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Abstract

Active learning(AL) enables prediction algorithms to achieve better performance with fewer data points
by adaptively querying an oracle for output labels. In many instances, the oracle is a human. According to
behavioral sciences, humans provide labels by employing decision heuristics which tend to offer biased labels.AL
algorithms trained with such labels could in turn provide incorrect predictions, which could make the decisions
made by such models unfair. How would modelling the oracle with such heuristics affect the performance of AL
algorithms? We investigate three human heuristics (fast-and frugal tree, tallying, and franklin’s rule) combined
with four active learning algorithms (entropy-based, multi-view learning, density-based, and novel density-based)
and apply them to five datasets from domains such as health, wealth and sustainability. A first novel finding is
that if a heuristic leads to significant labelling bias, the performance of active learning algorithms significantly
drops, sometimes below random sampling. Thus, it is key to design active learning algorithms robust to labeling
bias. Our second contribution is a novel density-based algorithm that achieves an overall median improvement of
31% over current algorithms when the oracle has a significant labelling bias. In sum, designing and benchmarking
active learning algorithms should incorporate the modelling of human decision heuristics.

1 Introduction

AT is being used in various significant applications that affect human lives. These include recruitment, consumer
lending, healthcare, criminal justice, etc. Building prediction models is crucial for automating such decision pro-
cesses because it enables decisions based on data rather than relying solely on intuition or past experiences. There is
an increasing need for training such models in conditions where obtaining labels is significantly more expensive than
their attributes. Moreover, due to the sensitivity of the applications the trained models is also be expected to be fair
i.e. devoid of bias that exists when a human makes a decision. Active learning (AL) algorithms have the leverage
of choosing the data points to be queried at each instance, thereby reaching the benchmark accuracy with fewer
queries (labeled instances). A typical active learner starts with a small number of labeled instances and queries for
one or more unlabeled instances, then selects additional points to query based on the labels obtained from previous
queries. Labeling the queried instances can be done in multiple ways and is therefore typically assumed to be an
unbiased random response. For example, building a model to predict the durability of a car involves crash-testing
cars to obtain labels that are highly expensive, making this a suitable application for AL algorithms. However, a
substantial subset of AL-based querying involves a human annotator. For instance, A review of AL papers searched
with the keyword “Active Learning” that were published during 2021-2023 across prominent venues such as Nature
Communications, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Journal of
Machine Learning Research and Advances in Neural Information Processing Systems shows that about 63% of the
works involved the usage of human-annotated labels. Traditional literature in behavioral economics[1] highlights the
deviation of the human decision-making process from rationality, which they defined as bias. Providing labels for
AL should be no exception.

However, annotator bias and its implications on trained models are acknowledged in only a small subset of AL
literature. For instance, Deepesh et.al.[2] noticed that behavioral biases in the oracle decrease the classification
accuracy of prediction models built by at least 20%. Moreover, Burr et.al.[3], in their extensive literature survey
on AL, mentioned the reliability of the labels provided by humans might be compromised due to difficulties faced
in comprehending the instances that might impact the quality of the labels obtained.

This understanding resulted in development of a class of AL algorithms that considers the biases present in the
human oracle.



Works belonging to this class[4, 5] considered the presence of human bias as random or a uniformly distributed
error while proposing novel algorithms.J.Du et.al.[6] on the other hand, proposed an algorithm with an exploration
and exploitation approach by relabeling data points that could be wrongly labeled. The oracle here was mod-
eled based on the assumption that the probability of obtaining biased labels depends on the maximum posterior
probability of an instance computed with the ground truth labels.

In all the above works, the oracle was assumed to offer incorrect responses randomly, or the label bias was
synthetically injected based on certain assumptions. However, Herbert Simon, the founder of bounded rationality,
argues that people must utilize approximations for the majority of tasks, including simple decision heuristics|[7].
Additionally, Gigerenzer et al.[8] pointed out several human heuristics existent under bounded rationality that the
human mind tends to follow as its incapable of superhuman reasoning.

The above works support that human oracle is likely to use decision strategies during annotations, and the label
bias tends to result from the heuristic used. This makes it essential to study the effect of decision strategies on the
active learning models since a model trained with an unfair human decision strategy could make unfair decisions.

This study contributes to the active learning literature by asserting that the decision strategy used by the oracle
significantly affects the relative performance of AL algorithms, thereby necessitating the need to benchmark AL
algorithms with human decision strategies. We also propose a novel AL algorithm that pioneers the birth of a new
class of algorithms built based on human decision strategies.

The rest of the paper has been structured as follows. The methodology is laid forth in Section 2, including
explanations of the datasets, AL algorithms, and human heuristics utilized in the study. After discussing the results
in Section 3, Section 4 concludes by summarising the same.

2 Methodology

Typically, the active learner chooses the instance to obtain label(x;) from the pool of unlabeled instances(X)
sequentially based on its query strategy and queries the same to the Human. The labels thus obtained(y;) train the
AL after every query. In our study, we mimic the functionality of the human oracle using fast and frugal heuristics
such as the fast and frugal tree (FFT), tallying, and a conventional heuristic(Franklin’s rule). The decision strategies
ensure that the bias labels provided to the oracle are not random but are based on the instance for which querying
is done.[see section2.1]

To perform the experiments, we chose five labeled data sets from various domains such as Health[Cleveland Heart
disease[9]], Wealth[To predict fraudulent firm[10]], Automobile[Car Condition prediction[11]], Food science[Wine
Prediction[12]] and Sustainability[Biodegradable Data set[13]].

For our study, we considered the pool-based sampling scenario where the pool of instances is ranked based
on the query strategy. The active learner then selects the best query based on these ranks. The AL algorithms
considered were Entropy Sampling, Multi-view learning with co-testing, Conventional Density-based learning, and
Novel Density-based learning[see section 2.2]

2.1 When is a Fast and Frugal Decision strategy likely to provide an unbiased label?

To get a rational understanding of situations where fast and frugal heuristics(FFT and Tallying) provide incorrect
labels, We postulate the following hypothesis:

Hypothesis 1 Data points whose attribute values are farther away from their corresponding mean attribute value
are less prone to obtaining biased labels from human oracle/heuristics.

The above hypothesis was formulated based on the intuition that the decisions made by Fast and frugal heuristics
always compare the attribute values to constant values. In FFT and Tallying, this constant value tends to be the
mean attribute value.

This hypothesis can be illustrated with a case where the task is to classify a car’s condition based on its usage
period (Let the average usage be five years). Intuitively, the human oracle would find it easier to classify cars that
are 2/10 years old than a car that has been used for five years. i.e., Cars with attribute values closer to their mean.

On the datasets taken into consideration, fast and frugal heuristics were employed to produce predictions in
order to test the hypothesis. Table 1 and Table 2 show that the prediction accuracy of the heuristics was significantly
higher for data points that were farther away from the mean(FM) compared to data points that were closer to the
mean(CM), thereby supporting our claim.



S No Data-set Name FM(%) CM (%) Overall(%)
r.No.
1 Biodegradable Data set 78.74 73.33 77.02
2 Car Prediction 80.61 68.56 71.29
3 Cleveland Heart Disease Data set 95.45 83.83 84.72
4 Audit Dataset 96.5 94.4 95.7
5 Wine Dataset 100 86.7 87.07
Table 1: Accuracy of Predictions made by Tallying heuristic
Data-set N FM M 11
S No. ata-set Name (%) CM(%) Overall(%)
1 Biodegradable Data set 76.44 57.33 70.97
2 Car Prediction 94.1 88.5 92.59
3 Cleveland Heart Disease Data set 81.25 80.07 81.25
4 Audit Data 96.5 91.1 94.42
5 Wine Data set 100 97.1 97.75

Table 2: Accuracy of Predictions made by FFT heuristic

2.2 Novel Density-based Learning

The experimentally supported hypothesis(section 2.1) motivates the development of a query strategy that queries
data points whose attribute values are farther away from their mean attribute value. It must also be noted those
instances tend to have lower cosine Information density values. Existing algorithms, such as conventional density-
based learning, are based on metrics directly proportional to entropy and cosine similarity. This makes them prefer
querying data points more susceptible to obtaining biased labels. Hence, we consider a modified metric:

H(z) — > 5 P log(pr)
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As the above formula indicates, the data points are ranked based on their similarity to other unlabeled data
points in the pool set(% 25:1 sim(x,z")) as well as the entropy measure. U represents the pool of unlabeled

instances after every query. The metric is expected to motivate the learner to query data points with high entropy
and low information density, i.e.query data points that are useful and tend to obtain accurate labels.

3 Results and Discussion

The AL models were trained based on the labels produced by human heuristics. This was repeated for every
heuristic-AL algorithm-decision strategy combination, and the trained model’s accuracy was measured after each
query. Conventional studies involve the evaluation of AL algorithms using Learning curves(Accuracy vs. data
points queried). However, it is reasonably apparent to expect a decrease in the accuracy of both AL algorithms and
random sampling across data points queried when labels are provided due to biased decision strategies. Thereby,
evaluating algorithms based on absolute accuracy is redundant in this study.

However, the relative accuracy of AL algorithms compared to that of Random sampling would help understand
the comparative effectiveness within active learning algorithms in the presence of decision strategies. Hence we
introduce a particular metric, 'Leverage’[L;], to visualize the same.

L; = AL, — RandomSampling; (2)
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Here,AL; and RandomSampling; represent the accuracy obtained by the respective query strategies after
of queries.

Furthermore, in order to find the relative robustness within the AL algorithms, we assess the decrease in the
effectiveness of AL algorithms observed due to the influx of decision strategies i.e., drop in leverage across the
learning phase[V,]:

no.

vi - [Li]Ground - [Li]DecisionStrategy (3)



In Eqn.3, [L;] DecisionStrategy Te€Presents the active learning algorithm’s leverage after obtaining labels as a result
of the ”Decision Strategy” for ”i” queries.

The Leverage curve/Drop in leverage curve plotted based on the above help in representing both the absolute
effectiveness and drop in the efficacy of AL algorithms when the fast and frugal heuristics provide significantly
incorrect labels(see Appendix).

Absolute Leverage Entropy(%) MVL(%) Pro (%) Conventional(%) Improvement(%)

Biodegradable-FFT 1.59 i) 68.29
Biodegradable-Tallying 2.26 1.97 17.62

Car Rate-FFT il 051 12.15

Car Rate-Tallying 0.52 0.36 92.03
Cleviand Heart-FFT 049 9.41

Cleviand Heart-Tallying 1.66 -16.82
Wine-Tallying 3.74 362 -4.91

Drop in Leverage Entropy(%) MVL(%) Proposed(%) Conventional(%) Decrease in drop(%)

Biodegradable-FFT 8.64 30.9
Biodegradable-Tallying [0 .08 | 31.34
Car Rate-FFT 0.11 524.92
Car Rate-Tallying 0.69 159.01
Clevliand Heart-FFT Db -317.12
Cleviand Heart-Tallying -0.043 -374.89
Wine-Tallying 2.59 18.5

Figure 1: Top-Avg. leverage of AL algorithms, Bottom-Avg. drop in Leverage of AL algorithms

Figure 1 represents the average Absolute and Drop in Leverage experienced by the AL algorithms through
the learning phase(until convergence) specifically in scenarios where fast and frugal heuristics(FFT and Tallying)
provided significantly incorrect labels.

The proposed density-based learning performs better than other algorithms by showing a median improvement
of 11% and a median decrease in a drop of 31% compared to the best-performing algorithm. The notable reduction
in drop-in leverage demonstrates the robustness of the proposed algorithm. When heuristics like Franklin’s rule
gave mostly close-to-ground truth labels, the algorithm was not discovered to perform the best. As a result, the
suggested approach is subjected to be used only in situations where heuristics provide considerably biased labels.

4 Conclusion

The primary motive of the work was to model the oracle with human heuristics, which enabled the study of
human heuristics’ impact on AL algorithms. The same was achieved with three human heuristics(Fast and frugal
tree(FFT), Tallying, Franklin’s rule), four AL algorithms(Entropy based, Multi-view Learning, Density-based,
Novel-density based), and five data sets. The performance of AL algorithms decreased considerably when human
heuristics provided significantly incorrect labels. This necessitated a novel algorithm robust to bias labels provided
by decision strategies. Our empirically proven hypothesis that heuristics tend to provide correct labels when queried
data points with attribute values farther from the mean led to a novel density-based AL algorithm.

The proposed density-based learning algorithm improved absolute leverage by 11% in comparison to the best-
performing algorithm. Moreover, the median decrease in drop-in leverage was 31% making the proposed algorithm
a preferred one. The ability of the proposed algorithm to query instances that are likely to provide accurate labels
and its lesser dependency on the labels obtained attributes to its good performance. On the other hand, when
biased labels provided by the human heuristics were minimal, the proposed algorithm was not found useful, thereby
restricting its usage in such scenarios.

In sum, the variation in the relative performance of Active Learning algorithms w.r.t decision strategies advocates
the need for bench-marking algorithms in existing AL literature using the decision strategy framework proposed in
the study. Moreover, the findings strongly motivate the need for a new era of algorithms in the AL domain that
considers the uncertainty of the oracle while providing labels on instances, one of which has been achieved in this
study.
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Figure 2: Leverage curves of active learning algorithms when the oracle provided labels with significant bias are a

result of FFT

Biodegradable-FFT

2000%
6.000%
£.000%
2.000%
0.000%

2000 -

-4.000%

.000%

-8.000%

Density-Froposed ——Density-Conventicnsl

Biodegradable-Tallying

12.000%
7.000%
2,000%
-3.000%

-8.000%

—Eriropy m—rVL -

——Entropy =—hiL

Density-Froposed === Densty-Conventional

Car Condition-FFT

Density-Froposes == Densily-Conventonal

Clevland Heart-FFT

-4.000%

-5.000%
8.000%

—Ertropy m—.L Density-Proposed e Density-Camwenticnal

Clevland heart-Tallying

12.000%

-8.000%:

—Eirogy —lVL -

Density-Proposed =—Dengity-Conventionsl

Car-Condition-Tallying Wine -Tallying
12.000% 12.000%
7.000% 7.000%
2000% g “ 2000%
oo SRRGLTREBRE TGRSR RARERRRE | o T CTURARBIYEEEBRREB5SEETENE
£000% A000%
e E T s ] UL s DIEAE Y- PTOPOEae] s Dirigity-Cenventional e Eropy bl V] s Dangity-Proposad ss=Density-Convantions!

Figure 3: Leverage curves of active learning algorithms when the oracle provided labels with significant bias as a

result of tallying heuristic
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Figure 4: Drop in leverage across the learning phase of active learning algorithms for FFT
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Figure 5: Drop in leverage across the learning phase of active learning algorithms for tallying



