes during and
after optimization. This suggests that the sparsity introduced by ReLU is not beneficial for pruned networks.
Further theoretical investigations also reveal the importance of reducing dynamic DNR for pruned networks
from an information bottleneck (IB) (Tishby & Zaslavsky, 2015) perspective (see Section 3.2).

2. A Method for De-sparsifying Pruned Networks. In Section 3.3, we propose a method called
Activate-while-Pruning (AP) which aims to explicitly reduce dynamic DNR. We note that AP does not
function as a stand-alone method, as it does not evaluate the importance of weights. Instead, it works in
tandem with existing pruning methods and aims to improve their performance by reducing dynamic DNR.
AP has two variants: (i) AP-Lite which slightly improves the performance of existing methods, but without
increasing the algorithm complexity, and (ii) AP-Pro which introduces an additional retraining step to the
existing methods in every pruning cycle, but significantly improves the performance of existing methods.

3. Experiments. In Section 4, we conduct experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009)
with various popular networks (e.g., ResNet, VGG (Simonyan & Zisserman, 2014), MobileNet (Sandler et al.,
2018), DenseNet (Huang et al., 2017)) using two classical and three competitive pruning methods. The
results demonstrate that AP works well with existing pruning methods and improve their performance by
3% - 4%. For the larger scale dataset (e.g., ImageNet (Deng et al., 2009)) and competitive networks (e.g.,
vision transformer (Dosovitskiy et al., 2020)), we observe an improvement of 2% - 3% with AP as opposed
to without.

4. Ablation Study. In Section 4.3, we carry out an ablation study to further investigate and demonstrate
the effectiveness of several key components that make up the proposed AP.

5. Substitution Study. In Section 4.4, we conduct a substitution study to replace certain components in
the proposed AP and examine the impact on pruning performance.

2 Background

Network pruning is a method used to reduce the size of the neural network, with its first work (LeCun
et al., 1998) dating back to 1990. In terms of the pruning style, all existing methods can be divided into
two classes: (i) One-Shot Pruning and (ii) Iterative Pruning. Assuming that we plan to prune Q% of
the parameters of a trained network, a typical pruning cycle consists of three basic steps: (i) Prune η%
of existing parameters based on given metrics (ii) Freeze pruned weights as zero (iii) Retrain the pruned
network to recover the performance. In One-Shot Pruning, η is set to Q and the parameters are pruned
in one pruning cycle. While for Iterative Pruning, a much smaller portion of parameters (i.e., η << Q)
are pruned per pruning cycle. The pruning process is repeated multiple times until Q% of parameters are
pruned. As for performance, Iterative Pruning often results in better performance compared to One-Shot
Pruning (Li et al., 2017; Vysogorets & Kempe, 2023; Zhang & Freris, 2023). So far, existing works aim to
improve the pruning performance by exploring either new pruning metrics or new retraining methods.

Pruning Metrics. Weight magnitude is the most popular approximation metric used to determine less
useful connections; the intuition being that smaller magnitude weights have a smaller effect in the output,
and hence are less likely to have an impact on the model outcome if pruned (He et al., 2020; Li et al., 2020a;b).
Many works have investigated the use of weight magnitude as the pruning metric (Han et al., 2015; Frankle &
Carbin, 2019). More recently, Lee et al. (2020) introduced layer-adaptive magnitude-based pruning (LAMP)
and attempted to prune weights based on a scaled version of the magnitude. Park et al. (2020) proposed a
method called Lookahead Pruning (LAP), which evaluates the importance of weights based on the impact
of pruning on neighbor layers. Another popular metric used for pruning is via the gradient, the intuition
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being that weights with smaller gradients are less impactful in optimizing the loss function. Examples are
(LeCun et al., 1998; Theis et al., 2018), where LeCun et al. (1998) proposed using the second derivative of
the loss function with respect to the parameters (i.e., the Hessian Matrix) as a pruning metric and Theis
et al. (2018) used Fisher information to approximate the Hessian Matrix. A recent work (Blalock et al.,
2020) reviewed numerous pruning methods and suggested two classical pruning methods for performance
evaluation: (i) Global Magnitude: Pruning the weights with the lowest absolute value anywhere in the
network and (ii) Global Taylor (Molchanov et al., 2019): Pruning the weights with the lowest absolute
value of (weight × gradient) anywhere in the network.

1. Global Magnitude: Pruning weights with the lowest absolute value globally (anywhere in the network).
2. Global Taylor: Pruning weights with the lowest absolute value of (weight×gradient) globally.

Retraining Methods. Another factor that significantly affects the pruning performance is the retraining
method. For example, Han et al. (2015) trained the unpruned network with a learning rate (LR) schedule
and retrained the pruned network using a constant learning rate (i.e., often the final LR of the LR schedule).
A recent work (Renda et al., 2019) proposed learning rate rewinding which used the same learning rate
schedule to retrain the pruned network, leading to a better pruning performance. More recently, Liu et al.
(2021a) attempted to optimize the choice of LR during retraining and proposed a LR schedule called S-Cyc.
They showed that S-Cyc could work well with various pruning methods, further improving the existing
performance. Most notably, Frankle & Carbin (2019) found that resetting the unpruned weights to their
original values (known as weight rewinding) after each pruning cycle could lead to even higher performance
than the original model. Some follow-on works (Zhou et al., 2019; Renda et al., 2019; Malach et al., 2020;
Evci et al., 2021) investigated this phenomenon more precisely and applied this method in other fields (e.g.,
transfer learning (Mehta, 2019), reinforcement learning and natural language processing (Yu et al., 2020))
while other works (Evci et al., 2022; Paul et al., 2022) study its limitation and attempt to improve on it.
One interesting work to mention is (Chen et al., 2022), which further examined the lottery ticket hypothesis
from other perspectives, such as interpretability and geometry of loss landscapes.

Other Works. In addition to works mentioned above, several other works also share some deeper insights
on network pruning (Liu et al., 2019; Zhu & Gupta, 2018; Li et al., 2022; Wang et al., 2022; Peste et al.,
2021; Lee & et al, 2023; Gale et al., 2019). For example, Wang et al. (2020) suggested that the fully-trained
network could reduce the search space for the pruned structure. More recently, Luo & Wu (2020) addressed
the issue of pruning residual connections with limited data and Ye et al. (2020) theoretically proved the
existence of small subnetworks with lower loss than the unpruned network. You et al. (2022) motivated
the use of the affine spline formulation to analyze recent pruning techniques. Liu et al. (2022a) applied the
network pruning technique in graph networks and approximated the subgraph edit distance.

3 Activate-while-Pruning

In Section 3.1, we first conduct experiments to evaluate the DNR during iterative pruning. Next, in Section
3.2, we link the experimental results to theoretical studies and motivate Activate-while-Pruning (AP). In
Section 3.3, we introduce the idea of AP and present its algorithm. Lastly, in Section 3.4, we illustrate how
AP can improve on the performance of existing pruning methods.

3.1 Experiments on DNR

We study the state of the ReLU function during iterative pruning and introduce a term called Dead Neuron
Rate (DNR), which is the percentage of dead ReLU neurons (i.e., a neuron with a post-ReLU output of
zero) in the network averaged over all training samples when the network converges. Mathematically, the
DNR can be written as

DNR = 1
n

n∑
i=1

# of dead ReLU neurons
all ReLU neurons in the unpruned network (1)

= 1
n

n∑
i=1

# of dynamically + statically dead ReLU neurons
all ReLU neurons in the unpruned network (2)
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Figure 1: Left: Dynamic and static Dead Neuron Rate (DNR) when iteratively pruning ResNet-20 using
Global Magnitude; Right: The corresponding dynamic DNR during optimization.

where n is the number of training samples. We further classify a dead neuron as either dynamically dead or
statically dead. The dynamically dead neuron is a dead neuron in which not all of the weights have been
pruned. Hence, it is not likely to be permanently dead and its state depends on its input. As an example,
a neuron can be dead for a sample X, but it could be active (i.e., post-ReLU output > 0) for a sample
Y . The DNR contributed by dynamically dead neurons is referred to as dynamic DNR. The statically
dead neuron is a dead neuron in which all associated weights have been pruned. The DNR contributed by
statically dead neurons is referred to as static DNR.

Related Works. The phenomenon of dead ReLU neurons is a widely studied topic and inspire many
interesting works Sokar et al. (2023); Dohare et al. (2021). DNR is a term that we introduce to quantify
the sparsity introduced by ReLU. We note that DNR is closely related to activation sparsity (Kurtz & et al,
2020; Georgiadis, 2019) in the literature and in many scenarios, they can be interchangeable. The only
difference could be that DNR is a more explicit term which quantifies the percent of dead ReLU neurons in
the network. In the literature, many similar sparsity metrics have also been proposed (Hurley & Rickard,
2009). As an example, the Gini Index (Goswami et al., 2016) computed from Lorenz curve (i.e., plot the
cumulative percentages of total quantities) can be used to evaluate the sparsity of network graphs. Another
popular metric will be Hoyer measure (Hoyer, 2004) which is the ratio between L1 and L2 norms, can also
be used to evaluate the sparsity of networks. Another interesting metric to mention will be parameter
sparsity (Goodfellow et al., 2016) which computes the percentage of zero-magnitude parameters among all
parameters. Both parameter sparsity and DNR will contribute to sparse representations, and in this paper,
we use DNR to quantify the sparsity introduced by ReLU.

Experiment Setup and Observations. Given the definition of DNR, static and dynamic DNR, we
conduct pruning experiments using ResNet-20 on the CIFAR-10 dataset with the aim of examining the
benefit (or lack thereof) of ReLU’s sparsity for pruned networks. We iteratively prune ResNet-20 with a
pruning rate of 20 (i.e., 20% of existing weights are pruned) using the Global Magnitude (i.e., prune weights
with the smallest magnitude anywhere in the network). We refer to the standard implementation reported in
(Renda et al., 2019) (i.e., SGD optimizer (Ruder, 2016), 100 training epochs and batch size of 128, learning
rate warmup to 0.03 and drop by a factor of 10 at 55 and 70 epochs, with learning rate rewinding (Renda
et al., 2019), but without weight rewinding (Frankle & Carbin, 2019)) and compute the static DNR and
dynamic DNR while the network is iteratively pruned. The experimental results are shown in Fig. 1, where
we make two observations as follows.

1. As shown in Fig. 1 (left), the value of DNR (i.e., sum of static and dynamic DNR) increases as the
network is iteratively pruned. As expected, static DNR grows as more weights are pruned.

2. Surprisingly, dynamic DNR tends to decrease as the network is iteratively pruned (see Fig. 1 (left)),
suggesting that pruned networks do not favor the sparsity of ReLU. In Fig. 1 (right), for pruned networks
with different λ (i.e., percent of remaining weights), they have similar dynamic DNR at beginning, but the
pruned network with smaller λ tends to have a smaller dynamic DNR during and after optimization.
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Result Analysis. One possible reason for the decrease in dynamic DNR could be due to the fact that
once the neuron is dead, its gradient becomes zero, meaning that it stops learning and degrades the learning
ability of the network (Lu et al., 2019; Arnekvist et al., 2020). This could be beneficial as existing networks
tend to be overparameterized and dynamic DNR may help to reduce the occurrence of overfitting. However,
for pruned networks whose learning ability are heavily degraded, the dynamic DNR could be harmful as a
dead ReLU always outputs the same value (zero as it happens) for any given non-positive input, meaning
that it takes no role in discriminating between inputs. Therefore, during retraining, the pruned network
attempts to restore its performance by reducing its dynamic DNR so that the extracted information can be
passed to the subsequent layers. Similar performance trends can be observed using VGG-19 with Global
Taylor (see Fig. 4 in the Appendix). Next, we present a theoretical study of DNR and show its relevance
to the network’s ability to discriminate.

3.2 Theoretical Insights: Relevance to Information Bottleneck and Complexity

Here, we present some theoretical results and subsequent insights that highlight the relevance of the dynamic
DNR of a certain layer of the pruned network to the Information Bottleneck (IB) method proposed in (Tishby
& Zaslavsky, 2015). In the IB setting, the computational flow is denoted as X −→ T −→ Y , where X represents
the input, T represents the extracted representation, and Y represents the network’s output. In (Tishby
& Zaslavsky, 2015), the authors observed that the training of neural networks is essentially a process of
minimizing the mutual information (Cover & Thomas, 2006) between X and T (denoted as I(X; T )) while
keeping I(Y ; T ) large (precisely what IB suggests). A consequence of this is that over-compressed features
(very low I(X; T )) will not retain enough information to predict the labels, whereas under-compressed
features (high I(X; T )) imply that more label-irrelevant information is retained in T which can adversely
affect generalization performance. Next, we provide a few definitions.
Definition 1. Layer-Specific dynamic DNR (DDNR(T )): We are given a dataset S = {X1, ..., Xm},
where Xi ∼ P ∀i (i.i.d) and P is the data generating distribution. We denote the dynamic DNR of the
neurons at a certain layer within the network represented by the vector T , by DDNR(T ). DDNR(T ) is computed
over the entire distribution of input in P .
Definition 2. Layer-Specific static DNR (SDNR(T )): In the same manner as DDNR(T ), we define the
layer-specific static DNR of a network layer T .

With this, we now outline our first theoretical result which highlights the relevance of DDNR(T ) and SDNR(T )
to I(X; T ), as follows.
Theorem 1. We are given the computational flow X −→ T −→ Y , where T represents the features at some
arbitrary layer within a network, which are represented with finite precision (e.g., float32 or float64). We
consider the subset of network configurations for which (a) the activations in T are less than a threshold τ
and (b) the zero-activation probability of each neuron in T is upper bounded by some pS < 1. Let dim(T )
represent the dimensionality of T , i.e., the number of neurons at that depth. We then have,

(3)I(X; T ) ≤ C × dim(T )×
(

1− SDNR(T )−DDNR(T )
(

1− 1
C

log 1− SDNR(T )
DDNR(T )

))
,

for a finite, independent constant C that only depends on the network architecture, τ and pS .

The following corollary addresses the dependencies of Theorem 1. The proof of Theorem 1 and Corollary 1
are provided in the Appendix.
Corollary 1. In the setting of Theorem 1, the right hand side of equation 3 decreases as DDNR(T ) or SDNR(T )
increases.
Remark 1. (Relevance to Complexity) We see that (Shamir et al., 2010) notes how the metric I(X; T )
represents the effective complexity of the network. As Theorem 3 in (Shamir et al., 2010) shows, I(X; T )
captures the dependencies between X and T and directly correlates with the network’s ability to fit the data.
Coupled with the observations from Theorem 1 and Corollary 1, for a fixed pruned network configuration
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Pruning Method X
p% p% p% p% Percent of Weights Pruned

by Pruning Method X

Pruning Cycles1 2 3 4

· · · · · ·

Pruning Method X with Activate-while-Pruning (AP)
p-q% q%, p-q% q%, p-q% q%, p-q% q%, Percent of Weights Pruned

by the Proposed AP

Pruning Cycles1 2 3 4

· · · · · ·

Figure 2: Illustration of how AP works in tandem with existing pruning methods (e.g., method X).

(i.e., fixed SDNR(T )), greater DDNR(T ) will likely reduce the effective complexity of the network, undermining
the function-fitting ability of the neural network.

Remark 2. (Motivation for AP) Theorem 1 also shows that a pruned network, which possesses large
SDNR(T ), leads to a higher risk of over-compression of information (low I(X; T )). To address this issue,
we can reduce the dynamic DNR (from Corollary 1) so that the upper bound of I(X; T ) can be increased,
mitigating the issue of over-compression for a pruned network. This agrees with our initial motivation that
the sparsity introduced by ReLU is not beneficial for the pruned network and reducing dynamic DNR helps
in avoiding over-compressed features while simultaneously increasing the effective complexity of the network.

3.3 Algorithm of Activate-while-Pruning

The experimental and theoretical results above suggest that, in order to better preserve the learning ability of
pruned networks, a smaller dynamic DNR is preferred. This motivates us to propose Activate-while-Pruning
(AP) which aims to explicitly reduce dynamic DNR.

We note that the proposed AP does not work alone, as it does not evaluate the importance of weights.
Instead, it serves as a booster to existing pruning methods and help to improve their pruning performance
by reducing dynamic DNR (see Fig. 2). Assume that the pruning method X removes p% of weights in every
pruning cycle (see the upper part in Fig. 2). After using AP, the overall pruning rate remains unchanged
as p%, but (p− q)% of weights are pruned according to the pruning method X with the aim of pruning less
important weights, while q% of weights are pruned according to AP (see the lower part in Fig. 2) with the
aim of reducing dynamic DNR. Consider a network f(θ) with ReLU activation function. Two key steps to
reducing dynamic DNR are summarized as follows.

(1) Locate Dead ReLU Neurons. Consider a neuron in the hidden layer with ReLU activation function,
taking n inputs {X1W1, ..., XnWn|Xi ∈ R is the input and Wi ∈ R is the associated weight}. Let j be the
pre-activated output of the neuron (i.e., j =

∑n
i=1 XiWi) and J be the post-activated output of the neuron

(J = ReLU(j)). Let L be the loss function and assume the neuron is dead (J = 0), then the gradient of
its associated weights (e.g., W1) with respected to the loss function will be ∂L

∂W1
= ∂L

∂J ·
∂J
∂j ·

∂j
∂W1

= 0 as
∂J
∂j = 0. If a neuron is often dead during training, the weight movement of its associated weights is likely to
be smaller than other neurons. Therefore, we compute the difference between weights at initialization (θ0)
and the weights when the network convergences (θ∗), i.e., |θ∗ − θ0| and use it as a heuristic to locate dead
ReLU neurons.

(2) Activate Dead ReLU Neurons. Assume we have located a dead neuron in the hidden layer with n
inputs {X1W1, ..., XnWn |Xi ∈ R is the input and Wi ∈ R is the associated weight}. We note that Xi is
non-negative as Xi is usually the post-activated output from the previous layer (i.e., the output of ReLU is
non-negative). Therefore, a straightforward way to activate the dead neuron is to prune the weights with the
negative value. By pruning such negative weights, we can increase the value of the pre-activation output,
which may turn the pre-activation output into positive so as to reduce dynamic DNR.

6



Published in Transactions on Machine Learning Research (09/2023)

Algorithm 1 The Pruning Metric of the Proposed AP
Require: (i) Network f with unpruned weights θ0 at initialization, f(θ0); (ii) Network f with unpruned

weights θ∗ at convergence, f(θ∗); (iii) Pruning Rate of AP, q;
Locate Dead Neurons: Sort |θ∗ - θ0| in an ascending order.
Activate Dead Neurons: In the ascending order of |θ∗ - θ0|, prune first q% negative weights.

Algorithm 2 The Pruning Method X with and without AP
Require: (i) Network, f(θ); (ii) Pruning Rate of Method X, p; (iii) Pruning Rate of AP, q; (iv) Pruning

Cycles, n; (v) Pro_Flag = {0: AP-Lite, 1: AP-Pro};
——————————— The Conventional Pruning Method X ———————————
for i = 1 to n do

Randomly initialize unpruned weights, θ ← θ0.
Train the network to convergence, arriving at parameters θ∗.
Prune p % of θ∗ according to the pruning method X.

end for
Retrain: Retrain the network to recover its performance.
———————– The Conventional Pruning Method X with Proposed AP ———————–
for i = 1 to n do

Randomly initialize unpruned weights, θ ← θ0.
Train the network to convergence, arriving at parameters θ∗.
Prune (p - q) % of θ∗ according to the pruning method X.
if Pro_Flag then # Execution of AP-Pro

(i) Pruning: Prune q % of parameter θ∗ according to the metric of AP (see details in Algo. 1).
(ii) Weight Rewinding: Reset the remaining parameters to their values in θ0.
(iii) Retrain: Retrain the pruned network to recover its performance.

end if
end for
if NOT Pro_Flag then # Execution of AP-Lite

(i) Pruning: Prune q % of the parameters θ∗ according to the metric of AP (see details in Algo. 1).
(ii) Weight Rewinding: Reset the remaining parameters to their values in θ0.
(iii) Retrain: Retrain the pruned network to recover its performance.

end if

3.4 How AP Improves Existing Methods

We now summarize how AP can improve existing pruning methods in Algorithm 2, where the upper part
is the algorithm of a standard iterative pruning method called pruning method X and the lower part is the
algorithm of method X with AP. The proposed AP has two variants: AP-Pro and AP-Lite. We note that
both AP-Pro and AP-Lite contain the same three steps, summarized as follows.

• Step 1: Pruning. Given a network at convergence with a set of dynamically dead ReLU neurons,
N1 = {n1, n2, n3, ...}. The pruning step of AP aims to activate these dynamically dead ReLU neurons by
pruning negative weights (i.e., see Algorithm 1), so as to preserve the learning ability of the pruned network.
• Step 2: Weight Rewinding. Resetting unpruned weights to their values at the initialization. We note
that different weight initializations could lead to different sets of N . In step 1, AP aims to reduce dynamic
DNR for the target N1 and weight rewinding attempts to prevent the target N1 from changing too much.
Since the weights of ReLU neurons in N1 have been pruned by AP, these neurons could become active during
retraining. The effect of weight rewinding is evaluated via an ablation study.
• Step 3: Retraining. Retrain the pruned network to recover performance.

AP-Lite and AP-Pro. The key difference between AP-Lite and AP-Pro is that AP-Lite applies these three
steps only once at the end of pruning. It aims to slightly improve the performance, but does not substantially
increase the algorithm complexity. For AP-Pro, it applies the three steps above in every pruning cycle, which
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increases the algorithm complexity (mainly due to the retraining step), but aims to significantly improve the
performance, which could be preferred in performance oriented tasks.

Difference with Existing Works. The AP is a pruning method which does not work alone as AP’s
pruning metric cannot evaluate the importance of weights (verified in Section 4.3). AP works in tandem with
existing pruning methods and help to further pruned the network by reducing the occurrence of dynamic
dead neurons (i.e., decrease activation sparsity). This is different from existing works (Raihan & Aamodt,
2020; Liu et al., 2022b; Akiva-Hochman et al., 2022; Gupta et al., 2019) which jointly optimize weight and
activation sparsity for computation acceleration, the proposed AP investigates the interaction of weight and
activation sparsity from a new perspective, i.e., how to tradeoff activation sparsity for more weight sparsity.

4 Performance Evaluation

In Section 4.1, we first summarize the experiment setup. Next, in Section 4.2, we compare and analyze
the results obtained. In Section 4.3, we conduct an ablation study to evaluate the effectiveness of several
components in AP. Lastly, in Section 4.4, we conduct a substitution study on the proposed AP.

4.1 Experiment Setup

(1) Experiment Details. To demonstrate that AP can work well with different pruning methods, we
shortlist two classical and competitive pruning methods. The details are summarized as follows.

1. Pruning ResNet-20 on the CIFAR-10 dataset using Global Magnitude with and without AP.
2. Pruning VGG-19 on the CIFAR-10 dataset using Global Taylor with and without AP.
3. Pruning DenseNet-40 (Huang et al., 2017) on CIFAR-100 using Layer-Adaptive Magnitude-based Pruning
(LAMP) (Lee et al., 2020) with and without AP.
4. Pruning MobileNetV2 (Sandler et al., 2018) on the CIFAR-100 dataset using Lookahead Pruning (LAP)
(Park et al., 2020) with and without AP.
5. Pruning ResNet-50 (He et al., 2016) on the ImageNet (i.e., ImageNet-1000) using Iterative Magnitude
Pruning (IMP) (Frankle & Carbin, 2019) with and without AP.
6. Pruning Vision Transformer (ViT-B-16) on CIFAR-10 using IMP with and without AP.

We train the network using SGD with He initialization (He et al., 2015), momentum = 0.9 and a weight
decay of 1e-4 (same as (Renda et al., 2019; Frankle & Carbin, 2019)). For the benchmark pruning method,
we prune the network with a pruning rate p = 20 (i.e., 20% of existing weights are pruned) in 1 pruning cycle.
After using AP, the overall pruning rate remains unchanged as 20%, but 2% of existing weights are pruned
based on AP, while the other 18% of existing weights are pruned based on the benchmark pruning method
to be compared with (see Algorithm 2). We repeat 25 pruning cycles in 1 run and use the early-stop top-1
test accuracy (i.e., the corresponding test accuracy when early stopping criteria for validation error is met)
to evaluate the performance. The experimental results averaged over 5 runs and the corresponding standard
deviation are summarized in Tables 1 - 6, where λ is the percentage of weights remaining. The bolded results
indicate that AP is significantly better than benchmarks results after accounting for the standard deviation.

(2) Hyper-parameter Selection and Tuning. To ensure fair comparison against prior results, we
utilize standard implementations (i.e., network hyper-parameters and learning rate schedules) reported in
the literature. Specifically, the implementations for Tables 1 - 6 are from (Frankle & Carbin, 2019), (Zhao
et al., 2019), (Chin et al., 2020), (Renda et al., 2019) and (Dosovitskiy et al., 2020). The implementation
details can be found in Section B.2 of the Appendix. In addition, we also tune hyper-parameters for each
experiment setup mentioned above using the validation dataset via grid search. Some hyper-parameters
are tuned as follows. (i) The training batch size is tuned from {64, 128, ...., 1024}. (ii) The learning rate
is tuned from 1e-3 to 1e-1 via a stepsize of 2e-3. (iii) The number training epochs is tuned from 80 to
500 with a stepsize of 20. The validation performance using our tuned parameters are close to that of
using standard implementations. Therefore, we use standard implementations reported in the literature to
reproduce benchmark results.
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Original Top-1 Test Accuracy: 91.7% (λ = 100%)
λ 32.8% 26.2% 13.4% 5.72%

Global Magnitude 90.3 ± 0.4 89.8 ± 0.6 88.2 ± 0.7 81.2 ± 1.1
Global Magnitude with AP-Lite 90.4 ± 0.7 90.2 ± 0.8 88.7 ± 0.7 82.4 ± 1.4
Global Magnitude with AP-Pro 90.7 ± 0.6 90.4 ± 0.4 89.3 ± 0.8 84.1 ± 1.1

Table 1: Performance (top-1 test accuracy ± standard deviation) of pruning ResNet-20 on CIFAR-10 using
Global Magnitude with and without the proposed AP.

Original Top-1 Test Accuracy: 92.2% (λ = 100%)
λ 32.8% 26.2% 13.4% 5.72%

Global Taylor 90.2 ± 0.5 89.8 ± 0.8 89.2 ± 0.8 76.9 ± 1.1
Global Taylor with AP-Lite 90.5 ± 0.8 90.3 ± 0.7 89.7 ± 0.9 78.4 ± 1.4
Global Taylor with AP-Pro 90.8 ± 0.6 90.7 ± 0.9 90.4 ± 0.8 79.2 ± 1.3

Table 2: Performance (top-1 test accuracy ± standard deviation) of pruning VGG-19 on CIFAR-10 using
Global Taylor with and without the proposed AP.

(3) Reproducing Benchmark Results. By using the implementations reported in the literature, we
have correctly reproduced the benchmark results. For example, the benchmark results in our Tables 1 - 6
are comparable to Fig.11 and Fig.9 of (Blalock et al., 2020), Table.4 in (Liu et al., 2019), Fig.3 in (Chin
et al., 2020), Fig. 10 in (Frankle et al., 2020), Table 5 in (Dosovitskiy et al., 2020), respectively.

(4) Source Code & Devices: We use Tesla V100 devices to conduct our experiments. The datasets
are preprocessed using the conventional method. The source code is available at https://github.com/
Martin1937/Activate-While-Pruning.

4.2 Performance Comparison

(1) Performance using Classical Pruning Methods. In Tables 1 & 2, we show the performance of
AP using classical pruning methods (e.g., Global Magnitude, Global Taylor) via ResNet-20 and VGG-19
on CIFAR-10. We observe that as the percent of weights remaining, λ decreases, the improvement of AP
becomes larger. For example, in Table 1, the performance of AP-Lite at λ = 26.2% is 1.3% higher than the
benchmark result. The improvement increases to 2.6% at λ = 5.7%. Note that AP-Lite does not increase
the algorithm complexity of existing methods. As expected, in Table 1, AP-Pro leads to a more significant
improvement of 2.0% and 4.1% at λ = 26.2% and λ = 5.7%, respectively. Similar performance trends can
be observed in Table 2 as well. The results for more values of λ can be found in the Appendix.

(2) Performance using Competitive and Classical Pruning Methods. In Tables 3 and 4, we show
that AP can work well with Competitive pruning methods (e.g., LAMP, LAP). In Table 3, we show the
performance of AP using LAMP via DenseNet-40 on CIFAR-100. We observe that AP-Lite improves the
performance of LAMP by 1.2% at λ = 13.4% and the improvement increases to 1.6% at λ = 5.7%. Note
that AP-Lite does not increase the algorithm complexity of existing methods. For AP-Pro, it causes a larger
improvement of 4.6% and 3.8% at λ = 13.4% and λ = 5.7%, respectively. Similar performance trends can
be observed in Table 4, where we show the performance of AP using LAP via MobileNetV2 on CIFAR-100.

(3) Performance on ImageNet. In Table 5, we show the performance of AP using Iterative Magnitude
Pruning (IMP, i.e., the lottery ticket hypothesis pruning method) via ResNet-50 on ImageNet (i.e., the
ILSVRC version) which contains over 1.2 million images from 1000 different classes. We observe that AP-
Lite improves the performance of IMP by 1.5% at λ = 5.7%. For AP-Pro, it improves the performance of
IMP by 2.8% at λ = 5.7%.
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Original Top-1 Test Accuracy: 74.6% (λ = 100%)
λ 32.8% 26.2% 13.4% 5.72%

LAMP 71.5 ± 0.7 69.6 ± 0.8 65.8 ± 0.9 61.2 ± 1.4
LAMP with AP-Lite 71.9 ± 0.8 70.3 ± 0.7 66.6 ± 0.7 62.2 ± 1.2
LAMP with AP-Pro 72.2 ± 0.7 71.1 ± 0.7 68.8 ± 0.9 63.5 ± 1.5

Table 3: Performance (top-1 test accuracy ± standard deviation) of pruning DenseNet-40 on CIFAR-100
using Layer-Adaptive Magnitude Pruning (LAMP) with and without the proposed AP.

Original Top-1 Test Accuracy: 73.7% (λ = 100%)
λ 32.8% 26.2% 13.4% 5.72%

LAP 72.1 ± 0.8 70.5 ± 0.9 67.3 ± 0.8 64.8 ± 1.5
LAP with AP-Lite 72.5 ± 0.9 70.9 ± 0.8 68.2 ± 1.2 66.2 ± 1.5
LAP with AP-Pro 72.8 ± 0.7 71.4 ± 0.8 69.1 ± 0.8 67.4 ± 1.1

Table 4: Performance (top-1 test accuracy ± standard deviation) of pruning MobileNetV2 on CIFAR-100
using Lookahead Pruning (LAP) with and without the proposed AP.

Original Top-1 Test Accuracy: 77.0% (λ = 100%)
λ 32.8% 26.2% 13.4% 5.72%

IMP 76.8 ± 0.2 76.4 ± 0.3 75.2 ± 0.4 71.5 ± 0.4
IMP with AP-Lite 77.2 ± 0.3 76.9 ± 0.4 76.1 ± 0.3 72.6 ± 0.5
IMP with AP-Pro 77.5 ± 0.4 77.2 ± 0.3 76.8 ± 0.6 73.5 ± 0.4

Table 5: Performance (top-1 validation accuracy ± standard deviation) of pruning ResNet-50 on ImageNet
using Iterative Magnitude Pruning (IMP) with and without AP.

Original Top-1 Test Accuracy: 98.0% (λ = 100%)
λ 32.8% 26.2% 13.4% 5.72%

IMP 97.3 ± 0.6 96.8 ± 0.7 88.1 ± 0.9 82.1 ± 0.9
IMP with AP-Lite 98.0 ± 0.4 97.3 ± 0.7 89.9 ± 0.6 83.6 ± 0.8
IMP with AP-Pro 98.2 ± 0.6 97.6 ± 0.5 91.1 ± 0.8 84.8 ± 1.0

Table 6: Performance (top-1 test accuracy ± standard deviation) of pruning Vision Transformer (ViT-B-16)
on CIFAR-10 using IMP with and without AP.

(3) Performance on Competitive Networks (Vision Transformer). Several recent works (Liu et al.,
2021b; Yuan et al., 2021; Chen et al., 2021) demonstrated that transformer based networks tend to provide
excellent performance in computer vision tasks. We now examine the performance of AP using Vision
Transformer (i.e., ViT-B16 with a resolution of 384, pretrained on ImageNet dataset). We note that the
ViT-B16 uses Gaussian Error Linear Units (GELU, GELU(x) = xΦ(x), where Φ(x) is the standard Gaussian
cumulative distribution function) as the activation function. Similar to ReLU which blocks the negative pre-
activation output, GELU heavily regularizes the negative pre-activation output by multiplying an extremely
small value of Φ(x), suggesting that AP could be helpful with pruning GELU based models as well.

We repeat the same experiment setup as above and evaluate the performance of AP using ViT-B16 in Table
6. We observe that AP-Lite helps to improve the performance of IMP by 1.8% at λ = 5.7%. For AP-Pro, it
improves the performance of IMP by 3.3% at λ = 5.7%.
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λ 32.8% 26.2% 13.4% 5.72%

AP-Lite 90.4 ± 0.7 90.2 ± 0.8 88.7 ± 0.7 82.4 ± 1.1

AP-Lite-SOLO 86.0 ± 1.0 84.3 ± 1.5 81.5 ± 2.0 74.5 ± 3.1
AP-Lite-NO-WR 87.5 ± 0.9 87.1 ± 1.2 84.7 ± 1.5 78.8 ± 2.3

Table 7: Ablation Study: Performance Comparison (top-1 test accuracy ± standard deviation) between
AP-Lite and AP-SOLO, AP-Lite-NO-WR on pruning ResNet-20 on CIFAR-10 via Global Magnitude.

λ 32.8% 26.2% 13.4% 5.72%

AP-Pro 90.8 ± 0.6 90.7 ± 0.9 90.4 ± 0.8 79.2 ± 1.3

AP-Pro-SOLO 85.8 ± 1.5 83.2 ± 1.7 81.5 ± 1.9 70.3 ± 2.7
AP-Pro-NO-WR 88.1 ± 1.2 86.3 ± 1.5 85.6 ± 1.5 74.8 ± 2.1

Table 8: Ablation Study: Performance Comparison (top-1 test accuracy ± standard deviation) between
AP-Pro and AP-Pro-SOLO, AP-Pro-NO-WR on pruning VGG-19 using CIFAR-10 via Global Taylor.

λ 32.8% 26.2% 13.4% 5.72%

AP-Lite 77.2 ± 0.3 76.9 ± 0.4 76.1 ± 0.3 72.6 ± 0.5

AP-Lite-SOLO 75.8 ± 0.5 74.3 ± 0.7 71.1 ± 0.6 68.5 ± 0.9
AP-Lite-NO-WR 76.3 ± 0.6 74.9 ± 0.8 73.2 ± 0.8 70.3 ± 1.1

Table 9: Ablation Study: Performance Comparison (top-1 test accuracy ± standard deviation) between
AP-Lite and AP-Lite-SOLO, AP-Lite-NO-WR on pruning ResNet-50 on ImageNet via IMP.

4.3 Ablation Study

We now conduct an ablation study to evaluate the effectiveness of components in AP. Specifically, we remove
one component at a time in AP and observe the impact on the pruning performance.

1. AP-(Lite/Pro)-NO-WR: Using AP without the weight rewinding step (i.e., remove step (ii) from
Algo. 2). This aims to evaluate the effect of weight rewinding on the pruning performance.

2. AP-(Lite/Pro)-SOLO: Using only AP-(Lite/Pro) without the benchmark pruning method (i.e.,
in every pruning cycle, pruning weights only based on AP). This aims to evaluate if the pruning
metric of AP alone can be used to evaluate the importance of weights.

In Tables 7 and 8, we conduct experiments of pruning ResNet-20 on the CIFAR-10 dataset using Global
Magnitude (AP-Lite) and pruning VGG-19 on CIFAR-10 using Global Taylor (AP-Pro) respectively. In
each case, we compare the performance of AP-(Lite/Pro)-NO-WR, AP-(Lite/Pro)-SOLO to AP-(Lite/Pro)
so as to demonstrate the effectiveness of components in AP. We note that, same as before, we utilize the
implementation reported in the literature. Specifically, the hyper-parameters and the learning rate schedule
are from (Frankle & Carbin, 2019).

Effect of Weight Rewinding. In Tables 7 and 8, we compare the performance of AP-(Lite/Pro)-NO-WR
to AP-(Lite/Pro). The key difference is that AP-(Lite/Pro) uses weight rewinding (see Algorithm 2) whereas
the NO-WR approaches do not. We find that the performance of AP-(Lite/Pro) is always higher across all λ.
For instance, at λ = 5.72%, AP-Pro-NO-WR yields an accuracy of 74.8%, which is 4.4% lower than AP-Pro
itself. This suggests the crucial role of weight rewinding in improving the performance.
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λ 32.8% 26.2% 13.4% 5.72%
Global Magnitude (GM) 90.3 (6.7%) 89.8 (6.3%) 88.2 (5.8%) 81.2 (5.4%)

GM + AP-Pro 90.7 (6.3%) 90.4 (5.9%) 89.3 (5.1%) 84.1 (3.9%)
GM + AP-output 90.6 (6.2%) 90.5 (5.8%) 89.4 (5.1%) 84.4 (3.8%)
GM + AP-bias-0.2 90.1 (6.6%) 89.4 (6.3%) 88.1 (5.8%) 82.3 (5.4%)
GM + AP-bias-0.5 89.9 (6.5%) 89.6 (6.1%) 86.9 (5.5%) 82.8 (4.8%)
GM + AP-bias-1.0 89.5 (6.1%) 88.7 (5.7%) 87.0 (5.0%) 81.5 (3.6%)

Table 10: Performance comparison (i.e., top-1 test accuracy (dynamic DNR)) between AP-Pro and alterna-
tive methods in terms of dead neuron location and activation (rows 4 - 7) on ResNet-20 using CIFAR-10.

λ 32.8% 26.2% 13.4% 5.72%
LAP 72.1 (7.8%) 70.5 (6.9%) 67.3 (6.5%) 64.8 (6.1%)

LAP + AP-Pro 72.8 (7.4%) 71.4 (6.4%) 69.1 (5.6%) 67.4 (5.1%)
LAP + AP-output 72.5 (7.6%) 71.7 (6.2%) 69.3 (5.8%) 67.2 (5.3%)
LAP + AP-bias-0.2 71.8 (7.8%) 70.2 (6.8%) 66.8 (6.4%) 63.3 (6.1%)
LAP + AP-bias-0.5 71.4 (7.7%) 70.4 (6.6%) 67.1 (6.2%) 65.1 (5.8%)
LAP + AP-bias-1.0 71.2 (7.5%) 70.1 (6.5%) 67.7 (6.1%) 65.9 (5.4%)

Table 11: Performance comparison (i.e., top-1 test accuracy (dynamic DNR)) between AP-Pro and alterna-
tive methods in terms of dead neuron location and activation (rows 4 - 7) on MobileNetV2 using CIFAR-100.

When AP Works Solely. The pruning metric of AP (see Algorithm 1) aims to reduce dynamic DNR by
pruning. We compare the performance of AP-(Lite/Pro)-SOLO to AP-(Lite/Pro) to evaluate if the pruning
metric of AP can be used solely, without working with other pruning methods. In Tables 7 and 8, we observe
that the SOLO methods perform much worse. For example, at λ = 5.72%, the performance of AP-Lite-
SOLO is 74.5, which is 7.9% lower than AP-Lite. It suggests that the pruning metric of AP alone is not
suitable to evaluate the importance of weights. The effect of AP’s metric on reducing dynamic DNR and its
pruning rate q on pruning performance are discussed in Section 5.

More Results using ResNet-50 on ImageNet. To further validate the results, we also conduct the
ablation study using AP-Lite on ImageNet (ResNet-50). We summarize the results in Table 9, and we find
that the results largely mirror those in Tables 7 and 8. Thus, both SOLO and NO-WR approaches perform
significantly worse than the baseline.

4.4 Substitution Study

In this subsection, we conduct a substitution study on the proposed AP. Specifically, AP consists of two
key components: dead ReLU neuron location and activation (see Algorithm 1). We replace one component
at a time and observe the effect on dynamic DNR reduction and pruning performance (i.e., accuracy). we
construct two variants of AP as follows and compare to the original AP-Pro.

1. AP-output: We replace the existing dead neuron location mechanism (i.e., weight movement) with
directly observing the post-activated output of each ReLU neuron.

2. AP-bias-k: We replace the existing dead neuron activation mechanism (i.e., prune negative weights)
by adding a constant value k to the bias of dead ReLU neurons.

The results of ResNet-20 & MobileNetV2 are summarized in Tables 10 - 11. The value in parentheses is
dynamic DNR. Note that static DNR values remain roughly the same for all methods in each column and are
therefore not shown. This is mainly because that majority of pruned weights are determined by the pruning
method that AP works with (more details in Section 5). The findings from Tables 10 - 11 are as follows:
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AP Pruning Rate, q 1% 2% 3% 5%
AP-Lite (λ = 64.0%) 89.8 ± 0.1 90.0 ± 0.2 89.5 ± 0.4 89.2 ± 0.6
AP-Lite (λ = 40.9%) 88.2 ± 0.4 88.9 ± 0.6 88.5 ± 0.7 87.3 ± 0.5
AP-Lite (λ = 26.2%) 87.1 ± 0.5 87.9 ± 0.8 86.7 ± 0.8 86.3 ± 0.9

Table 12: Performance (top-1 test accuracy ± standard deviation) of AP-Lite when iterative pruning ResNet-
20 on CIFAR-10 with different pruning rate.

AP Pruning Rate, q 1% 2% 3% 5%
AP-Lite (λ = 64.0%) 91.1 ± 0.2 91.7 ± 0.3 90.2 ± 0.5 89.8 ± 0.6
AP-Lite (λ = 40.9%) 88.7 ± 0.5 89.8 ± 0.9 89.3 ± 1.1 88.0 ± 0.9
AP-Lite (λ = 26.2%) 87.9 ± 0.8 88.5 ± 0.7 88.1 ± 1.3 87.1 ± 1.3

Table 13: Performance (top-1 test accuracy ± standard deviation) of AP-Lite when iterative pruning VGG-
19 on CIFAR-10 with different pruning rate.

1. Effect of AP on reducing dynamic DNR. When conventional pruning methods work with AP, the
dynamic DNR is significantly reduced (compare GM to GM + AP-Pro in Table 10).

2. Ceiling analysis on dead neuron location. The performance of AP-Pro and AP-output is compa-
rable in terms of reducing dynamic DNR and pruning performance. This suggests that AP-Pro works as
expected and is able to locate dynamic dead neurons as if it directly observes the post-activated output.

3. Implementation complexity. We note that implementing AP-output is more complex than AP-Pro.
AP-output requires practitioners to record the state of each neuron and then average over every training
batch. For AP-Pro, we only need to compute the difference between two weight matrices. Given that
AP-Pro can provide comparable performance to AP-output, and is relatively simpler to implement. As
such, we still recommend using weight movements to locate dead ReLU neurons, as AP-Pro does now.

4. Comparison to AP-bias-k. When comparing AP-bias to AP-Pro, we find that a small value of k fails
to reduce dynamic DNR as AP-Pro does. While for a large value of k, it can directly reduce dynamic
DNR, but the performance performance is still not comparable to AP-Pro. We suspect that adding a
large bias may hinder the optimization of the network during retraining, leading to uncompetitive results.

5 Reflections

In this section, we discuss several important points and present some experimental results.

(1) Pruning Rate of AP, q. Active Pruning removes q% of remaining parameters in every pruning cycle,
so as to reduce dynamic DNR. The value of q is usually much smaller than the pruning rate of the pruning
method it works with. As an example, in Section 4, the overall pruning rate is fixed as 20% and 2% of
weights are pruned based on Active Pruning, which is much smaller than the pruning rate of the benchmark
method compared with (i.e., 18%). Adjusting the value of q is a trade-off between pruning less important
weights and reducing dynamic DNR. A large q value indicates preferential reduction of dynamic DNR, while
a small q value means preferential removal of less important weights.

We repeat the experiments of pruning ResNet-20 on CIFAR-10 using Global Magnitude and AP-Lite. We
note that the overall pruning rate is fixed as 20% and the pruning rate of AP increases from 1% to 5%.
Correspondingly, the pruning rate of Global Magnitude decreases from 19% to 15%. The experimental
results are summarized in Table 12. We observe that as we increase the pruning rate of AP from 2%, the
performance tends to decrease. Similar performance trends can be observed using VGG-19 on CIFAR-10 as
well (see Table 13). The theoretical determination of the optimal value of q is clearly worth deeper thought.
Alternatively, q can be thought of as a hyper-parameter and tuned via the validation dataset and let q = 2
could be a good choice as it provides promising results in various experiments.
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Figure 3: The value of q-best and q-feasible-region as p gradually increases when iteratively pruning ResNet-
20 (Left) and VGG-19 (Right) on CIFAR-10 using Global Magnitude and Global Taylor, respectively.

(2) Relationship between p and q. In the above experiments, we examine feasible values of AP’s
pruning rate q when the overall pruning rate p is fixed at 20%. We now conduct experiments to find feasible
values of q when p is changing, so as to suggest the relationship between them. We conduct experiments
with p values from [10%, 15%, ..., 30%] on ResNet-20 and VGG-19. We gradually increase the value of q
with a step size of 0.25% and define two terms about q as follows.

1. q-best: The value of q that provides the best pruning performance in terms of accuracy.

2. q-feasible-region: The value region of q that provides comparable performance to q-best (i.e., <
0.5% accuracy difference).

The results are depicted in Fig 3, where we make two observations: (i) As p increases, q should increase as
well. (ii) A heuristic of q = 0.1p seems to be a promising method to determine the value of q. Alternatively,
q can also be considered as a hyperparameter and tuned via validation dataset.

(3) Comparison to Activation Sparsity Baselines. We note that AP works in tandem with existing
pruning methods and decreases the activation sparsity of pruned networks by pruning its negative weights.
There could be other approaches which can decrease the activation sparsity as well, such as L1 regularization
(Georgiadis, 2019) and boosted Hoyer Regularization (Kurtz & et al, 2020). Specifically, L1 regularization
and boosted Hoyer regularization can be applied in the opposite direction to decrease the activation sparsity.

We now replace AP with activation sparsity baselines (e.g., boosted Hoyer regularization) and examine
the performance when they work in tandem with existing pruning methods. The results are summarized
in Tables 14 - 15. The takeaway message is two-fold: (i) When conventional pruning methods work with
AP, this leads to a better performance than working with other activation sparsity baselines. The reason
could be that AP explicitly targets dynamic dead neurons by pruning negative weights. This decreases the
activation sparsity in a more precise manner. While other activation sparsity baselines use an augmented loss
function and the decrease of activation sparsity becomes implicit and hard to control during optimization
(i.e., the selection of which neuron is activated is not clear and there is no precise control). (ii) Interestingly,
when we gradually prune the network, using conventional pruning methods with activation sparsity baselines
outperforms the original counterpart (i.e., using conventional pruning method solely). For example, compare
Global Magnitude + Booster Hoyer to Global Magnitude when λ = 5.72%. This suggests that activation
sparsity approaches can help to improve the performance of pruning methods. New methods to reduce
activation sparsity to obtain more weighted sparsity are definitely worth exploring.

(4) Static DNR. During iterative pruning, the static DNR tends to increase as expected (see Fig. 1). It is
interesting to mention that, after incorporating with AP, the static DNR of pruned networks remains almost
the same as opposed to without. For example, the static DNR of Global Magnitude in Table 10 (second row)
increases from 7.1% to 8.4% and finally reaches 15.9% when λ decreases from 32.8% to 26.2% and finally to
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λ 32.8% 26.2% 13.4% 5.72%
Global Magnitude (GM) 90.3 ± 0.4 89.8 ± 0.6 88.2 ± 0.7 81.2 ± 1.1

GM + AP-Pro 90.7 ± 0.6 90.4 ± 0.4 89.3 ± 0.8 84.1 ± 1.1

GM + Booster Hoyer 89.5 ± 0.6 88.7 ± 0.8 86.1 ± 1.0 82.5 ± 0.7

GM + L1 Regularization 89.8 ± 0.5 88.3 ± 0.7 85.6 ± 0.9 81.9 ± 0.8

Table 14: Performance (top-1 test accuracy ± standard deviation) of pruning ResNet-20 on CIFAR-10 using
Global Magnitude with the proposed AP and other activation sparsity baselines.

λ 32.8% 26.2% 13.4% 5.72%
Global Taylor (GT) 90.2 ± 0.5 89.8 ± 0.8 89.2 ± 0.8 76.9 ± 1.1

GT + AP-Pro 90.8 ± 0.6 90.7 ± 0.9 90.4 ± 0.8 79.2 ± 1.3

GT + Booster Hoyer 89.8 ± 0.7 88.6 ± 0.6 87.1 ± 1.2 77.5 ± 0.9

GT + L1 Regularization 89.2 ± 0.4 88.1 ± 0.7 86.3 ± 1.0 77.1 ± 1.2

Table 15: Performance (top-1 test accuracy ± standard deviation) of pruning VGG-19 on CIFAR-10 using
Global Taylor with the proposed AP and other activation sparsity baselines.

13.4%. After incorporating with AP-Pro (third row in Table 10), the static DNR almost remains the same.
This is mainly because that the majority of pruned weights are still determined by the Global Magnitude
(i.e., 18%) while only 2% of pruned weights are determined by AP.

The Theorem 1 shows that, in addition to dynamic DNR, reducing static DNR also can improve the upper
bound of I(X; T ). In fact, reducing static DNR has been incorporated directly or indirectly into the existing
pruning methods. As an example, LAMP (i.e., one Competitive pruning method used in performance
evaluation, see Table 3) takes the number of unpruned weights of neurons/layers into account and avoids
pruning weights from neurons/filters with less number of unpruned weights. This prevents neurons from
being statically dead. Differing from existing methods, AP is the first method targeting the dynamic DNR.
Hence, as a method that works in tandem with existing pruning methods, AP improves existing methods by
filling in the gap in reducing dynamic DNR, leading to much better pruning performance.

(5) Working with Non-ReLU based Networks. We would like to highlight that AP also works well
with non-ReLU based networks. For example, in Table 5, we show the performance of AP using Vision
Transformer which uses GELU as the activation function. In this setup, AP also leads to an improvement of
2% - 3%. We posit that this could be due to the fact that, similar to ReLU which blocks the negative pre-
activation output, GELU heavily regularizes the negative pre-activation output by multiplying an extremely
small value of Φ(x), suggesting that AP could be helpful with pruning GELU based models as well.

(6) Future Research. (i) We only examine the effect of AP on network pruning using image datasets.
In fact, AP may not be limited to this, but can also be applied to dynamic sparse training algorithms or
for NLP tasks. (ii) The activation sparsity methods which enforce activation sparsity could also be used in
the opposite way to decrease the activation sparsity. Such methods could be an alternative for AP and new
methods to reduce activation sparsity to obtain more weight sparsity are definitely worth exploring. (iii) The
pruning rate of AP q is a important hyperparameter to tune and may significantly affect the performance.
In above, we suggest the heuristic of q = 0.1p to determine q from the overall pruning rate p. A theoretical
way to determine the value of q is also worth exploring and q may change in a non-linear way with p.

6 Conclusion

In this paper, we propose a new pruning method called Activate-while-Pruning (AP). Unlike existing pruning
methods which remove less important parameters, the proposed AP works in tandem with existing pruning
methods and aims to improve their pruning performance by de-sparsifying pruned networks. It is also
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interesting to mention that the proposed AP studies the interaction of weight and activation sparsity from
a new perspective, i.e., how to tradeoff activation sparsity for more weight sparsity.

Theoretically, we show the benefits of de-sparsifying pruned networks from the perspective of information
bottleneck. Empirically, we use six different sets of experiments to demonstrate that AP can work well with
a diverse range of networks (e.g., ResNet, VGG, DenseNet, MobileNet) and pruning methods (e.g., IMP,
LAP, LAMP, etc) on both CIFAR-10/100 and ImageNet. It should be noted that AP is a generic approach,
and by using the proposed AP, the pruning performance of existing pruning methods can be improved by 3%
- 8%. Furthermore, we conduct an ablation study to further investigate and demonstrate the effectiveness of
several key components that make up the proposed AP. Lastly, we conduct a substitution study to replace
certain components in AP with alternative methods, further verifying the design of the proposed AP.
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A Proofs of Theoretical Results

In this section, we provide the proofs for theoretical results (Theorem 1 and Corollary 1) of the main paper.

A.1 Proof of Theorem 1

Theorem 1. We are given the computational flow X −→ T −→ Y , where T represents the features at some
arbitrary depth within a network, represented with finite precision (e.g. float32 or float64). We only consider
the subset of network configurations for which (a) the activations in T are less than a threshold τ and (b)
the zero-activation probability of each neuron in T is upper bounded by some pS < 1. Let dim(T ) represent
the dimensionality of T , i.e., the number of neurons at that depth. We then have,

I(X; T ) ≤ C × dim(T )×
(

1− SDNR(T )−DDNR(T )
(

1− 1
C

log 1− SDNR(T )
DDNR(T )

))
, (4)

for a finite constant C that only depends on the network architecture, τ and pS .

Proof. First, note that due to finite precision T is a discrete variable, and thus I(X; T ) = H(T ), as T = f(X)
is a deterministic function of X, where f denotes the function within the network that maps X to T . Next,
let us only consider the nodes in T which are not statically dead; i.e. they do not form a part of the SDNR(T ).
Let us denote them as active nodes. Note that there will be k = dim(T )× (1−SDNR(T )) active nodes in this
case.

For these k nodes, let p1, p2, ..., pk denote the probability that each node will be zero-valued, when X is
drawn infinitely over the entire distribution P . Let us also denote D′

DNR
(T ) = DDNR(T )

1−SDNR(T ) as the cardinality
adjusted dynamic DNR rate of the pruned network. Note that E[pi] = D′

DNR
(T ). Let us represent these k

nodes by T1, T2, .., Tk for what follows. Note that like T , each Ti will be discrete valued. We can thus write

H(T ) ≤
∑

H(Ti) (5)

As all activations are less than τ , if the precision of representation is α, we will have a maximum N = τ
α

number of possible outcomes for each Ti. Let ϕi
0, ϕi

1, ..., ϕi
N−1 thus represent the probabilities of Ti being

each possible discrete outcome. We have that
∑

j ϕi
j = 1. Note that ϕi

0 = pi.

Now, we can write

H(Ti) = pi log 1
pi

+ (1− pi)
∑

N−1≥j≥1

ϕi
j

(1− pi)
log 1

ϕi
j

(6)

Here let us consider the quantity
∑

N−1≥j≥1
ϕi

j

(1−pi) log 1
ϕi

j

. Let C be the maximum possible value this quantity
can take, across all network weight configurations that obey the constraints provided in the Theorem. Note
that C will only depend on the network architecture, and the parameters τ and pS . We will now demonstrate
that C is finite, and provide an upper bound for the same.

Given pi = ϕi
0, we have that

∑
j≥1 ϕi

j = 1−pi. Thus, under this constant summation constraint, the quantity∑
N−1≥j≥1

ϕi
j

(1−pi) log 1
ϕi

j

will only be maximized when ϕi
1 = ϕi

2 = ...ϕi
N−1 = 1−pi

N−1 . Thus, we have

C ≤
∑

N−1≥j≥1

1
N − 1 log N − 1

1− pi
(7)

= log N − 1
1− pi

≤ log N − 1
1− pS

(8)
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This shows that C is finite, and depends on the network architecture, pS and τ (which affects N). Lastly,
we have

k∑
i=1

H(Ti) ≤
k∑

i=1

(
pi log 1

pi
+ (1− pi)C

)
(9)

=
k∑

i=1
pi log 1

pi
+ k × C × (1−D′

DNR
(T )) (10)

≤k ×D′
DNR

(T ) log 1
D′

DNR
(T ) + k × C × (1−D′

DNR
(T )) (11)

=C × dim(T ) (1− SDNR(T ))
(

1−D′
DNR

(T )
(

1− 1
C

log 1
D′

DNR
(T )

))
, (12)

where the last step follows from the definition of k. Replacing D′
DNR

(T ) = DDNR(T )
1−SDNR(T ) yields the intended

result.

A.2 Proof of Corollary 1

Corollary 1. The upper bound for I(X; T ) in Theorem 1 decreases in response to increase of both DDNR(T )
and SDNR(T ).

Proof. It is trivial to see that increasing SDNR(T ) can only decrease the upper bound. Let us denote

Z = C × dim(T ) (1− SDNR(T ))
(

1−D′
DNR

(T )
(

1− 1
C

log 1
D′

DNR
(T )

))
. (13)

For simplicity of notation, let β = C × dim(T ) × (1 − SDNR(T )). For investigating how the upper bound of
I(X; T ) (denoted as Z) changes with DDNR(T ), we first compute the derivative of Z w.r.t D′

DNR
(T ) which

yields the following expression.

dZ

d(D′
DNR

(T )) =β

(
−

(
1− 1

C
log 1

D′
DNR

(T )

)
−D′

DNR
(T )

(
1

C ×D′
DNR

(T )

))
(14)

=β

(
−1− 1

C
+ 1

C
log 1

D′
DNR

(T )

)
(15)

For dZ
d(D′

DNR
(T )) to be less than or equal to 0, we must have

C ≥ log 1
D′

DNR
(T ) − 1. (16)

In what follows, we will show that C ≥ log 1
D′

DNR
(T ) itself. Please refer to the proof of Theorem 1 for the

definitions.

For each node output represented in T1, T2, .., Tk, we add a negative bias of − 1
α , and flip the sign of all the

weights pointing to each of these nodes. We note that performing this change would yield that
∑N−1

j=1 ϕi
j = pi.

We will then have that ∑
N−1≥j≥1

ϕi
j

(pi)
log 1

ϕi
j

≥ log 1
pi

, (17)
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where the lower bound is achieved by only filling the remaining probability pi onto a single bin. Now, as
C represents the maximum possible value that the quantity bounded in equation 17 can take, we naturally
have that C ≥ log 1

pi
as well, for all i. As E[pi] = D′

DNR
(T ), it also then follows that C ≥ log 1

D′
DNR(T ) . This

proves our intended result, and yields that dZ
d(D′

DNR(T )) ≤ 0. Therefore, given that D′
DNR

(T ) = DDNR(T )
1−SDNR(T ) , a

larger value of both DDNR and SDNR will lead to a larger value of D′
DNR

(T ), decreasing Z (i.e., the upper bound
of I(X; Z)) and increasing the risk of over-compression.

23



Published in Transactions on Machine Learning Research (09/2023)

B Supplementary Experimental Results

In the section, we show some additional experimental results. Specifically,

1. In Section B.1, we repeat the DNR experiment using VGG-19 on the CIFAR-10 dataset with the
Global Taylor pruning method.

2. In Section B.2, we present the implementation details used in the Section of Performance Evaluation
(i.e., Section 4) and demonstrate the performance of AP for more values of λ.

B.1 The dynamic DNR experiment

In this section, we repeat the DNR experiment in the Section of Activate-while-Pruning (i.e., Section 3) using
VGG-19 on CIFAR-10 with Global Taylor pruning method. The hyper-parameters and the LR schedule used
are from (Frankle & Carbin, 2019). As shown in Fig. 4, we observe the performance trend largely mirrors
those reported in Fig. 1. The dynamic DNR tends to decrease as the network is iteratively pruned (shown
in Fig. 4 (left)), and during optimization, the network aims to reduce the dynamic DNR so as to preserve
the learning ability of the pruned network.

Figure 4: Dynamic and static Dead Neuron Rate (DNR) when iterative pruning VGG-19 on CIFAR-10 using
Global Taylor. Left: dynamic and static DNR when the network converges; Right: dynamic DNR during
optimization.

B.2 Implementation Details and Performance of AP for More Values of λ

In this section, we present the implementation details used in the Section of Performance Evaluation (i.e.,
Section 4) and demonstrate the performance of AP for more values of λ.

(1) Implementation Details. We use standard implementations reported in the literature. Specifically,
the implementation for Tables 16 - 17 is from (Frankle & Carbin, 2019). The implementation for Table 18
- 21 are from (Zhao et al., 2019), (Chin et al., 2020), (Renda et al., 2019) and (Dosovitskiy et al., 2020),
respectively. The implementation details can also be found on the top row of each table (from Table 16
to Table 21). Furthermore, for the IMP method examined in this work, we rewind the unpruned weights
to their values during training (e.g., epoch 6), in order to obtain a more stable subnetwork (Frankle et al.,
2019). To better work with IMP, the weight rewinding step in the proposed AP also rewinds the unpruned
weights to their values during training (i.e., the same epoch as IMP).

(2) More Performance of AP. In Tables 16- 21, we also show performance of AP for more values of λ.
We observe that for other values of λ, AP-Lite and AP-Pro also help to achieve higher performance. For
example, in Table 17, AP-Lite improves the performance of the Global Taylor (at λ = 8.59%) from 84.5%
to 86.1% while AP-Pro improves the performance to 87.0%.
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(i) Params: 270K; (ii) Train Steps: 100 Epochs; (iii) Batch size: 128;
(iv) LR Schedule: warmup to 0.03 at 55 epochs, 10X drop at 55, 70 epochs.

Percent of Weights Remaining Global Magnitude AP-Lite AP-Pro

λ = 100.0% 91.7±0.2 91.7±0.2 91.7±0.5
λ = 64.0% 91.5±0.3 91.7±0.2 91.8±0.3
λ = 40.9% 90.8±0.5 91.0±0.6 91.4±0.4
λ = 32.8% 90.3±0.4 90.4±0.7 90.7±0.6
λ = 26.2% 89.8±0.6 90.2±0.8 90.4±0.7
λ = 13.4% 88.2±0.7 88.7±0.7 89.3±0.8
λ = 8.59% 85.9±0.9 86.8±0.9 87.3±0.8
λ = 5.72% 81.2±1.1 82.4±0.8 84.1±1.1

Table 16: Performance (top-1 test accuracy ± standard deviation) of pruning ResNet-20 on CIFAR-10 using
Global Magnitude with and without AP. The hyper-parameters and the LR schedule are from (Frankle &
Carbin, 2019).

(i) Params: 139M; (ii) Train Steps: 160 epochs; (iii) Batch size: 64;
(iv) LR Schedule: warmup to 0.1 at 15 epochs, 10X drop at 85, 125 epochs.

Percent of Weights Remaining Global Taylor AP-Lite AP-Pro

λ = 100.0% 92.2±0.3 92.2±0.3 92.2±0.3
λ = 64.0% 91.3±0.2 91.5±0.3 91.9±0.3
λ = 40.9% 90.6±0.4 90.8±0.5 91.1±0.7
λ = 32.8% 90.2±0.5 90.5±0.8 90.8±0.6
λ = 26.2% 89.8±0.8 90.3±0.7 90.7±0.9
λ = 13.4% 89.2±0.8 89.7±0.9 90.4±0.8
λ = 8.59% 84.5±0.9 86.1±1.0 87.0±0.7
λ = 5.72% 76.9±1.1 78.4±1.4 79.2±1.3

Table 17: Performance (top-1 test accuracy ± standard deviation) of pruning VGG-19 on CIFAR-10 using
Global Taylor with and without AP. The hyper-parameters and the LR schedule are from (Frankle & Carbin,
2019).

(i) Params: 1.1M; (ii) Train Steps: 300 epochs; (iii) Batch size: 256;
(iv) LR Schedule: warmup to 0.1 at 150 epochs, 10X drop at 150, 240 epochs.

Percent of Weights Remaining LAMP AP-Lite AP-Pro

λ = 100.0% 74.6±0.5 74.6±0.5 74.6±0.5
λ = 64.0% 73.4±0.6 73.7±0.5 74.2±0.6
λ = 32.8% 71.5±0.7 71.9±0.8 72.2±0.7
λ = 26.2% 69.6±0.8 70.3±0.7 71.1±0.7
λ = 13.4% 65.8±0.9 66.6±0.7 68.8±0.9
λ = 5.72% 61.2±1.4 62.2±1.2 63.5±1.5

Table 18: Performance (top-1 test accuracy ± standard deviation) of pruning DenseNet-40 on CIFAR-100
using Layer-Adaptive Magnitude Pruning (LAMP) (Lee et al., 2020) with/without AP. The hyper-parameters
and the LR schedule are from (Zhao et al., 2019).

25



Published in Transactions on Machine Learning Research (09/2023)

(i) Params: 2.36M; (ii) Train Steps: 200 epochs; (iii) Batch size: 128;
(iv) LR Schedule: warmup to 0.1 at 60 epochs, 10X drop at 60, 120, 160 epochs.

Percent of Weights Remaining LAP AP-Lite AP-Pro

λ = 100.0% 73.7±0.4 73.7±0.4 73.7±0.4
λ = 64.0% 72.5±0.4 72.7±0.3 72.9±0.5
λ = 32.8% 72.1±0.8 72.5±0.9 72.8±0.7
λ = 26.2% 70.5±0.9 70.9±0.8 71.4±0.8
λ = 13.4% 67.3±0.8 68.2±1.2 69.1±0.8
λ = 5.72% 64.8±1.5 66.2±1.5 67.4±1.1

Table 19: Performance (top-1 test accuracy ± standard deviation) of pruning MobileNetV2 on CIFAR-100
using Lookahead Pruning (LAP) (Park et al., 2020) with/without AP. The hyper-parameters and the LR
schedule are from (Chin et al., 2020).

(i) Params: 25.5M; (ii) Train Steps: 90 epochs; (iii) Batch size: 1024;
(iv) LR Schedule: warmup to 0.4 at 5 epochs, 10X drop at 30, 60, 80 epochs.

Percent of Weights Remaining IMP AP-Lite AP-Pro

λ = 100.0% 77.0±0.1 77.0±0.1 77.0±0.1
λ = 64.0% 77.2±0.2 77.5±0.1 77.7±0.1
λ = 32.8% 76.8±0.2 77.2±0.3 77.5±0.4
λ = 26.2% 76.4±0.3 76.9±0.4 77.2±0.3
λ = 13.4% 75.2±0.4 76.1±0.3 76.8±0.6
λ = 8.59% 73.8±0.5 75.2±0.7 75.9±0.5
λ = 5.72% 71.5±0.4 72.6±0.5 73.5±0.4

Table 20: Performance (top-1 test accuracy ± standard deviation) of pruning ResNet-50 on ImageNet using
Iterative Magnitude Pruning (IMP) with and without AP (Frankle & Carbin, 2019). The hyper-parameters
and the LR schedule are from (Renda et al., 2019).

(i) Params: 86M; (ii) Train Steps: 50 epochs; (iii) Batch size: 1024;
(iv) Optimizer: Adam; (v) LR Schedule: cosine decay from 1e-4.

Percent of Weights Remaining IMP AP-Lite AP-Pro

λ = 100.0% 98.0±0.3 98.0±0.3 98.0±0.3
λ = 64.0% 98.4±0.3 98.5±0.2 98.7±0.3
λ = 32.8% 97.3±0.6 98.0±0.4 98.2±0.6
λ = 26.2% 96.8±0.7 97.3±0.7 97.6±0.5
λ = 13.4% 88.1±0.9 89.9±0.6 91.1±0.8
λ = 8.59% 84.4±0.8 85.5±0.8 87.4±0.7
λ = 5.72% 82.1±0.9 83.6±0.8 84.8±1.0

Table 21: Performance (top-1 test accuracy ± standard deviation) of pruning Vision Transformer (Dosovit-
skiy et al., 2020) (ViT-B-16) on CIFAR-10 using IMP with and without AP (Frankle & Carbin, 2019). The
hyper-parameters and the LR schedule are from (Dosovitskiy et al., 2020).
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